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GENERALIZED GROUP TESTING PROCEDURES

By STEVEN F. ARNOLD
Pennsylvania State University

A person wishes to determine which, if any, of n = [T%_, a; i.i.d. ran-
dom variables, X(i1, - - -, ix), ij = 1, - - -, a;, lie in some specified set 4. Such
observations will be called unsafe. It is assumed that the density of the
X’s is known and that Y;(i, - --, i;), the sum of all the X’s whose first j

- indices are i1, - -+, [j, can be measured as easily as the individual X’s. In
this paper, search procedures of the following form are studied. The person
first measures Yj, the sum of all the X’s. On the basis of Y, he decides
whether to stop, and classify all the X’s as safe, or to continue and measure
Yi(1), - -+, Yi(a1 — 1) (and hence know Yi(a1) = Yo — Y9171 Y1(é)). If he has
decided to continue, he measures Y1(j). For each of (Yo, Y1(j)), he must
decide whether to stop and classify as safe all X’s whose first index is j,
or to continue and measure Y3(i, 1), ---, Ya(j, a2 — 1) (and hence know
Y2(j, a2)). He continues in this fashion until each X has either been classified
safe or has been observed. Unlike most group testing problems, he is not
restricted to procedures that will locate all the unsafe observations. Instead
there is a loss function L(x) measuring the loss if X(i1, -+, ix) = x and is
not observed. Let V1 be the expected loss of a procedure (summed over all
the X’s), and let V; be the expected number of measurements. For each
0 < p = 1, aclass of rules D(p) is defined such that if a procedure is in D(p),
it minimizes p¥1 + (1 — p)V, and conversely, if a procedure minimizes
pV1 + (1 — p)V, then there is a rule in D(p) that leads to the same decisions
a.e. The union of the D(p) is shown to be an essentially complete class of
rules. A simpler form for the rules in D(p) is derived for the case where
the loss function is nondecreasing. More specific calculations are given
for the case where the X’s are normally distributed, and L(x) is the indicator
function for the set {x = d}.

1. Introduction. In this paper, the following quality control problem is
considered. A person wishes to determine which, if any, of n = [J%_, a; inde-
pendently, identically distributed (i.i.d.) random variables, X(iyy oy 0y, §; =
1, ..., a;, lie in some specified set 4. Such observations will be called unsafe.
It is assumed that the density of the X’s is known and that Y;(iy, + -+, i;), the
sum of all the X’s whose first j indices are i, - - -, i;, can be measured as easily
as the individual X's (perhaps by mixing; see the example below). Generalized
group testing procedures of the following form are studied. The person first
measures Y,, the sum of all the X’s. On the basis of Y,, he decides whether to
stop and classify all the X’s as safe or to continue and measure Y,(1), ---,
Y,(a, — 1), and hence know Y(a,) = Y, — }}¢2} Y(i). He has now completed
stage 0. If he has decided to continue, he measures the Y,(j). For each of
(Yos Y1(J)), he must decide whether to stop and classify as safe all the X”s whose
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first index is j, or to continue and measure Y,(j, 1), - - -, Y,(j, @, — 1), and hence
know Y,(j, a,). He has now completed stage 1. He continues in this fashion
until each X has either been classified as safe, or has been observed.

The following example should help to clarify the previous paragraph, as well
as motivate the remainder of the paper. Suppose that a state agent has to monitor
the algae level in each of twelve lakes. In particular, he would like to know if
any of the lakes has level greater than some constant 4. He takes a water sample
from each lake. The samples are indexed so that X(i,j, k), i=1,2,j=1,2,3,
k = 1,2 are the algae concentrations from each water sample. Suppose, in addi-
tion, the agent knows from previous experience that the X(i, j, k) are i.i.d. with
some known marginal distribution. One possible procedure is to measure each
of the 12 water samples separately. The following group testing procedure is
suggested as an alternative, which would require fewer measurements. Define

Yo= 2020 2 X(h js k) s Yi()) = X205 2w X(is s k)
V(i j) = Zu X(is j, k) -

If the measurement error is negligible, as will be assumed, he can measure Y,
as easily as any X(i, j, k) by taking equal quantities from each of the 12 samples,
mixing them, and finding the algae content of the mixture. In a similar way,
he can determine Y,(i) and Y,(i, j) each in one measurement. Therefore, the
researcher measures Y,. If Y, < b, for some constant b, he declares that all the
water is safe. If not, he measures Y,(1), and hence knows Y,(2) = Y, — Y(1).
If Y,(1) < b, he declares that the X(1,j, k) are all safe for j = 1,2,3, k = 1, 2.
If Y,(1) > b,, he measures Y,(1, 1) and Y,(1, 2), and hence knows Y1, 3) =
Yi(1) — Yy(1, 1) — Y,(1,2). If Y(1, 1) < b, he decides that the X(1, 1, k), k =
1,2 are both safe. If not, he measures X(1, 1, 1), and therefore knows X(1, 1, 2).
He follows the same procedure for Y,(1, 2) and Yy(1, 3). He then looks at Y,(2).
If Y,(2) < b, he declares all the X(2, j, k) to be safe. If not, he measures Y,(2, 1)
and Y,(2, 2) and proceeds as for Y,(1, 1) and Y, (1, 2).

CoMMENT 1. If the X(i, j, k) have Bernoulli distributions, d = 0, and b, =
b, = b, = 0, this procedure is a group testing procedure (see Kumar and Sobel

(1971)). Therefore these procedures will be called generalized group testing
procedures. '

CoMMENT 2. The generalized group testing procedure takes at most 12 meas-
urements (or n measurements in the general situation), which is the number
required to measure all the X(i, j, k) individually.

CoMMENT 3. In the traditional group testing procedures, no unsafe X’s would
go undetected. For many distributions (such as the normal distribution), the
only generalized group testing procedure that would guarantee detection of all
unsafe observations would be the one that continues at every point (i.e., b, =

—o0). For this procedure there would be no benefit to the group testing.
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Because of Comment 3, the restriction that all unsafe observations be detected
is replaced with a loss function, L(x), which measures the loss if X(i}, - -+, i) = x
and is undetected. It is assumed that the loss if several unsafe observations go
undetected is the sum of the individual losses. For the example given above, a
reasonable loss function might be L(x) = min (0, x — d). Actually for much of
this paper, no assumptions are made about L(x), so that there need not be any
safe X’s, but perhaps some for which the additional information found by meas-
uring them is not worth the cost of measurement.

Let V', be the expected loss for a particular procedure, summed over all the
X’s, and let V, be the expected number of measurements for that procedure.
In the following sections, sequential decision theory is used to find procedures
that make both ¥, and ¥, small. In Section 2 the problem is set up (permitting
randomized decisions at each stage). It is shown in Section 3 that the procedures
(like those in the example) in which the decisions at the jth stage depend only
on Y; (not on Y, ..., Y, ;) form an essentially complete class. In Section 4,
for each 0 < p < 1, a class of rules D(p) is defined such that:

1. 1f a procedure is in D(p), it minimizes pV, + (1 — p)V,.

2. If a procedure minimizes pV, + (1 — p)V,, then there is a rule in D(p)
that leads to the same decisions with probability one.

3. Uosps: D(p) is essentially complete.

CoMMENT. In the usual formulation of the sequential decision problems, the
goal is to find rules that minimize ¥, 4- ¢V, for some fixed ¢. Clearly, finding
D(1/(1 + g)) is equivalent to that problem.

For many problems involving continuous densities, the rules in D(p) for a
particular p are equal a.e. In Section 5 it is shown that the rules in D(p) can
usually be put into a much simpler form when the loss function is nondecreasing,
a natural assumption in problems of water, air or paper purity such as that in
the example. In Section 6, the special case in which the X’s are normally dis-
tributed and L(x) is the indicator function of the set {X > d} is considered.
Unfortunately, only the case k =2 is considered, because other cases involve the
evaluation of trivariate normal integrals. Specific numerical values are given
for the case d = 2, a, = 2, a, = 3 and the case d = 2, a, = 3, and a,=2. In
Section 7 there is a short discussion about optimal procedures when the i.i.d.
assumption is dropped.

In the traditional group testing problem, once the a;’s are selected, the pro-
cedure is completely specified, so the goal is to find the optimal choice of the
a;’s. However, for each choice of the a,’s, there are infinitely many generalized
group testing procedures. In this paper, the optimal rules for a particular se-
quence of the a,;’s are determined. It is assumed that the order of the a,’s is
given. For example, if the person has 6 observations, he must decide whether
to divide them into 2 sets of 3 observations or into 3 sets of 2. In Section 6 a
numerical example is worked 2 ways, once as 2 sets of 3 observations, and once
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as 3 sets of 2 observations, and the results are compared. For p equal to each
of .95, .99, .995, the Bayes risk of the optimal procedure for 2 sets of 3 observa-
tions is about the same as the Bayes risk for 3 sets of 2 observations.

2. Setting up the problem. The specifications for this problem consist of 4
parts.

1. There are n—= k_,a; i.i.d. random variables X(i,, - - -, i), i=1,...,a,
having a known distribution. For simplicity, it will be assumed that this dis-

tribution is either discrete or continuous with density function f(x). Let

2.1) Yio(iy oo osipy) = D8 X(is -5 )
Y,(i, -5 0;) = 2% ]+1 VYyn(is oo i) J=01,...,k—2.
2. There is a loss function L(x) which represents the loss if X(i,, - - -, i) is
not observed, and is equal to x.

3. Let W be the class of procedures @ defined in the following manner. Each
procedure @ is a set of k measurable functions,

® = (q)o(}’O)’ q)l(}’o’ Yi)s o s q)k—l(yoa ces Yie1)

where @,(y,, - - -, y;) represents the probability of continuing at the jth stage
(to observe Y, (i, -+, i;,,)) When Yo = yy, -+, Y;(iy, -+, 8)) = y;.
4. Let

V(@) = D1+ D= E[L(X G - i) = T2 @(Yos - - Vi, - - -5 i)
Vﬁ((p) =1 + m—=10(am+1 1) Zzl 1" z _1E[H] o(I) (Yo, R} Yj(il’ v 'ij$))] )

V(®) represents the expected loss from using the procedure ®. To see this,
note that
(G 1 =200 SHERERD STURERERE )

is the probability of not observing X(i,, - - -, i,) when the X’s are known. Simi-
larly, V,(®) represents the expected number of measurements needed for pro-
cedure @, as can be seen by noting that there is one measurement at the first
stage, (4, — 1)EQ(Y,) expected measurements at the second stage (since the last
measurement can be determined from Y, and the first q, — 1 measurements).
Similarly there are

( - 1) Zzl 1 E[(Do(Yo)q)l(Yo’ Yl(il))]
expected measurements at the third stage, etc.

The objective of this paper is to find procedures that make ¥, and ¥, small.
To simplify the notation, let Y, = Y (1, ..., 1),j =0, ...,k — 1,andlet Y, =
X(1,---,1),and let ¥; = (Y,, ¥y, ---,Y,). By symmetry, since the X(i,, - - -, i)
are i.i.d.,

(2.2) VA®) = ¢ — a,E[L(Y,) [T5zh a; @4(F;)]
ViA®) = 1+ 52 (@ — DE[TTo0a;04(7))]
where a, = 1, ¢ = ([[%, a;,)EL(Y},).
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2.2. A preliminary result. The following lemma and its corollaries are useful
in later sections. Let

Z, =Y, —Y,,, i=0,..-,k—1 zZ,=Y,.
LEMMA 1. The Z, are independent.

Proor. By definition, Z, is the sum of all the X’s whose first index is not 1.
Z, is the sum of all the X’s whose first index is 1 and whose second index is not
1. Z,is the sum of all X’s whose first 2 indices are 1, and whose third index is
not 1, etc. Each Z, is a sum of different X’s. Since the X’s are independent
the Z’s are. []

COROLLARY 1. The conditional distribution of Y,_, given (Y,_,, Y,) is the same
as the conditional distribution of (¥,_,) given Y, _,.

Proor. Let Z, have density g,(z;). By Lemma 1, the joint density of the Z,
is [T#., 9.(z,). The transformation from (Y, ..., Y,) to (Z,, ---, Z,) is an in-
vertible transformation whose Jacobian is 1. The joint density of the Y, is
therefore

(2.3) 9d(Yo — Y)G(y1 — ya) - -+ Ies( Y1 — Y)9u(Ve) -
The corollary follows directly. []

CoROLLARY 2. The conditional distribution of Y,,, given Y, is the same as the

conditional distribution of Y, given Y.

Proor. From (2.3) the density of ¥,,, is

9o(Yo — ¥1) =+ 95(¥; — Yir)h(Y;11)
for some function of 4. The corollary again follows. []

3. An essentially complete class. In order to find procedures ® that make
both V(@) and V,(®) small, ¥, and V, are considered as risks in a 2-parameter
decision theory problem. The usual definitions are used. A class D of procedures
is essentially complete if for any procedure @, there exists ®* ¢ D such that
Vi(@*) < Vy(®) and Vy(D*) < V(D). A procedure ® is admissible if there is
no other procedure ®* such that V,(®*) < V(®), Vy(®*) < V(D) and V,(O*) +
Vy(@*) < V(@) + Vy(®). A procedure @ is Bayes with respect to the prior (p,
1 — p) if it minimizes pV,(®) 4 (1 — p)V(D).

ComMENT. This usage of the word Bayes is not standard, since p does not
represent a probability. The reason for using the term is the following. It will
be shown that the set of all pairs (V,(®), V,(®)) is a convex set. The complete
class theorem can be used to conclude that the Bayes rules form a complete
class. This usage is consistent with the usual geometric interpretation for finite
6 (see Ferguson (1967), pages 34-43).

DerINITION. Let A be the class of all procedures ® = (®,, ---, ®,_,) such
that @, is only a function of Y.
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THEOREM 1. A is an essentially complete class for ¥.
Proor. Let® = (@, --.,D,_,). Define @* = (Oy*, ..., Dy ) € Arecursively
by
Q4 (Yy) = DY),

E(ITis, ®@,|Y;) . -

3.1 O .*(Y,) = i=0 7l J f E(Iizt@,*|Y, 0,

( ) J ( J) E(Hf;(,l q)L*|YJ) 1 (HZ—O 2 | .7)i
=0 if E(QIizZi®*|Y;)=0.

Then E([[izo @:|Y,;) = E([Tio®*|Y,),j = 0, - -+, k — 1. Therefore V,(®) =
V,(®*). Similarly, using Corollary 1,

E(L(Yy) IT521 @5 (Yer Yiww)) = L(YDE(IT52 @5 [ Vi)
= L(Y)E(II525 @, [ Vi)
= E(L(Y,) IT52 @5 | (Yo Vi) -
Therefore V,(®) = Vy(P*). [

4. Bayes procedures. In this section, a class of procedures D(p) is defined
for each p, 0 < p < 1. It is shown that these procedures are all Bayes with
respect to the prior (p, | — p), and conversely, that if any procedure in A is
Bayes with respect to the prior (p, 1 — p), then there is a rule in D(p) that leads
to the same results a.e. It is then shown that the union of the D(p) is essentially
complete for ¥. The method used in this paper for finding Bayes rules is very
similar to that used for finding Bayes rules for truncated sequential decision
problems (see Ferguson (1967), pages 314-318).

Let

(4.1) R(®@, p) = pVy(®@) + (1 — p)V(P)

be the Bayes risk of the procedure with respect to the prior (p, 1 — p). For
any procedure ® = (@,, ---, D,_)) € A, define U, recursively by
(4.2) Uea(pry) = —(1 = p)@ — 1) + pa B(L(Y1) | Yier = )) -
(43)  Uf@uipy) = —(1 = p)ajn—1)

+ @ E[U;4( D115 5 Yi4) @Y i) | ¥ = )]
where @, = (®,, ®,,,, - -+, ©,_,).

Although no use is made of this interpretation in the following paragraphs,
for motivation it is helpful to think of U, as representing the expected cost of
stopping relative to continuing. The following heuristic argument indicates why
this interpretation is correct. If the procedure is continued at stage j, a;,, — 1
new measurements must be made, and the cost is therefore (a;,, — 1)(1 — p).
Now suppose the procedure stops at stage j. It costs nothing if the procedure
would have stopped at stage j + 1. However, the cost is U, if it would have
continued. Therefore the cost of stopping is ®;,,U;,,, and the expected cost is
E®,,,U,,,|Y; = y. The relative cost is the difference between the cost of con-
tinuing and the cost of stopping.
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LeMMA 2. Let ® = (@, ---,D,_)eA. Foralli=0,1, ...,k — 1,

(4.4) R@,p)=pe+ (1 —p) + (1 —p) Lo (@nin — DE[7-0a; D;
— E[U{Di13 p, V) Moo 4, D5(Y )] -
Proor. The lemma is proved by induction on j = k — i. It is first proved

forj=1( =k — 1). From (2.2)
(43) R(@,p)=pc+ (1 —p)+ (1 = p) ZiZ(@n — DE]10a; D,

_ + E(E(IT5=a; DY) — p)a, — 1) — pa, L(Y)]| Yi) -
However,

E(IT428 a; @Y )[(1 — p)aw — 1) — pa, L(Y))]| Vo)
(4.6) = 454, @,(Y)I(1 — p)a — 1) — pa, EL(Y,) | ¥, ]

= =146, QY )Uss(p, Yioy)

where the last equality follows from Corollary 2 to Lemma 1. The proof for

the case j = 1 is completed by substituting the result of (4.6) into (4.5). The
induction step follows similarly and is omitted. []

Letarule ® = (@, - - -, @,_,) be defined recursively by the following scheme.
Let

Q;(Y;) =1 if Uy(®;,55p,¥;) >0
4.7) = b,(Y;) if Uj(({)jH; pY;)=0
=0 if U®,,;pY,)<0.

Let D(p) be the class of all rules satisfying (4.7) for some b,(Y,).

ComMENT. For many problems involving continuous distributions, all the
rules in D(p) will be equal a.e., since the points of randomization have measure
0 (see Section 6 for an example).

THEOREM 2. If ® € D(p), then ® minimizes R(D, p). That is, @ is Bayes with
respect to the prior (p, 1 — p).
Proor. By Lemma 2
R(®, p) = pe + (1 = p) + (1 — p) Zie (4mss — DE [[7=04;D;
— 4 E[q)i(Yi)Ui((i)Hl; P> YOE(IT520a; 9, Y))]
Only the last term involves @;, a; E([[iZ{ a;®;|Y,) = 0, and U, does not depend

J=0%j
on @,. Therefore, by a proof similar to the Neyman-Pearson lemma, @, satisfy-

ing (4.7) minimizes R(®, p). [
CoroLLARY. If ® e D(p), 0 < p < 1, then @ is admissible.

One might expect that any ® minimizing R(®, p) would have to satisfy (4.7)
a.e. Unfortunately, this is not true, because in some situations there are Bayes
procedures such that

(4-8) P([lico @ = 0] Y, = y) =1
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for some y. If (4.8) is satisfied, it does not matter how @, .(y) is defined, since
Y;,, = y will be observed with probability 0. However, if
H{:=o (Di = %‘=o (Di* s for all ]

then @ = (@, - .., ®,_,) and O* = (D*, ..., O ) really deterniine the same
procedure in that the actions are the same under both procedures.

THEOREM 3. Suppose ® = (@, - - -, ®,_,) € A and ® minimizes R(D, p). There
exists O* = (Dy*, ..., D} ) e D(p) such that for all j,
(4.9) Mo @; = [Ti, @.*  a.e.
(4.10) V(@) = V(D*), V(@) = Vy(D*).

Proor. By Lemma 2,
(411)  R(®@,p) = pc + (1 — p) + (1 — p) Zt2) (@psr — DE [0 4; D5

= @ E[Qy (Y ) Uy o(p, Vi )(E [1420 0, D, | Y, L)) -

Let A ={Y, ,: E(J[¥=5 @;|Y,_,) #+ 0}. ® minimizes R, only the last term in-
volves ®,_,, and E [[¥5 ®,|Y,_, > 0 on 4. Therefore, there is a ®* , of the
form of (4.7) such that @y, = ®@,_, for almost all Y,_, € A4, by proof similar to
the proof of the converse of the Neyman-Pearson lemma. Therefore
(4‘12) I(Dk—l - (le—1|E(H?=_2 D, | Yk—l) =0
for almost all Y,_, € 4. But (4.12) holds trivially for Y,_, ¢ 4. Since ®, > 0,
(4.12) implies that
(4.13) (% @)@,y = (T1E5 PP, ae.
(4.13) implies that the sequence (®,, - - ., ®¥ ,) also minimizes R. Therefore,
by a similar argument, there is a ®} , of the form

(I)I;k—Z(Yk—Z) =1 if Uk—z((DIf—l; Y, . P) >0

= b,_o(Y,_y) if U y(PF Y, 0p)=0

=0 if U o(PF_ 1 Yoy p) <0
such that
(4.14) (IT525 @)D, = (TT428 PP}, a.e.
Continuing in this manner, a sequence @* = (Oy*, ..., ®* )is discovered such
that ®* € D(p) and
(4.15) (I )P, = (ITi2h @)D, *  a.e.

(4.15) implies (4.9) which implies (4.10). [J
The last result in this section is to show that

(4.16) E = Uos,s1 D(p)

is essentially complete for A and hence for ¥ (see Theorem 1). The only detail
remaining to prove that result is the following lemma.
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LEMMA 3. The set of all (V(®), V(®)) for ® € A is a convex set.
Proor. Let ® = (®,, ---, ®,_;) and O* = (O*, ..., D} ) be two rules in
¥. Define @** = (Oy**, ..., ®x*) by
D** = a®, + (1 — a)D*,
O = HllinR bl o DIBE it Mmoo
=0 o if [l ®@**=0.
Then [Ti_, ®,** = a [[}-0 @, + (1 — a) [[i_o ®,* for all j, so that
V(@*%) = aV(®@) + (1 — a)Vy(®*),
V(@**) = aVy(®) + (1 — a)V, (D). 0

THEOREM 4. & is an essentially complete class for ¥.

ProoF. By the complete class theorem and Lemma 3, the set of Bayes rules
is complete for A. By Theorem 3, Z is essentially complete for A, and by The-
orem 1 is also, therefore, essentially complete for ¥. []

5. Nondecreasing loss function. For many generalized group testing prob-
lems, it would be natural to let L(x) be a nondecreasing function (e.g., the
examples mentioned in the introduction). Intuitively, it might be expected that
U,(®; p, y) would also be a nondecreasing function of y, and that therefore if

O = (D, .-, D,_,) e D(p), then

DY) =1 if Y, >c¢
(5-1) = b,(Y)) if d;<Y;<¢
=0 if Y, <d;,

where

(5:2) ¢ =inf(y: U(®;p,y) >0).  d;=sup(y: Uy®@;p,y) <0),
since large values of Y, would lead to large values of Y. In this section, sufficient
conditions on the density f of Y, are given to guarantee that U, is nondecreasing
and hence that if ® € D(p), then ® satisfies (5.1) and (5.2). This greatly simplifies
the calculation of rules in D(p). (See Section 6 for an example.)

The following example shows that U need not be nondecreasing for all densities
f(x). Let k = 1, a, = 2 and L(x) be the indicator of {X > 1}. Let X(1) and X(2)
be a sample from the density

f(0) = .01, f(1) = .01, f(2) = .02, f(3) = .96.
As usual, let Y, = X(1) 4+ X(2). By (4.2)
Ulpy) = —=(1 = p) + 2pP(X = 1]Y, = ).
Let g(y) = P(X = 1|Y, = y). Then g(y) is given by
y 012 3 4 56
9(» 0 3 % ¢ 1 1 1.
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Therefore U; would only be a nondecreasing function if p = 0. In fact if 5 <
P = %3¢, then @, would be the indicator of the set {2, 4, 5, 6}, which does not
satisfy (5.1) and (5.2).

We now return to the problem of finding conditions sufficient to guarantee
that the Bayes rules satisfy (5.1) and (5.2). Let W,, ..., W, be a sample from

the density function g(w). Let Z = 37, w,.

DEerINITION. The density g(w) has property M(n) if for all nondecreasing func-
tions h(w), E((W,)| Z = z) is a nondecreasing function of z.

THEOREM 5. Let L(x) be a nondecreasing function of x, and let ® = (®,, - - -,
D,_,)e D(p). If the density of Y, has property M(a,), for j =1, ..., k, then
Uy(@; p, y) is a nondecreasing function of y (and hence @, satisfies (5.1) and (5.2)).

Proor. U,_, is trivially nondecreasing since the density of Y, has property
M(a,). To see the general case, note that

Uy(®D; py) = aj+1E[(Dj+1(yj+1)Uj+1((i)j+2; P Y)Y =yl
= (1 = p)aj — 1),

and that
Q;,,(Y;yy) =1 if U].H(d); p>Yin) >0
= b;11(Y ;1) if Uj+1((i);17’ Y;;)=0
=0 if U(®;p,Y,,,)<0.

Therefore, ®,,,U,,, is a nondecreasing function of Y,,, if U,,, is. Since Y, ,
has property M(a;,,), U, is nondecreasing if U, _, is. []

The following lemmas give sufficient conditions for a density to have property
M(n). Let W,, Z and g be as defined above Theorem 5. Let W = W,.

LEMMA 5. Let g(w) be a continuous density. If g(w | z,)[g(w | z,) is a nondecreasing
function of W for all z, = z,, then g has property M(n).

Proor. If the conditions of the lemma are satisfied, there is a 4 such that
gw|z) — g(w|z) >0 implies that w > d
gw|z) —g(w|z) <0 implies that w < d.
Therefore, if A(w) is nondecreasing, then.
HOv)(g(w | 2) — 9w | 2)) = hd)(g(w | z) — g(w|2))
and
E(h(w)| Z = z) — E(h(w)| Z = ) = h(d) § (a(w| ) — g(w| z)) dw = 0.
CoROLLARY. The normal and gamma densities have property M(n) for all n.
LEMMA 5. Let g(w) be a discrete density with support
wiw=a+tht=mm+1,....r} or
{w:w=a+tb,t:m,m+1,...} or
wiw=a+1th,t=0,+1, +2, ...}
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for some constants a, b, m and r. If g(w|z + b)/g(w | 2) is a nondecreasing function
of w for all z such that z and z + b are in the support of the density of Z, then g
has property M(n).

Proor. The condition of the lemma implies that g(w|z)/g(w|z,) is a non-
decreasing function of w for all z, > z, (and both in support of the density of
Z). The remainder of the proof follows that of Lemma 4. []

COROLLARY. The binomial and Poisson densities have property M(n) for all n.

CoMMENT 1. Note the very strong assumption implicit in these lemmas that
the support of g have no holes, i.e., that it be an interval of values.

CoMMENT 2. The 4 densities mentioned in the corollaries have the reproduc-
tive property (e.g., the sum of i.i.d. normal random variables is a normal random
variable). Therefore if the density of X(i,, - - -, i;) is normal, binomial, gamma
or Poisson, then Y, has the property M(a,), j =1, ---, k.

6. An example. Let k = 2, X(i, i) ~ N(g, 0%, i; =1, ..., a;, and let L(x)
be the indicator function of the set {x = d}. The goal of the procedure, there-
fore, is to find which of the X(i,, i,) are greater thand. Without loss of generality,
let # =0, 6> = 1. By (4.2), (4.3), and (5.1) if ® = (D,, D,) € D(p),

oY) =1 if Y, >¢
(6.1) = b, if Y,=¢,
=0 if Y, <c¢;
i =0, 1, where ¢, and c, satisfy
(6.2) PY,2d|Y,=c)=d=P@G=1
pPé,
PY,zd, Y, Z¢,|Y, = ¢)
1 —
(6.3) =2"Pa, — 1 +a(a, — DP(Y, = ¢,|Y, = cp)) -
pa,a,
In addition, from (2.1),
(6.4) V(@) = aa[P(Y, = d) — P(Yy = ¢, Y, = ¢, ¥, = d)],

and
(6.5) V@) =1+ (a, — D)P(Yy = ¢;) + ay(a, — DP(Y, = ¢ Y1 =€) -

It is easily verified that

Y, 0 a,a, a, 1
(6.6) Yl) ~ N 0) , ( a, a 1|},
\Y,/ o0 \1 1 1
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(6.7) Y,|Y, ~ N(L Y, <1 _ L)) ,

a, a,
L oy\ g <1 — L) 1
o N |
2 Y, 1 — = 1 —
aa, a, a.a,

o8 () ~~()- (5 &)
Y, 0 a, a,
({7 %)
Yl ’ Y2 a, — 1 a, — 1

Therefore, ¢, can be determined from (6.2) and (6.7) using a table of the
univariate normal distribution function. Then ¢, can be determined from (6.3)
and (6.7) by trial and error, using a table of the bivariate normal distribution
function. Once ¢, and ¢, are determined, V,(®) can be determined from 6.5)
and (6.8) using tables of both the univariate and bivariate normal distributions.

V(@) unfortunately involves a trivariate normal distribution. However it is
clear that

(6.9 V(@) = (@a)l — P(YyZ ¢, ¥, = ¢,| Y, = d)P(Y, = d),

which can be computed using (6.8). Inaddition P(Y, = ¢,, Y, = ¢|Y, =d)isan
upper bound for the probability that an unsafe observation will go undetected.

As an example, let d = 2, a, = 2,a, = 3. The following table was computed
using the Tables of the Bivariate Normal Distribution Function and Related Functions
(1959). Inthetable, P, = P(Y, = ¢, Y, = ¢,| Y, =2), UB = 6(1 — P)(P(Y,=2))
is the upper bound for V,(®) given in (6.9), and BR is the upper bound for the
Bayes risk, BR = (1 — p)V, + p(UB).

P C c v, P, UB BR
.95 1.4 1.57 1.81 .48 .072 .159
99 —24 —.06 3.81 .92 .011 .049
995 —3.7 —-65 4.49 .97 .004 .026.

The procedure for p = .99, for example, .will discover over 929, of the unsafe
observations with only 649, as many measurements as the procedure that meas-
ures each observation separately.

The following table gives the results of similar calculations for d = 2, a, =3,
a, = 2.

p [N ¢ Vv, P UB BR
.95 2.2 1.26 1.63 .41 .081 .159
99 —1.7 .36 3.63 .91 .012 .048
995 —3.1 .04 4.23 .97 .004 .025.

The bivariate normal distribution is only tabulated in intervals of .1 (.05 for
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p). Therefore, many of the numbers in the above table are approximations. It
is interesting that the Bayes risk for the optimal procedure when a, = 2, a, = 3
is nearly equal to the Bayes risk when a, = 3, a, = 2 for p equals each of .95,
.99 and 995. This might indicate that it makes little difference whether the 6
observations are divided into 2 sets of 3 or 3 sets of 2.

7. Generalizations. The assumption that the X’s be i.i.d. would seem to be
too strong an assumption for most “real-world” problems. However, that as-
sumption was made primarily to keep the notation within reasonable bounds.
In this section, we consider generalized group testing problems when the i.i.d.
assumption is removed.

There would not seem to be much hope for finding optimal procedures unless
the joint distribution of the X’s is known. If the joint distribution is known,
it should be possible to find Bayes procedures using essentially the same argu-
ments as those in Section 4. Obviously, the U ; would be much more complicated,
and the expected loss would depend on i,, - -, i,. If the X’s could be assumed
independent, then Theorem 1 would still be true and we would only need consider
rules in which the action at the jth stage depended only on Y (i, - - -, i,). Other-
wise @; would depend on Y, (i, - - -, i,) for n < j. The notation would obviously
become terribly cumbersome. In principle, however, the optimal procedure
should be the procedure that continues as long as the expected gain from con-
tinuing is greater than the expected loss.
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