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LOG-LINEAR MODELS AND FREQUENCY TABLES
WITH SMALL EXPECTED CELL COUNTS!

By SHELBY J. HABERMAN
University of Chicago

In the case of frequency data, traditional discussions such as Rao (1973,
pages 355-363, 391-412) consider asymptotic properties of maximum likeli-
hood estimates and chi-square statistics under the assumption that all
expected cell frequencies become large. If log-linear models are applied,
these asymptotic properties may remain applicable if the sample size is
large and the number of cells in the table is large, even if individual
expected cell frequencies are small. Conditions are provided for asymp-
totic normality of linear functionals of maximum-likelihood estimates of
log-mean vectors and for asymptotic chi-square distributions of Pearson
and likelihood ratio chi-square statistics.

1. Introduction. Frequency tables are commonly encountered in which the
total number of observations is large and the number of cells is finite, but so
many cells are present that individual cell frequencies are small. If log-linear
models are used with such tables, it is necessary to have some knowledge of the
usefulness of customary asymptotic results for maximum likelihood estimates
and chi-square tests.

Common treatments of asymptotic theory do not apply to this type of
frequency table. For example, Rao’s (1973, pages 355-363, 391-412) results
apply to a multinomial vector n with elements n,, 1 < i < k. The sample size
N is assumed to approach infinity, while the number of elements k of n and the
cell probabilities p;, | < i < k, all remain fixed. Thus the expected cell counts
Np;, 1 <i < k, all approach infinity as N approaches infinity. Except in the
case of multinomial response models, Haberman’s (1974, pages 74-122) dis-
cussion of asymptotic properties of log-linear models applies to a frequency
table n = {n;: i e I} with elements n, indexed by elements of a finite nonempty
set /. Each count n; has expected value m,, and for some positive ¢;, i ¢ 1, it is
assumed that

N-'m, —c,, iel,
and
N= Yiegm—oco.

Thus each m, goes to infinity as N goes to infinity.
To develop appropriate asymptotic theory for frequency tables with small
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expected cell counts, it is necessary to consider a sequence of frequency tables
with possibly varying numbers of elements. For this purpose, for each non-
negative integer ¢, consider a frequency table n, with cell counts n,,, i € I,, where
I, is a finite nonempty index set. Let n,, have positive expected value m,,, and
let p,, = logm,,. For each ¢, a log-linear model is considered in which the
vector g, with elements y,,, i € I,, is assumed to belong to a linear manifold _;.
Nontrivial asymptotic results developed in this paper will require that the sum

N, = 2lier, My
approach infinity as ¢ approaches infinity. It will not be necessary that
minielt my

approach infinity as t approaches inﬁnity. However, restrictions will be imposed
on the sequence m, = {m,,:ie L}, t = 0, of expected values and on the sequence
A, t = 0, of linear manifolds. These restrictions depend on the sampling pro-
cedures used to generate the observed tables n,.

As in Haberman (1973, 1974), the table n, may satisfy a Poisson or a multi-
nomial sampling model. In the Poisson sampling model, the counts n,,, i e I,
are mutually independent and have Poisson distributions. In the multinomial
sampling model, n, consists of r, = 1 independently distributed subtables n,,,
1 <k<r,. Forl <k < r, the subtable n,, includes the counts n;,, i € J,,, and
n,, has a multinomial distribution with sample size N,,. In this sampling model,
the J,,, 1 < k < r,, are disjoint sets with union 7,.

The sampling model may be characterized by a linear manifold .#; consisting
of all vectors x = {x,:i¢e I} such that

X, my, = Zielt XNy = Zielt‘ximit = (X, m,),

for any observed table n, consistent with the sampling model. In the case of
Poisson sampling, each count n,, may take on any nonnegative integral value,
so that 77 consists of the single vector 0 with all elements zero. In the multi-
nomial sampling case, the table n, is constrained by the linear equations

Zie.l,” ny = ZieJkt m, = N, l<k<r,.
If
yiktzl’ l.eJ,”,
=0, ié]t_‘]kt’
then
<"’lm n>¢ = <”Im mt>t s 1<k < r,.

Thus .77 is the span of the vectors v,,, 1 < k < r,. In log-linear models con-
sidered in this paper, .4/ is assumed to be included in 7.

Let 4, be the maximum likelihood estimate of g, under the model g, e _#,.
Let £, be the maximum likelihood estimate of g, under the alternate model
u. € A, where _# is a linear manifold such that _#;, c _#/’. Let X? be the

Pearson chi-square statistic and let L, be the likelihood ratio chi-square statistic
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for the null hypothesis that g, € _#] against the alternative hypothesis that g,
A,. Asnoted in Haberman (1973), &, and £, are uniquely determined if they
exist by the equations

(1.1) iy, Xy, = Flier, My Xy = Yiier, MigXs = My, X), Xe.#,,
and

(1.2) Y, x), = (ny, X, , xe #;,
where 11, = exp f,, and i}, = exp 2/, for i ¢ I,. Given &,, £,, f,, and fh,’, one has
(.3 X = Dier, (P, — 1),

and

(1.4) L?=2 Zi“t [n,, log (], /) + mh,, — W] .

If the unit vector e, is in _#,, where all elements of e, are 1, then

L}=2 ZieIt ny, log (i, [i;,) = 2{n,, &, — £, .

This paper examines asymptotic properties of £,, £/, X,%, and L,* as t — oo.

In Section 2, conditions are presented under which linear functionals of the .
maximum likelihood estimates f, are asymptotically normal. In Section 3,
conditions are presented under which the test statistics X,* and L, have asymp-
totic chi-square distributions and are asymptotically equivalent. Sections 4 and
5 provide proofs of results in Section 2, while Section 6 provides proofs of results
in Section 3.

2. Asymptotic properties of 4, Description of asymptotic properties of £,
is complicated by the fact that ./, _#,, and I, all depend on . Consequently,
it is not in general possible to say that a suitably normalized version of £,
converges in distribution to some random vector Y. Nevertheless, asymptotic
properties of sequences {r,(£,)} can be considered, where for t > 0, 7, is a linear
functional on _#,. In the case of multinomial sampling, linear functionals of
interest depend on probabilities p,, = m;/N,,, ie J,,, 1 < k < r,, rather than on
sample sizes Ny, 1 < k < r,. Therefore, the assumption will be made that

2.1 r(x) =0, xe .

To avoid trivial cases in which y,(4,), is identically zero, it is assumed that
7{(X) # 0 for some x e _#. Given (2.1), it must also be the case that .4 =
—#;. In this section, conditions are given under which 7, = 7,(£,) has an asymp-
totically normal distribution with asymptotic mean 7,, = r,(#,) and asymptotic
variance

(2.2) o(7,) = sup{|r(x)[*: x € A, Ziel, x'my, = 1} ;

so that as r — oo, the standardized ratio

(Fe — 1w)/o(70)
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converges in distribution to the standard normal distribution N(O, 1). These
conditions also ensure that the estimated asymptotic variance

(2-3) 3%(7:) = sup{ly(X)|: X € -2, Tiey, X0y, = 1}

is a consistent estimate of the asymptotic variance ¢%(7,) in the sense that the
ratio 6%7,)/o%(7,) converges in probability to 1 ast— co. If0 < @ < land Z,,
is the upper-a/2 point of the standard normal distribution, then as ¢ — oo, the
probability approaches 1 — « that

Fo = Zap0(F) S 10 = Te + Zapp0(F) -

Thus as approximate level-(1 — @) confidence interval for y,, has lower bound

ft - Za/Zé‘(?t)
and upper bound

Po + Zap6(7) -

The formulas for the asymptotic variance ¢*(7,) and the estimated asymptotic
variance ¢%#,) are consistent with those obtained by Haberman (1974, pages
75-81), despite differences in appearance. If for some c,,

rt(x) = <cn x>¢ ) X e ,//; ,
then ¢%?,) may be computed in the following manner. Let
(2.4) [x,¥]. = Diier, XiYiMe X,yeR",

where R’ consists of all vectors x with real coordinates x,, i€ I,. Let P, be the
projection on _#, orthogonal with respect to [+, «],. Let D, be the linear trans-
formation on R’ such that

(2.5) D,x ={x;m;:iel}, xeR".
Then

(2.6) o¥(7,) = (€, P,D,7'¢,, .

If 7, satisfies (2.1), then

2.7 (e, x>, =0, xe. ;.

Given (2.7), the right-hand side of (2.6) is the expression for the asymptotic
variance of 7, = {c,, #,>, found in Haberman (1974, pages 80-81).
To verify (2.6), let , be the norm on R such that

(28) ”x”t2 = [X, x]t = Zielt xizmit s Xe th .

Note that P, and D, satisfy the equations
(2'9) [P.x, ¥l: =[x Y], XeE th, ye.#,,

and
x,¥), =[D,7%,¥],, X,yeR™".
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Thus
7d(x) = [D, e, X],
= [P, D, "¢, X], , Xe. 4.
Since y,(x) # 0 for some x € _#, ||P,D,'c,||, > 0. By Schwartz’s inequality,
[7(x)| < [|P.D; e,

whenever x ¢ _#; and

[[X|[e = 2ier, xS my = 1.
Equality is achieved if

x = P,D,7'¢,/||P,D, "¢ ], .

Thus
02(?::) = ”Pth'_lct“t2

= [P,D, ¢, P,D,'c,],
= [D, ¢, P,D,7'c,],
=<{¢, P,D, ¢y, .
Similar arguments may be used to relate (2.3) to formulas of Haberman (1974,
page 81) for the estimated asymptotic variance.
Conditions required for the asymptotic results described in this section depend

on the orthogonal complement &, of ./ relative to the linear manifold .7
and the inner product [, .],. Thus
(2.10) S ={ye #Z:[x,y],=0,xe.7}.
The dimension a, of &, is dim _#, — dim .#",. Under the Poisson sampling
model, &, = _#, and a, = dim _#,. Under the multinomial sampling model,
a, = dim _#, — r,.

Much of the analysis of this paper depends on the observation that there is
a one-to-one correspondence between elements of .&%, and the set _#, of x in
A, such that

2iier, Vi ©XPXy = Dlier, Vil s ye 7.

This correspondence is important since f, is in _#;,. To verify this corre-
spondence, let g,*(x) and m,*(x) be defined for x € _#; so that

pH(x) —xe S,

<y, m#(x)), = <y, m,,, ye 747,
and
mf(X) = exp pfi(X) , iel,.

Under the Poisson sampling model, g,*(x) = x and m}(x) = expx,, i € I,. Under
the multinomial sampling model,

mi(X) = Np eXpXy/ e, €XPX; iey, 1 <k,
On the other hand, if x e _# and
2iier, Vi €XPX; = Dlier, Vil s ye ',
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then there is a unique element z € & such that x = u*(z) and
expx, = mf(z) , iel, .

If Q, is the projection on ./, orthogonal with respect to [., «],, then K, = P, —
Q, is the projection on & orthogonal with respect to [., +],and z = K,x =
X — Q.x.
If
A, =K. p,
and
jt =K.,4,,
then m, = m*(4,) and m, = m*(ﬁt). If (2.1) holds, then 7, = rt(f,), so that the
distribution of 7, depends on the distribution of A,
Asymptotic results are proven under the following condition:

ConpitioN 1. For t > 0, g, e _#; and constants b, = 0, B, = 0, and f, > a,}
are defined so that

(2.11) Zieltyi?']m:;(x) - mit] = thx - 2t]lt|]y|lt2 ’
X, yeS X = 4l < fis
(2.12) (Deer, yezdmt(x) — my])* < BIx — ALlvll12ll

X,yeS,ze S, |[x -4, = f..
As t — oo, a,(b, + B)) — 0 and q,/f* — 0.

REmARK. Note that under the Poisson sampling model, B, may be set equal
to 0.

This condition is essentially a requirement that individual coordinates y, of
each element y € &, must be small relative to the norm ||y||,. Note that

M =exp(x; — 4;) — 1
mit
under the Poisson sampling model and
ml(x) — my, _ exp(x; — 4;) 1
my, Diiery, (Mi/Niy) €Xp(X; — 4;)
under the multinomial sampling model. * Since Jensen’s inequality implies that
DIFTE (mjt/th) exp(X; — 4;) = eXp X, (Mi/Np)(x; — )
=exp0
=1,

it follows that under either model

mi(x) — my,

< 2max;, (explx; — 4| — 1).
m;
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Let d, be the smallest nonnegative number such that
Ly < dilyll: ye&,.
Then
Zier, yiimi(x) — my| < 2[exp(djf|x — 4/||) — 1]|yl[.*» X, yeS
and
[Zier, Yizlmi(x) — my,|]* < 4[exp(d,[|x — A[,) — 1P||y|l’l|z]|*
X,ye ., ze .
Thus Condition 1 holds if Condition 2 holds:

ConpiITION 2. For t = 0, g, e 7. Ast— oo, a,d, — 0.
The coefficient d, satisfies the inequality
d? < 1/min;., my, .
Thus Condition 2 is satisfied under the traditional conditions that 7,, .47, and
A, are constant for + > 0 and

min,

ier, My —> O as t— co.

On the other hand, if .47 = _#, for any ¢t > 0, then Condition 1 can only
hold if the sum
Ny = 2lier, My
of expected cell counts approaches infinity as ¢ approaches infinity. To verify
this claim, assume that Condition 1 holds. Letye ./, y # 0. For sufficiently
small ¢ > 0, (2.11) holds with x — 4, = ey. By letting ¢ — 0, one finds that

(2.13) Diier, [yil’mse < by|Y|]2 -
By Cramér (1946, page 176)
(N, 2lier, [yilPmy)t = (N,* Zielt yimg )t = Nt_?HYHt .

Thus b, = N,~t. Sincea, = 1for t =0, b, >0and N, - co as t — co.
Given Condition 1, the following theorem is proven in Section 4.

THEOREM 1. Assume that Condition 1 holds. For t = 0, let y, be a linear
functional on _#; such that (2.1) holds and such that y(X) # O for some x ¢ _#,.
Then

(2.14) (7: — rw)o(?) —>. NO, 1),

(2.15) §(7)lo(7) —e 1,

and

(2.16) Plf, — Zupb(7) < 10 < Fu + Zapd(F)} > 1 —a, 0<a<1,

where —_, denotes convergence in distribution and —, denotes convergence in
probability.

Under Condition 2, the consistency property of the following theorem applies.
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THEOREM 2. Assume that Condition 2 holds. For t > 0, let &, consist of all
¢ € Rt such that

Zier 6 =1

{c,x), =0, xXe 4.

and

Then
F, = SuP{KC’ ﬁt>t - <c’ Auz>t| RIS gt} —p 0.
Conditions 1 or 2 hold under a wide variety of circumstances. The following
examples provide some indication of the range of applications.

ExaMmpLE 1. Constant models with selected increasing cell means. In traditional
treatments of contingency tables, asymptotic theory is developed under the
assumption that for 1 > 0, I, = I,, and g, e 4, = _#, and ./, = 4. Itis
also assumed that

N, = Zielt m;;, — oo
and
Nomy —c¢; >0, iel,.

Under these assumptions, Haberman (1974, pages 80-81) derives formulas
equivalent to (2.14), (2.15) and (2.16) for the case in which (2.1) holds, 7, # O,
and y, = r, is a linear functional on _ for r > 0. Haberman’s (1974) results
also imply the conclusion of Theorem 2.

A simple generalization of results in Haberman (1974) is available. Assume
thatfort > 0,1, = I, e A, = _#, N, = ¥, and 7, is a linear functional
on _#, (2.1) holds, and y, = 0. LetJ c I, bea given set such that if x e
and x; =0, ieJ, then x = 0. Let m,,— oo, icJ. Then (2.13), (2.14) and
(2.15) hold and F, —, 0.

To verify this claim, note first that a, = a,for > 0. Thus it suffices to prove
that d, — 0. To do so, note that for some x, € .>*, and i(t)yel,

Zie[o m;xj, =1
and

dt = xi(,)t .

For each ie J,
|xu| = mjt.

Let T be the linear mapping from _; to R’, defined so that y — T(x)if xe _#
and y; = x, forallie J. By assumption, T has a kernel consisting of the zero
element 0 of _,. Let T_# be the image of _#; under T. Then for some linear
transformation U from T_#; to _#,

UTx = x, Xe. 7.
Since m;, — oo for ie J, Tx, — 0 and x, = UTx, — 0. Thus d, — 0.

EXAMPLE 2. Multinomial response models. Following Haberman (1974, pages
352-373), consider tables n, such that for t > 0,

I,=JxK,.
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Let each table n,, = {n,,,:je J}, k € K,, be an independent multinomial vector
with sample size N,, > 0 and probabilities {p,,,:je J}. Define the parameter
6, = {0,,,} by the equations

(2.17) Piwe = €XpO,4, /D icr €Xpliiy s jeJ, kek,
and
(2.18) Diesbiu =0, kek,.

Assume that associated with any k € K, is a known concomitant vector X, € R”
such that for some unknown B, € R#*/,

(2.19) Oire = 2inen XnwBris » jelJ, kek,.
Let B, € &%, a linear manifold in R”*’ such that
(2.20) SiesWi; =0, he H,we 5.

Since the constraint (2.20) implies the constraint (2.18), the model is defined by
(2.17) and (2.19). To simplify analysis, assume that 8, is uniquely determined
by @, for each + > 0. In the resulting log-linear model for n,, _#; consists of
vectors y = {y;,:j€J, k € K,} such that for some z,, k € K;, and w € &%,

Yie = Zi + Dinen XniWs » jeJ, kek,.

The linear manifold .4 consists of vectors y = {y,,:je€ J, k € K,} such that
Yik = Yik JsJ el kek,,

and &, consists of vectors 'y = {y;,:jeJ, k € K,} such that for some we <,

Vit = 2anem XnkWni — Whie) » jel, kek,,
where

Whie = 2ijer Pint Whi s heH, kek,.

The dimension a, of & is equal to dim <Z for all ¢ = 0.
For finite sets 4 and B and for linear transformations X on R4 and Y on RZ, let

[1X]| & = Zaca x> Xxe R4,
(X, ¥)a = 2lacaXala> X,ye R4,
[x®y]z:x(y7z)B, xe R4, y,zcR?,
x*xy={x,y,:a€e A, be B} xe R4 yeR?,

and let X x Y be the unique linear transformation on R4*Z such that

(X Y)(x xy) = (Xx) = (YY) , XeR*, yeR”.
Let
g, = MaAX,c g, (1 X2 >
WX = N{PijwX; — Pine 2Lijres PineXsr P J€I}s xeR’,
V,= ZkeKt [Xe @ Xo] « Wi
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and
h, = min {(wW, V,W),,,: We B, ||W||y, = 1}.

Since B, is uniquely determined by 6,, 2, > 0. If g,/ht — 0 as t — oo, then
a,d, — 0 and (2.13), (2.14) and (2.15) hold. Since F,—, 0, it is easily shown
that A

maxe, Max;, |0, — 0, =5 0.

To verify the claim that a,d, — 0, note that if x ¢ &, and ||x||, = 1, then for
some w e <7,

Xie = Dinen Xpe(Wa; — 2iires PirkeWhir)
and

(W, Vtw)HxJ =1.

Then ||w||,;,, < k,~* and for each jeJ and ke K, |x;.] < 29,/ht. Thus d, <
2g,/h}. Since a, = dim <7, a,d, — 0.

The condition g,/k,} — 0 is quite weak. For example, it holds if {8,: ¢t > 0}
is a bounded sequence,

lim sup,_, 9, < oo,
Kt - Kt—H ’
the X, k € K,,, span R for some ¢’ > 0, and
N, = ZkEKt Ny — oo .
The condition g,/k,} — 0 also holds under the assumptions in Haberman (1974).

ExAMPLE 3. Longitudinal observations. For t = 0, let N, > 0 subjects be ob-
served at times 1 to v, > 2. Assume that at any time, a subject can be in a
state s contained in a finite nonempty set S with ¢ elements. Let s,; denote the
state subject j is in at time u, where 1 < j < N,and 1 < u < v,. Assume that
for some 7, > 0, seS,and r,,, > 0,5, 58S, 1 <u<wv, — 1,

(2.21) P{s,; = s} =r,, seS,1<j<N,
and
(2.22) P{s(u+1)j = x(u + 1)] 5,5 =x(v), 1 v < U} = Tymamenu s

xv)eS, 1 sv=u+1,1su<y, —-1,1<j<N,.
In other words, assume that the subject’s state at time u + 1, | <u < v, — 1,
is only influenced by the subject’s state at time u.

Let /, = $™, and let n;,, i € I,, be the number of subjects j, | < j < N,, such

that s,; = i, for 1 <u < w»,. Given (2.21) and (2.22),

tie = log (N, TTa ﬂ'iuiuﬂu) .
Thus equations (2.21) and (2.22) imply that g ¢ &©,, where x € <, if for some
V.eRS, 1 <u<w, — 1,

j— vy—1 .
X, = 20uh Yigiypquo iel,.
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Let _#, be a linear manifold contained in &, such that _#"; = span {e,} C _#.
Consider the log-linear model g, € _#,.
The condition a,d,> — 0 holds if

(2.23) a’max;.;, 2w (1M, ) — 0,

where for 1 <u<wv,— 1,5, 8¢S, and t = 0, M,,,, is the expected number of
subjects j, 1 < j < N,, such that s,; = sand s.,,,,; = 5.
To verify this claim, note that
d, < maxsup,.,, {|x;]: xe &, [|x]|, = 1}.
Let G, be the projection on &, orthogonal with respect to [+, «], and let 3,(/) €
R!: be defined for i ¢ I, so that
Gy=1, j=1i,
=0, j+#i.
Then by Haberman (1974) or Rao (1973, page 60),
|x,| = [Kx, G, D,7'8,(i)}.| xe L, iel,,
and
d, < max,.,, (8,(i), G, D,7'8,(i)},} .
By Haberman (1974, Chapter 5), ., is decomposable and

{84(i), G, D;10,(i)), = e (1/M1u1u+lut) 2onts (M Liue) » iel,,

where for se S, 1 <u < wv,, L, is the expected number of subjects j, 1 < j <
N,, such that s,; = s. Therefore, (2.23) implies that a,d, — 0.
As one indication of the implications of (2.23), note that if

liminf,  N,7*L,, >0, sesS,

and a,%,/N, — 0, then a,d, —» 0. Stronger results are available for specially
selected _#, but these general results are sufficient to suggest the applicability
of asymptotic theory in longitudinal studies.

2.1. Comparison of fi, and /. To compare the asymptotic distributions of
A, and g/, linear functionals y, on _#," are considered such that (2.1) holds.

Let 7,/ = r/(&/)>

(2.24) o (7)) = sup [rX)]*: x € A, Xieq, xS my = 1},
and
(2.25) 0%(7/)) = sup{lr(X)|*: x € A, Tieq, X', = 1}

Assume that y,(x) # 0 for some x € _#,. To provide regularity conditions for
results of this section, let

(2.26) —{ye 4 [x¥],=0,xe .47}
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and
(2.27) a) = dim ¢ =dim _# — dim 7.
Results of this subsection require the following analogue of Condition 1:

ConpitioN 1. For t > 0, g, € _#, and constants b/ > 0, B/ = 0, and f, >
(a,)? are defined such that

(2.28) Dier, imi(x) — my| < b/||x — A||,[|¥]].*,

X, ye%', ||y — ztllt §ftl s
and

(2.29) (Dier, yizi[mi(x) — my])* < B/||x — AJ|/|yll7|2l]:* »
x,yeA,ze IV, |Ix =4 £f.

As t — oo, a/(b/ + B/)— 0 and a//(f,)* — 0.
Let d/ = 0 be the smallest nonnegative number such that

(2.30) [yl =< a/[|¥]]. » ye A .
Then Condition 1’ follows from Condition 2’:
ConpITION 2. Fort > 0, g, € _#,. Ast— oo, a/d’' — 0.

Under Condition 1/, Theorem 1 implies that as t — oo,

(2-31) (7! — 10)/o(7)) — N, 1) ’
(2.32) a(7/)o(7) —p 1 s
and

(2.33) Plp) — Z)s0(7)) S 100 £ 7 + Z,)s06(F )} > 1 — a, O<axl.
Since Condition 1’ implies Condition 1, (2.14), (2.15) and (2.16) also hold.
The definitions of ¢(7,) and ¢(7,) imply that o(#,) < a(7,’), so that the asymp-
totic variance of 7, does not exceed the asymptotic variance of #/. If 7, +
A, then0 < o(7,) < a(7/) for some linear functional 7, on _#,. Consequently,
if g, e #, and _#, + _#, then f, is a more efficient estimate of g thanis 4,’.
If o(7,)/0(7,) — 0 < 1, then
0(7.)/6(7) —p 0>

so that for any @, 0 < a < 1, the probability approaches 1 that the approxi-
mate level-(1 — «) confidence interval

Te—= Zap0(7)) S 10 S 70 + Zap0(7)
for 7, is less wide than the approximate level-(1 — a) confidence interval

T — Zapnb(F) S 100 = 7+ Zapp0(FY)
for 7,,.

One more subtle feature of the relationship between £, and 4,’ is given in
Theorem 3, which is proven in Section 3.
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THEOREM 3. Assume that Condition 1’ is satisfied, and assume that for t = 0,
7. is a linear functional on _#, such that (2.1) holds and y,(x) # O for some x ¢
;. Let

W, = (7¢ — 1w)o(7:)

W, =@/ — rto)/a(?tl) .
If o(7,)]o(7,") — o, then (W,, W) converges in distribution to a multivariate normal
distribution with mean 0 and covariance matrix

L1

3. Asymptotic properties of X, and L2 The chi-square statistics X,> and L,
retain their customary asymptotic distributions under Condition 1’ if a,” — a, —
a, where 0 < a < oo. The following theorem is proven is Section 4:

and

THEOREM 4. Assume that Condition 1' is satisfied and a,! — a, — a > 0. Then

(3.1) X' =5t
(3.2) L= 1’
and

(3.3) X} — L?—,0.

The foilowing examples illustrate application of these results.

ExaMPLE 1. Constant models with selected increasing cell means (continued). In
addition to the previous assumptions in this example, assume that _# = 7/
for t > 0 and _# + _#;, and assume that if x e .7’ and x, = 0 for i e J, then
x = 0. Then (3.1), (3.2) and (3.3) hold with ¢ = dim _#Z{ — dim _Z.

EXAMPLE 2. Multinomial response models (continued). Let <&’ be a linear
manifold in R¥*’ such that <# c <#’, % + %', and

DierWi; =0, heH,we #' .
Consider the model in which (2.16) and (2.18) are assumed to hold for some §,
in £&’. The corresponding linear manifold _ consists of y € R"**: such that
for some z,, ke K,, and we <&,
Vie = Zi + Znen XurBj» jeJ, kek,.
Let
h, = min {(W, V, W)y, ,: We FZ', ||W||gx;, = 1}.
For each r > 0, assume that 8, ¢ &’ is uniquely determined by &,, so that
k' > 0. Assume that g,/(h,)? — 0. Then (3.1), (3.2) and (3.3) hold with a =
dim &&’ — dim <%.
EXAMPLE 3. Longitudinal observations (continued). Assume that 7, C .#, C
<, and dim _#/ — dim .#, — a > 0. Assume that g,e_+; for t = 0 and
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assume that
(a/)? max;., 2! (I/Miuiuﬂut) —0.
Then (3.1), (3.2) and (3.3) hold.

4. Proof of Theorems 1 and 2. The proofs of Theorems 1 and 2 depend on
results of Kantorovich and Akilov (1964, pages 697-700) concerning successive
approximations to fixed points. These results permit #, to be approximated by
Tw + 7{K,D;"(n, — m,)), a linear function of the observations n,. This linear
function will be shown to have the asymptotic normality properties required
for a proof of Theorem 1 as well as the consistency properties required in
Theorem 2.

The essential steps in the proof of Theorem 1 are provided by the following
lemmas.

LEMMA 1. Let
(4.1) H(x) = x + K,D,”'[n, — m*(x)], xe%.

If zis a fixed point of H,, then g, exists, A, = z, and m, = m*(z). Conversely, if
4, exists, then A, is a fixed point of H,.

PRrOOF. Let z be a fixed point of H,. Then
{n, — m*(z), x3, = [D,~'[n, — m,*(z)], x],
(4.2) = [K.D,”'[n, — m,*(z)], x],
=0, X e %t .

Since {#,*(z)} € ., (1.1) implies that 1, = m,*(z). Thus 2, = z.
On the other hand, assume £, exists. If z = ﬁt, then (4.2) holds. Given 4.2),
it follows that H(z) = z. []

LemMMA 2. Let Z, = ||K,D,”(n, — m,)||,>. Then
4.3) E(Z) =a,.

Proor. Let ¢;, 1 <j < a,, be an orthonormal basis of .&, with respect to
[+, <], Then

(4'4) Z, = Z?‘tﬂ <cilt’ n, — mt>t2 .

As noted in Haberman (1974, pages 7 and 12), n, has covariance operator
D(E, — Q,) with repsect to (., «», where E, is the identity operator on R’
Since

(4'5) E<cjt’ nt - mt>t2 = <cjt’ Dt(Et - Qt)cit>t = ||cjtllt2 = 1 >
(4.3) follows. []

LEMMA 3. Let g be the Berry—Esseen constant, and let @ be the normal distri-
bution function. For t > 0, let v, be a linear functional on _#, such that (2.1) holds,
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and assume that p, ¢ _#, and y,(x) + O for some x € _#,. Then
(4.6) Aix) = [Py H(4)) — 1()][0(F)) = x} — D(x)]
< gb,, xeR.
If b,— 0, then
(4.7) [r(HA2)) — 7d#))/o(7.) = NO, 1) .

REMARK. The constant g has the property that if X,, 1 < k < N, are inde-
pendent random variables with mean 0 and if

Var (X,) = o,%, 1<k<N,

E(|X) = & 1<k<N,
then

P X(Bia o) < x} — ()] = 9(Zin E)/(Zim o)
Various bounds on g are discussed in Feller (1971, page 544).
Proor. For ¢t > 0, there exists ¢, € _#, such that

17(X) = [¢ X], Xe. 4.

Given (2.1), it follows that ¢, € &, and ¢(#,) = ||¢,||,» Thus
[0(7)]7 (1 (HAA)) — 7£2)] = [0(7)] 7 [r(H(A,)) — 7:(4)]
= [le,]l,7 e, my — M, .

Under either Poisson or multinomial sampling,
(4.8) A(x) = 9(Zier, mulea|)(Dier, myct)t, xeR.

To prove (4.8), first assume that n, is obtained by Poisson sampling. Then for
any v = 1, {c,, n, — m,), has the same distribution as

Y = 2lies, 2in=1 Cu( Xy — v7my,)
where the X, are independent Poisson random variables with respective means
v~ 'm,,. Since
Var (X, — v7'my,) = v7'm,

and ‘
E|X;, — v7im [ S E(1X[) = E(XE) = v7imy, + 3(07my,)" + (vTimy,)?,
the Berry-Esseen theorem implies that

A(x) = g[Ziert mgle; [’(1 + 3v7'm;, 4 /v_2m?t)]/(2ielt mi et xeR.

Since v can be made arbitrarily large, (4.8) follows.
Now assume that for 1 < k < r,, the {n,,: i € J,,} are independent multinomial
random vectors. Then {c,, n, — m,), has the same distribution as

Y = Z;él Zivitl Ty s
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where the X, are independent random variables such that
P{X,, =i} =p,, ielyy 1SuN, 1l <k<r,,
T,, = T(X,,), and T is a function on J, such that T(i) = c,,, i € I,. Note that
Var (T,,) = Xies,, PuCh

E(|T|%) = ZieJktPit|cit|3 .
L4
These equations and the Berry-Esseen theorem imply (4.8).
To derive (4.6) from (4.8), note that (2.13) implies that

Zielt |esel*my, < bt(Zielt ciomy)t .

If b, — 0, A,(x) — 0 uniformly in x, so that (4.7) holds. []

and

LEMMA 4. Let dH,, be the differential of H, at x € &,. Assume (2.11) holds for
some b, > 0 and f, > a}. Then for xe &, ||x — 4|, £ [

(4.9) [dH(D)Il: = (b + B)l|Ix — &,||,[|¥]]. » yes.

ReMARk. The differential dH,, of H, at x € & is the unique linear transfor-
mation on &, such that

||y||:_l||H:(x + y) - Ht(x) - dHtx(y)Ht_’ 0
as ||y||, — 0.

Proor. Let D *(x) be defined for x € &, as the linear transformation on Rt
such that

D *(x)y = {m¥(x)y,:ielL}, ye R,
Let Q,*(x) be the projection on .47 such that
(2, DF(X)YY, = (2, DA(X)Q (X)),  ze N zER",

Arguments similar to those in Haberman (1974, pages 35, 40 and 41) may be
used to show that

dHtx(y) =Y — KtDt—lD:*(x)[Et — Q:*(X)]y s MRS % .

Since Q,*(x) has range .47 and K, has null space ./, and since K,y =y,
ye,

dHtx(y) = _KtD:—l[Dt*(x) — D/J[E, — Q.*(x)]y » ye %,

Since
<y9 Dt*(x)y>t = <y7 Dty>g ) ye jt‘ s

it follows from Haberman (1975) that

Qt*(x) =0, + Q:Dt_lD:*(x)[Et — 0]

= Q: + Q:Dt_l[D:*(x) - Dt][Et - Qt] .
Thus

dH,.(y) = —K.D,[D*(x) — D J{y — Q.D,'[D*(x) — D]y}, ye,;.
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If #, = .+, then dH, (y) = 0 and (4.9) is trivial. If _#Z, = .47, then note
that

[[dH (V)| = SUP.c o ,un0 [2: dH(Y)]/l]2]], -
Fory,ze &,
[z, dH,(Y)], = <z, [D, — D*(X)]y),
+ <z’ [Dt*(x) - Dt]QtDt_l[Dt*(x) - Dt]y>t .
It is easily verified that
[Z, dHtx(y)]t = [y9 dHtx(z)]t s Y.z c L% .

Since dH,, is symmetrical,

|[dH (Y|l = 94|I¥]]¢ >
where

9: = SUPye o iy20 Iy, dH . (N)1:|/I|¥]]¢* -
To complete the proof, note that if ||[x — 4,||, < f,, X, y € &, then
IKYs [Py — D*(X)]¥).| < 2yl imi(x) — my| < byf|x — A[[|]¥]]:" -
Under the Poisson sampling model, Q, is the zero operator and
[y, dHtx(y)]t =Y, [D, — D*(X)]¥).

so that the proof is complete for this case.
Under the multinomial sampling model, the proof is completed by noting that

Ky, [D*(x) — D,]Q,D,'[D,*(x) — D,]y)|
= [|Q.D,'[D*(x) — D,Jy||;?
< SUP,e_pyimn0 <% [D*(X) — Di]y)./||z]| 2

and
2, [DH(X) = DJy) = Zier, Vi 2l mi(x) — my,] . 0
LEMMA 5. Assume that Condition 1 holds. Then
(4.10) Z 4|4, — 4], —p 1
and
4.11) 12, — H{A)||, = 0.

ReMARK. To include the case in which a, = 0, 0/0 is defined in (4.10) to be 0.

Proor. Note that Z, = ||H,(4,) — 4,||;>. Assume that Condition 1 holds for
b, and f,. By Lemma 4 and Kantorovich and Akilov (1964, pages 697-700), if
Z} < if,and Z}b, + B,) < %, then H, has a fixed point A, for which

12, — H(A)|l, < ZHL — [1 — 225, + B)PYL + [ — 2245, + B)]H -
By the triangle inequality,
Zd — |4 — HA)Il. < |14 — &)l < Z2 + |4 — H(R)). -
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By Lemma 2,
(4.12) PlZ} =z 3f} < E(Z)[(f34) = a,/(f’]4)— 0.

Since a,b, — 0, there exists g,, t = 0, such that g, — 0 and a,/g9,> — 0. By
the same argument used in (4.12),

P{Z,=¢}—0.
Consequently, (4.10) and (4.11) hold. []

These lemmas permit a straightforward proof of Theorem 1. Under the con-
ditions of this theorem, Lemma 5 implies that

[o(7)] [r () — 7(H(A))] = [a(ft)]—l[rt(jt — Hy(4,))] = 0.

Lemma 3 then implies (2.14). Lemma 5 and Condition 1 imply (2.15). Equation
(2.16) is a simple consequence of (2.14) and (2.15).
To prove Theorem 2, note that under Condition 2,
(e fie — )0 = & A — &), < Tier, leillAie — 4l
S d(Xier, lel|4 — A = d)]|4, — 4., ces,.

Theorem 2 follows from Lemmas 2 and 5.

5. Proof of Theorem 3. To prove Theorem 3, it suffices to show that for any
real 5 and 7/,

(5.1 W, + 9 W, —,NO, 7" + 297’0 + 7).
To prove this claim, let
Ht’(x) =x + K,/D,[n, — m,*(X)] s xeS,

where K, is the projection on .5 orthogonal with respect to [., «],. By
Lemma 5§,

(5-2) W+ W) — qr(H(A) — A)[o(7) — 7'r(H/ (&) — 4)[o(7/) —» 0.
Let
a, = [9/o(F)lr P + [7'[0(F)]re -
Note that y, P,(x) = 7,(P,x) for all x in R’z
For some ¢, e .7,

7:(X) = [¢s X]; xe. 7,
and

74(X) = [P, ¢, X], Xe. .
Thus

a(7:) = [|Pici]]. »

a(?) = lledls »

a(x) = [(@/||P.c||.)Pic, + (7'/[[c.][:)ess X], xe. 7,
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and
llaell” = [|(/||Pec.]|)Pee, + (7']]Ic]] )€ s
(3:3) = 7"+ 297 [|Pyey||/l]e|l. + 7
=7+ 2pp'o(7)o(7/) + 7.
Lemma 3 implies that
(5-4)  [nrdH(&) — A)[o(7:) + 77 (H/ (&) — A)[o(7)]/||ecll.” — 5 NO, 1) .
Equation (5.1) follows from (5.2), (5.3) and (5.4).

6. Proof of Theorem 4. The proof of Theorem 4 depends on the following
lemmas.

LEMMA 6. Assume that Condition 1’ holds and a/ — a,— a > 0. Then

(6.1) C? = |I(K/ — K)D,~'(n, — my)|[;* =, %,
Proor. Let %7, be the orthogonal complement of & relative to & with
respect to [+, «],, so that
V= (xe A [x¥], =0, ye A}
For some ¢ > 0, if t > ¢, then 27, has an orthonormal basis {c;,: 1 < j < a}
with respect to [«, «],. Let

Z;,, = {¢;,n, —m,»,, 1<j<a.
Then
||(Kt, - Kt)Dt_l(nt - mt)”t2 = Z‘;::l Zzt

The lemma follows if it can be shown that Z, = {Z,,: 1 < j < a} converges in
distribution to N(0, 7), where I is the identity operator on R*. To prove this
claim, it suffices to show that

5= liZ _’QN(O’ Z§=1xj2)9 xeR*.
This claim follows from Lemma 3 by noting that

D x; 2y = ft(Ht’('zt)) — 7)) »
where

7y) = [Z] 1 %€ Y] ye #,
and

I7:ll) = 112521 X5€5ll = (Z5=1 X7t 0
LeMMA 7. Assume that Condition 1’ holds and _#, + 7] for t = 0. Then
(6.2) LYCP -, 1.
Proor. From Haberman (1973), it follows that the log-likelihood kernel I,
is defined by
I(x) = (0 XY, — lieq, €XPX, xe R,
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under Poisson sampling and

I(X) = (0, XY, — X5ty Ny 108 Yiey,, €XP X, xeR",

under multinomial sampling. If ﬁt’ = K, 4,, then

1(4,) = sup,._,, I(x)
and

lt(ﬁt’) = sup,._,, li(X) .
A Taylor expansion about ﬁt’ shows that
L2 = 2[I(A) — I(A)]
(6.3) = —2(n, — i, 4, — A",
+ () — 2, DFANE, — 0*(AN]A/ — ),
= (' — 2, DFANNE, — Q*ANIA/ — A). »
where for some z,,0 < z, < 1,
At = ztﬁt + (1 - zt)ﬁt’ .
In Lemma 3, it is shown that under Condition l’, if x,y,ze %/ and ||x —
Al < f/, then
[z, dH.(¥)], = [z, ¥], — <z, D*(X)[E, — Q. *(X)]¥):
has absolute values less than or equal to (b + B/)||x — 4||,||¥||:||z]|.. Con-
sequently, Condition 1’ implies that if ||4,* — 4,||, < f/, then
1A = All2 — LA < (b + B — A)1214 — 4,
< 0/ + B)|IA/ — 41
By Lemma 35,
||it’ - 2t — H/(4,) + H(4)||, —» 0.
Since
¢/ = ||Ht,(2t) - Ht(lt)th ’
127 — 4|2/C2 - 1.
Since C, < Z/ and Z//b, —, 0, L2/C?—, 1. []
LeMMA 8. Assume that Condition 1’ holds and 7, + _#, for t 2 0. Then
(6.4) XCr o, 1.
Proor. For some z,, 0 < z, < 1, a Taylor expansion shows that
X2 = (i — fy, [DAA)](R, — ),
= () — iy, [DF(A)] 24 — ).,
where
Z, = DXANE, — Q.*(4)]
and
A = ztﬁt + 1 - zt)ﬁt’ .
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A second Taylor expansion shows that
th = <Yt('it, - j't)’ [Dt*(iz)]—lzt(j:' - jt)>t
= (4 — 4,), Y[DX(4)]'Z(4/ — 4))¢>»
where for some z,, 0 < z, < 1,

Yt = Dt,(2t+)[Et - Qt*(2t+)]
and

At = ytﬁt + (1 - yt)it’ .

As in Lemma 4, these expansions follow from Haberman (1974, pages 35, 40,
and 41). Note that Zt(ﬁt' — ﬁt) is not necessarily equal to m,/ — m. Thus Y,
and Z, may differ. If

W, = D*A)E, — Q.*A)]
then

X2 = (A — A, Y[D*A)" WA — 4),
+ {4/ — 4, Y [DHA)N(Z, — W )4 — A)). -

Using standard properties of projections (see, for example, Rao (1973, page
47)), one finds that

YD&) W, = D*AME, — Q*ANIE, — C.*(4)]
= Dt*(2t+)[Et - Qt*(2t+)]
—Y,.
Proceeding as in the proof of Lemma 4, one finds that
|<ﬁt' - ﬁu Yt[Dt*(ﬁt)]—th(ﬁt’ — jt»: - ||2:' — jt||:2|
< () + BOHIAF — A4 — 4|2
whenever |2, — 4|, < f/. Since ||§t’ — ,’it||t2/Ct2 —, 1 and since
12,4 — 4], < max (|4 — Al |14, — 1),
(A — A, YDA WA — A))/Cr—p 1.
The proof is completed by a demonstration that
<:2:’ - :zt’ Yt[Dt*(ﬁt)]_l(Zt — Wt)(jt, — 2t)>t/ct2 —p0.

Such a demonstration is rather tedious, so details are omitted. The principal
observation required is that for any x e &, x #+ 0,z¢ &, z # 0,

(X, Y[DHA)]UZ, — W)X,
< (X, Y[DHA) Y XY KX, (Z, — W)IDHA)HZ, — W)X)2.

By Rao (1973, page 60), for some w,ze &, w0, z # 0,
(X, Y[DHFA)Y XD, = <X, Y, W)W, D*(A)W),
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and
(x,(Z, — Wt)[Dt*(jt)]_l(Zt — Wx)b=<(x, (Z, — waz)*/{z, Dt*(it)z>t .
If |2, — A|, < f.,
KX, W2y, — [%, 2]| < (b + B/)||, — &,|,||x]].]|z]]. ,

KW, D*(A)wy, — [[w]|2] < b/[|&, — 2],
and

<z, DX(A)zy, — ||zl < b1, — 4], .
If |2, — 4|, < for
KX, Y W] < |[XILIWILLL + (B + B2 — 4] -
If |40 — &|, < f.
KX, Z,Wy, — [X, ZL) < (b + B[22 — A,/L,|[x]L]lz]l. -

Given these observations, completion of the proof is not difficult.
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