The Annals of Statistics
1977, Vol. 5, No. 6, 1124-1147

PRODUCT MODELS FOR FREQUENCY TABLES
INVOLVING INDIRECT OBSERVATION!

By SHELBY J. HABERMAN
University of Chicago

Frequency tables are often encountered which cannot be directly ob-
served. Examples occur in gene frequency estimation problems, latent
structure analysis, epidemiology, and studies of group interactions. A class
of models is proposed for these various applications. Maximum likelihood
equations are derived, together with methods for their solution. Large-
sample properties of these estimates are studied.

1. Introduction. In many probability models for a frequency table n = {n,:
iel}, it is assumed that n consists of K > 1 independent multinomial vectors
{n;:iel}, 1 <k < K, with respective sample sizes N, > 0 and associated prob-
abilities {p,(x): i € I,} such that

(11) pt(ﬂ.’) =d, HheHﬂhC(h’i) , iel.

Here H is a nonempty finite index set, d; > 0, the c(#, i) are known nonnegative
integers, and the z, are unknown nonnegative parameters such that = = {r,:
he H} is in some affine subspace © of the space R¥ of functions from H to R.
To assure the existence of maximum likelihood estimates, it is assumed that the
set O, ={wre®: 7, >0V he H}is nonempty and compact. To ensure that ©,
corresponds to a set of probabilities p,(r), i € I, it is assumed that if # € ©_, then

Dier, Pi(m) =1, 1<k<K.

If n can be observed, then estimation of zr is a relatively straightforward pro-
cedure. However, estimation is somewhat more difficult if instead of n, only
n* = {n*: je J} is observed, where

(1.2) ¥ = Ties, e red,

the J; are disjoint nonempty sets with union 7, and each J; is contained in some /,.

To illustrate the type of problems in which (1.1) holds and n cannot be ob-
served, the following four examples from genetics and latent-structure analysis
may be considered.

ExAMPLE 1. A general model for estimation of gene frequencies. Suppose that
a random sample of size N is taken from a population in Hardy-Weinberg

Received January 1974; revised January 1977.

! Support for this research has been provided in part by Research Grant No. NSF GP 32037X
from the Division of Mathematical, Physical, and Engineering Sciences, and NSF GS 31967X
from the Division of Social Sciences, National Science Foundation.

AMS 1970 subject classifications. Primary 62F10; Secondary 62P10, 62P25.

Key words and phrases. Nonlinear programming, indirect observation, contingency table,
genetic model, latent-structure analysis, maximum likelihood estimation.

1124

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIK@J:Y

I3

o 2

i

®

WWw.jstor.org



PRODUCT MODELS 1125

equilibrium (see Elandt-Johnson, 1971, pages 54-82). Suppose that pairs of
genes at loci g € G determine the phenotype j € J of a population member. Sup-
pose each gene at locus g has possible alleles H,, and let the gene frequency of
allele ¢ H, be =,. Provided that the H, are disjoint, the r, are nonnegative
unknown quantities which belong to the affine space

(1.3) O = (meR: Yy m = 1}.

A member of the population has genotype i = {{i(1, g), i(2, g)) : g € G}, where
i(1, g) is the gene at locus g received from the male parent and i(2, g) is the cor-
responding gene received from the female parent. If the effects of linkage can
be ignored, then the probability is

(1.4) Pi(®) = Ilseo Fia,0 Toao

that a randomly selected population member has genotype i. It should be noted
that the distinction between parents in the definition of genotype is not normally
made by geneticists. It is adopted here for simplicity of presentation.

If n, denotes the number of members of the sample with genotype i and if

I = HaeG(Ha X Ha) ’
thenn = {n;: i € I'} has a multinomial distribution with sample size N and prob-
abilities p(zr) = {p,(): ieI}.

Estimation of the probabilities x, would not be complicated if n were observ-
able; however, in practice only phenotypes can be observed. Suppose that
phenotype j is obtained if the genotype i is in J;, where i and d are both in J;
if for each g, i(1, g) = d(1, g) and i(2, g) = d(2, g) or i1, g) = d(2, g) and

i(2, g) = d(1, g). The n;*, the number of subjects in the sample with phenotype
J» satisfies (1.2).

EXAMPLE 2. A two-loci model. Koler, Jones, Wasi and Pootrukul (1971) pro-
posed a two-loci model for decreased synthesis of human hemoglobin a-chains.
In this model, the first locus has alleles 7’ and ¢, while the second locus has
alleles T"and ¢. Five phenotypes are observed. The phenotypes, together with
corresponding genotypes, are given in Table 1. Thus G = {1, 2}, H = {T", ¢,
T, t}, the J; are defined by means of Table 1,

PiT) = T\ i1, T, T sca,2) >

TABLE 1

Phenotypes and genotypes for the two-locus model
Phenotype symbol Phenotype name Corresponding genotypes
1 Normal (KT, 175, {x, >}, x,y=T or ¢
2 Silent carrier KT, 5, <T, T}, {Kt',T),(T, T}
3 a-thalassemia trait {77, ¢, (x, »d}, K¢, T, {x,yd}, x or y+T,
or {¢,t,<T, T)}
4 Hb H disease (K, 5, <T, )}, (K, ¢, <¢, T}

5 Hydrops foetalis Kt ¢y, <t £}




1126 SHELBY J. HABERMAN

and O consists of # ¢ R¥ such that 7, + r,, = 7, + 7, = 1. The observed table
isn* ={n*:1<j<5) and I = ({T", ¢} x {T", ¢'}) X ({T, t} X {T, 1}).

EXAMPLE 3. Latent-structure analysis. Members of a population have observed
(manifest) characteristics () € L,, u € U, and unobserved (latent) charateristics
X(H)eK,, teT. Thusif arandom sample of size N is taken from the population,
one may observe the number n;* of subjects with A(u) = j(u) € L,, u € U; how-
ever, the number n,; of subjects with X(r) = k(1) e K,, t e T, and A(u) = j(u) € L,,
ue U, cannot be observed. In this example, (1.2) holds if

I= (HteT Kt) X (HueULu) ’

J = HueULu ’
and

J={KKk, i kel.r K}, ied.

The classical local independence assumption is made that for a randomly
chosen population member, the 4(x), u € U, are conditionally independent given
X = {X(r): te T} (see Lazarsfeld and Henry (1968)). Thus if 7, = P{X = k}
and 7,,, = P{A(u) = g|X = k}, then n has a multinomial distribution with sam-
ple size N and probabilities p(z) = {p,(z): i € I} such that if i = (k, ), then

(1.5) Pi(®) = 7 [Tuev Tuwiea -

The set H may be defined as K U {¢k, u, 9>:keK,geL,,ucU}, where K =
Il.cr K,- The vector & is then in the space " of ¢ R¥ such that

(1.6) Skexmo=1 and X ., m.,=1, keK uel.

In traditional latent-structure analysis, no further assumptions are made con-
cerning «; however, Goodman (1974) considers possible added linear restrictions
on w. For instance, for subsets N and B,, ce C, of H, it may be assumed that
wec®, where rc®if v ®, 7, = 0for he N, and z, = x,, if for some ¢, c e C,
h and A’ are in B,.

EXAMPLE 4. An example with two latent variables. Goodman (1974) gives con-
siderable attention to a model with two dichotomous latent variables and four
dichotomous manifest variables. In the language of Example 3, T = {1, 2},
U= {1, 2,3, 4}, and K = K, =L, = L,=L, =L, = {1, 2} In addition to the
local independence assumption, it is assumed that P{4(1) = j(1)| X(1) = k(1),
X(2) = k(2)} and P{A(3) = j(3)| X(1) = k(1), X(2) = k(2)} are independent of
k(2), and it is assumed that P{A(2) = j(2)|X(1) = k(1), X(2) = k(2)} and
P{A(4) = j(4)| X(1) = k(1), X(2) = k(2)} are independent of k(1). Thus z ¢ O,
where © consists of € ® such that m,,;,) = m;, if k(1) = k'(1), 7y, =
Tsje 1 k(1) = K'(1), s = Tunje if k(2) = K'(2), and 74, = Ty, if
k(2) = k'(2).

Maximum likelihood methods provide an effective means for estimation of &
and p(w) = {p,(m): iel}. As shown in Section 2, the maximum likelihood
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estimate # of # may be defined in terms of conditional expected values m, (7 | n*)
of the random variable

(1.7) Vi = Dierc(h, i)n,

given the observation n*. Let

(1.8) Pi*(®) = ey, pu(T) -

Then

(1.9) my(7 | 0) = 31560 15[ 2ies; c(hs Dp(m)[p;* ()]

where the convention 0/0 = O is used. Let Q = {z — w: z, we 0}, and let Q*
be the orthogonal complement of Q.

Let (0/or,)m,(# | n*) be the value at # of the partial derivative of m,(+|n*)
with respect to z,. Given these definitions, some b ¢ Q+ exists such that
(1.10) my(# | n*) = b, 7, , he H,
and
(1.11) bh_z_aimh(ﬁ'ln*), £, =0, heH.

h

In the case of the genetic models of Examples 1 and 2, (1.10) is shown to reduce
to the gene counting equations

(1.12) ﬁh:_z%mh(ﬂn*), heH,
of Ceppellini, Siniscalco and Smith (1955). In the case of the latent structure
models of Examples 3 and 4, the resulting equations depend somewhat on the
specific choice of ©. The examples in Section 2 provide a general procedure
for obtaining equations such as those in Goodman (1974).

Equation (1.10) is not necessarily sufficient to determine #. More than one
maximum likelihood estimate of # may exist or a solution of (1.10) may fail to
maximize the likelihood function. Consequently, conditions are provided in
Section 2 to assist in identification of solutions of (1.10) which are at least re-
lative maxima of the likelihood function. Asshown in Section 3, these problems
involving multiple maxima are often relatively minor if the sample sizes N, are
large.

In Section 3, asymptotic properties of # are discussed under the condition
that N— oo and N,/N — 7,, 1 < k < K, where

N=TE,N,.

These properties are shown to depend on the limit m(z | z*) of the expected
value of N~'m(z|n*) and on the limit C(z|g*) of the expected value of
N-'C(w|n*). Here

#r={np*(m) je A, 1 =k < K},

A, ={jel:J;cl}, 1£k<K,
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and C(rr |n*) is the linear transformation on R¥ with matrix elements

[ [n*)]w" = Zjes A4 Dies; e(hs De(R, i)p(m)/p;*(mr)

(1.13) = [Zies; ety Dpi(m)[p* ()]

X [Lies; et Dpi(m)[ps(m)]} h,WeH.
Thus C(x |n*) is the conditional covariance operator of y given n*; that is,
(1.14) (w, C(m |n*)z) = Cov [(W, y), (2, ¥)|n*], w,zeRY.
Let
(1.15) B(z | p*)z = {m,(m | #*)z,}, ZzeRY.
(1.16) E(m | p*) = TI-(m)[B(x | ) — C( | p)]lI~(z)
and
(1.17) [-(7)z], = z/m,, =, # 0,

= O 5 T, = 0 .
As noted in Section 3, for some 8¢ Q+,
(1.18) my(x | p*) = Bp7y s heH,
and
(1.19) %mh(ﬂ|p*)§ﬁh, 7,e0, he H.
T

h

Let Q'(z) consist of all x € Q such that x, = 0 whenever z, = 0. If strict in-
equality holds in (1.19) whenever =, = 0 and if

(1.20) (z, E(w | #*)z) > 0, z2+0,2eQ(m),

then there exist functions #(.) and b(-) such that (1.10) and (1.11) hold for
# = #(n*) and b = b(n*) and such that N¥(# — &) converges to N(0, I(7 | x*))
in distribution. Here

(1.21) L(m| ) = P(m| o) E(z | )] [P(z | )]*

P(m | p#*) is the projection on Q'(zr) with respect to E(x | ¢*), { }~ denotes any
generalized inverse, and { }“ denotes an adjoint (see Rao and Mitra (1971, pages
3 and 20)). More can be said if 7 is the only element x € ©, such thatif z, > 0
and j e A,, then p;*(x) = p;*(x). In this case, #(+) may be defined so that #(n*)
maximizes /(n*, .). The probability approaches 1 that #(n*) is uniquely defined
in this manner.

In other portions of Section 3, alternate regularity conditions are provided
for the existence of an asymptotically normal estimate #(n*), estimation of
asymptotic covariances is discussed, and tests of goodness of fit are presented.

In Section 4, an unusually stable numerical procedure is presented for com-
putation of solutions of (1.10). It is assumed that a maximum 7 (y) of

Hie J [Pi(’t)]”i
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for w € ©, can be readily computed for y € [0, c0)?. Given this assumption, if
=% is an initial estimate of a solution # of (1.10) and if for v > 0,
w0 = m({n*pm ) pH ()i jed))

then every subsequence of {z'*: v > 0} contains a subsequence which converges
to a # ¢ ©, such that (1.10) holds for some be Q*. If z is sufficiently close
to an isolated maximum likelihood estimate #, then z#*) — #. This result is
especially helpful if the large-sample assumptions of Section 3 hold, for if z©
is a consistent estimate of z, then z#» converges to the unique maximum likeli-
hood estimate # with probability approaching 1. The algorithm in this section
reduces to the gene counting method of Ceppellini, Siniscalco and Smith (1965)
and to the iterative procedures for latent-structure analysis of Goodman (1974).

In Section 5, more rapidly convergent Newton-Raphson and scoring algo-
rithms are considered. They are also shown to be described in terms of con-
ditional and unconditional moments of the y,. The resulting scoring algorithms
correspond to those in Smith (1956) or Anderson (1959).

The results developed in this paper can also be applied to the models for group
behavior of Fienberg and Larntz (1971), to the models for mixed-up frequencies
in contingency tables considered by Chen (1972) and Chen and Fienberg (1974),
and to Cohen’s (1971) model for a censored 2 x 2 x 2 table. The Markov
models of Anderson and Goodman (1957) are special cases of the models con-
sidered in this paper, as are those hierarchical models in Goodman (1970) which
have closed-form maximum likelihood estimates. Haberman’s (1974, 1976) re-
sults concerning indirect observations of frequency tables which obey log-linear
models are consistent with results in this paper, but the models in this paper need
not correspond to log-linear models and log-linear models need not correspond
to models in this paper. Sundberg (1971, 1974) has recently considered in-
direct observation problems for exponential families. The models considered in
this paper are special cases of those considered by Sundberg, except for difficul-
ties involving the possibility that some p,(z) or r, may be 0. Equation (1.10)
and the asymptotic normality results in Section 3 are consistent with those of
Sundberg whenever the p,(r) and r, are all positive; however, Sundberg has no
results comparable to the convergence results of Sections 4 and 5.

2. Maximum likelihood equations. The maximum likelihood estimate # is
obtained by maximization of the log-likelihood kernel

(2.1) In*, ) = 33;e, n;* log p;*(w)

for w € ©,, where the convention 0 log 0 = 0O is used. Since /(n*, .) is continuous
and bounded above by 0 and ©, is compact, at least one maximum # of /(n*, ‘)
must exist. This maximum satisfies the conditions expressed in Theorem 1.

THEOREM 1. Let # be a maximum likelihood estimate of m. Then (1.10) and
(1.11) are satisfied by some be Q*, the orthogonal complement of Q = {z — w:
z, we 0}.
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Proor. The result is obtained by use of the Kuhn-Tucker lemma (see Zangwill
(1969, pages 40-41)). To apply this lemma, the differential dly(n*, +) of I(n*, +)
at & is obtained.

To find dly(n*, .), note that if £, > 0, then (1.1), (1.8), (1.9) and (2.1) imply
that

2.2) O yn*, #) = my(# |0y, ,
or,

while if #, = 0, then

23) O i, ) = 9 my#|ny).
or, or,

Thus if H, = {he H: #, > 0} and H, = H — H,, then
" 0
(2.4) dly(n*, 0) = Yipen, Oom(R[0*)/R, 4+ Ypen, 0y . m,(# [n*) .
3

Since [(n*, ) is maximized by # for z € © such that #, > 0, 4 ¢ H, the Kuhn-
Tucker lemma implies that for some 1, > 0,

(2.5) diyn*,8) + (2,8) =0, e,
and

(2.6) %, =0, he H.
Let

2.7 b, = my(f|n*)/#,, heH,,

— 4 4+ O m(#|n%), heH,.
or,
By (2.4), (2.5) and (2.6), be Q*. Since m,(#£|n*) = 0 and 1, > 0 if 7, = 0,
(2.7) implies (1.10) and (1.11). ]

Formulas (1.10) and (1.11) simplify in the direct observation case in which
I=Jand J;, = {i} for ie I, for n* = n and

(2.8) my(z|n*)y = 3. . nc(h i) =y,.
Thus (1.10) reduces to
(2.9) = b,%,

and (1.11) reduces to the condition 5, > 0 if #, = 0.
In the examples considered in this paper, it is helpful to employ the following
corollaries to Theorem 1.

COROLLARY 1. Assume that H,, g € G, are disjoint nonempty sets with union H,
and assume that
0 = {EGRHI ZhEHgﬂh = l,geG}.
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Then any maximum likelihood estimate & of m satisfies the equations

(2.10) m (& |0n*) = &, 3, my(#|0*), heH, geG,
a A A A

(2.11) Tmmh(ﬂln*) = Dwen, M (% |0¥), heH, geG,#,=0.

ProOOF. Observe that Q = {xe R¥: Znen, X = 0, g€ G}and Q+ consists of
x € R” such that for some ec R%, x, =e,, he H,, ge G. By Theorem 1, for
some e € R¢

(2.12) my(# | n*) = e, 7, , heH, geG,

and

(2.13) Lom(@n) e, A =0hcH,geC.
Ty,

Addition of both sides of (2.13) over 4 e H, shows that

(2.14) €, = Then, mi(#|0%).
Given (2.12), (2.13) and (2.14), (2.10) and (2.11) follow. ]

COROLLARY 2. Assume that H,, g € G, are nonempty disjoint sets with union H
and for some N C H, the sets B,, c € C, are nonempty disjoint sets with union H — N.
For each c € C, assume that there exists a G, C G and a f, > 0 such that H, n B,
has f, elements if ge G, and H, N B, is empty if g G — G,. Let © consist of
7 ¢ R¥ such that

ZheHgn'hzl, geG,
Ty, = T s h,WeB, ceC,
nh:O, heN.

Let ## be a maximum likelihood estimate of m. Then #, = 0 for he N, and for
heB, ceC,

(2.15) Zh'eB,, my, (% |n*) = S Zych Zh'eH, m, (& |n¥) .
Ifhe B, ceC,and %, = 0, then

a A A
(216)  Sien, o mul® [0%) < £, Dyeq, Daven, mu(# |0%).
h/
Proor. Note that Q consists x € R¥ such that
Zihery ¥ =0, geG,
X, = X, , h,heB, ceC,
xh, e 0 . h e N,

and Q! consists of x € R¥ such that for some @ € R%, B e R”, and y ¢ R%, x, =
a, + By + 1 heH, ge@G,

(2.17) B,=0, hgN,
(2.18) Shen,7a =0, ceC.
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By Theorem 1, there exist @ € R%, 8 € R¥, and y € R” such that (2.17) and (2.18)
hold and

(2.19) my(& [n*) = (a0, + B + 72)% » heH, geGCG,

(2.20) a—?r—mh(ﬁln*)gag—l—ﬁh-{—rh, #,=0,heH, geG.

h

To verify (2.15) and (2.16), note that for c e C,

Diged, ZheHg m,(# | n*) = Diged, Xy + deac ZheHg Thts

(2.21) = deac Ay + Yleeo Zinen, Tnitn
= Dlgec, %y >
(2.22) e sy M(#|0%) = 2,f, Tyeq, @, heB,,
and
(223)  Then,mE|N) S fo Tyen, %, m=0 for heB,. 0

2.1. Examples of maximum likelihood equations. In this section, the general
results of Theorem 1 and Corollary 1 are applied to the examples from genetics
and latent-structure analysis.

EXAMPLE 1. The general model for estimation of gene frequencies (continued).
In this example, application of Corollary 1 is rather straightforward. A modest
simplification of (2.10) and (2.11) is available since for each locus g,

Dihen, my(# | n*),

the conditional expected number of alleles # e H, in the sample, must always
equal 2N. This result holds since each subject has 2 alleles from H, at each
locus. Consequently, (2.10) reduces to (1.12), and one has the added require-
ment
O m#n*)<2N if #,=0.

or,
The term gene counting equation is applied to (1.12) since the left-hand side is
the estimated proportion of genes in the population at locus g which have allele
h, while the right-hand side is the estimated proportion of genes in the sample
at locus g which have allele 4.

ExXAMPLE 2. The two-loci model (continued). In this model, it suffices to con-
sider equations for #,, and #,. The remaining equations follow from the rela-
tionships

and
A,=1—17,.

From Table 1, it follows that a subject with phenotype 1 has two alleles 77, a
subject with phenotype 2 has one such allele, and a subject with phenotype 3
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has one allele 77 with probability 1 — #},#,%/p,(%). The allele T” is not observed
in phenotypes 4 and 5. Consequently, the gene counting equation for 7 is

(2.24) e = oo (0 + 4 (L — B2 p#)])

Similar arguments show that

A

1 A A A A A
(2.25) fop = 2_]\7{2n1*7rT + 2n,* + ng*[1 — 27, &, #,/p(®)] + nx*}.

EXAMPLE 3. Latent-structure analysis (continued). The maximum likelihood
exuations depend on the choice of O, but it is always the case that for some
be QL

(2.26) my(# [0%) = 35e; [piy(R)/py*(#)]ny*
=b7#, kek,

and

(2.27) Myo(B[0%) = Fo5cri00=g [Prs(®) ¥ (&) Iny*

= Dyyy frny » keK, gelL,, ueU.
In the classical latent-structure model with
O=0" ={mweR”: Fxm=1,Y,e1, Tuuy = 1, ke K, ue U},
Corollary 1, (2.26) and (2.27) imply that

(2.28) #y, = N~'m,(# |n*)
and
(2.29) My (B M*) = Ry, m (| 0*)

If my(#|n*) > 0,
(2.30) Ry = My (7 | 0%)/my(# |0¥) .

Note that in (2.28), the left-hand side is the estimated proportion of population
members with X = k, and the right-hand side is the estimated proportion of
sample member with X = k. In (2.30), the left-hand side is the estimated pro-
portion of population members with X = k for whom A(x) = g, and the right-
hand side is the estimated proportion of sample members with X = k for whom
A(u) = g.

A more complex case with simple maximum likelihood equations is available
if for each u e U, K has a partition into disjoint nonempty sets D,,, we W,.
Then one may consider a model with © consisting of = € ®” such that

Thng = Tyrng s k,XeD,,,weW, geL,,uclU.

Corollary 2 then implies that (2.28) holds and if ge L,, ke D,,, we W,, and
u e U, then

(2.31) Skvenuy Mirng(B M%) = Ry Tven, my(#0%) .
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If
2ikreny, Mo(®[0*) >0,
then
(2’32) ﬁkuy = ‘Zk'eDuw mk'uy(ﬁ ' n*)/Zk'eDuw mk’(ﬁl | n*) :

Since #,,, = my.,, for k, k" e D, the left-hand side of (2.32) is the estimated
proportion of population members with X ¢ D for whom A(x) = g, while the
right-hand side is the corresponding estimated proportion for the sample.

EXAMPLE 4. The two-latent-variable model (continued). In the model with two
latent variables considered in Section 1, (2.28) holds and (2.31) applies with
W,={1,2}forl u<4,D, ={w1),<w2)},u=1oru=3andD =
KL, w), 2,w)},u =2o0ru=4.

2.2. Multiple solutions to the maximum likelihood equations. Although any
maximum likelihood estimate # satisfies (1.10) and (1.11) for some b e Q*, not
all solutions # of (1.10) and (1.11) need be maximum likelihood estimates. For
example, in latent-structure analysis (Example 3), if ® = @', #, = x, > 0 for
k e K, and

Rrug = N7 Dierion=g 1% >0, geL,uelU kek,
then (2.31) and (2.32) are satisfied. Condition (1.11) holds since #, > 0 for all
he H. Nonetheless, ## generally is not a maximum likelihood estimate of =.
Instead, # is a maximum likelihood estimate of =z for a restricted model with
O={mweR”: m,, =7, 9€L,uclUk,keK}. Consequently, conditions
are desired for verification that a # ¢ ®, which satisfies (1.10) and (1.11) for
some b e Q* is a maximum likelihood estimate. The following theorem can be
helpful in this regard.

THEOREM 2. Suppose that for some # ¢ ©®, and be Q+, (1.10) and (1.11) are
satisfied. If # is a maximum likelihood estimate of w, then
(2.33) (z, E(® |n*)z) = 0, zeY(R).
On the other hand, if strict inequality holds in (1.11) whenever #, = 0, and strict
inequality holds in (2.33) whenever z + 0 and z. ¢ Q'(#), then # is an isolated rela-
tive maximum of I(n*, .).

If forallme®,,
(2.34) (z, E(w|n*)z) = 0, zecQY(m),
then & is a maximum likelihood estimate. If & is also any isolated relative maximum
of I(n*, <), then & is the unique maximum likelikood estimate of m.

Proor. These results are proven by evaluation of the second differential
d*l (n*, «, ) of In*, .)at e O,.

If z, > 0 and 7,, > 0, then
aZ

2.35 _—
( ) or,, oy,

I(n*, ) = m, 7' [Copo(7 [M*) — By, (7w [0n*)]

= ——Ehh/(ﬂ.' | n*) .
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Consequently, if w, z ¢ Q'(x),
(2.36) a’l (n*, w, z) = —(w, E(z|n*)z) .

By the second-order necessary condition of Fiacco and McCormick (1968, page
25), if # is a maximum of /(n*, .), then the left-hand side of (2.36) must be
nonpositive whenever w = z e Q'(w). Thus (2.33) holds. By Fiacco and
McCormick’s (1968, page 30) second-order sufficient condition, # is an isolated
maximum if the left-hand side of (2.36) is negative forallw = z ¢ Q' (%), z + 0,
and if strict inequality holds in (1.11). The former condition holds if strict
inequality is present in (2.33) for all z ¢ Q'(x), z = 0.

If (2.34) holds, then (2.36) implies that /(n*, +) is concave. Since 0, is con-
vex, ## is a maximum of /(n*, .) (see Zangwill (1969, page 43)). Furthermore,
the set of all maxima must be convex. If & is also an isolated relative maximum,
then # must be the unique maximum of /(n*, +). [J

By far the simplest application of this theorem occurs when n is directly ob-
served, so that / = /and J, = {i} forie /. Then C(z|n*) = 0 for all x€O,.
Consequently, if # < ©, satisfies (2.8) for a be Q* such that , > 0if 7, < 0,
then # isa maxmum likelihood estimate. If b, > O when#, = Oand m,(# |n*) >0
whenever #, > 0, then # is the unique maximum likelihood estimate. Thus
estimation of # is relatively uncomplicated in the direct observation case. This
observation is of interest in its own right in estimation of transition probabilities
in Markov chains (Anderson and Goodman (1957)) or in factorial contingency
table models involving hypotheses of independence, conditional independence,
and equiprobability (Goodman (1970)). The observation will also be helpful in
exploration of properties of the functional iteration algorithm of Section 4.

In general, it is relatively difficult to verify that a solution of (1.10) and (1.11)
is definitely a maximum likelihood estimate, even if

(2.37) (z, B(# |n*)z) > (z, C(# |n*)z), z2cQ#R),z+0,

and strict inequality holds in (1.11) if #, = 0. However, this problem appears
to cause few practical problems, particularly if the numerical techniques of
Sections 4 and 5 are employed.

3. Large-sample behavior of maximum likelihood estimates. Discussion of
large-sample properties of maximum likelihood estimates is complicated by the
possibility of multiple solutions of (1.10) and (1.11) and by the possibility that
some &, may be 0. Despite these difficulties, the following theorem is available.

THEOREM 3. Let N, /N — t, as N— co. Then (1.18) and (1.19) hold for some
B e QL. Assume that strict inequality holds in (1.19) if =, = 0. Assume (1.20)
holds for p* = {t,p;*(w): je A, 1 £ k < K}. Then there exists an open neigh-
borhood M e Q = {x* e R7: x;* = 0if p*(x) = 0, x;* > 0 if p;*(x) > 0} of p*
and an open neighborhood O C © of = such that if N-'n* ¢ M, then there exists a
unique #(n*) € O N O, such that for some b(n*) e Q*, (1.10) and (1.11) are satisfied
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by # = #(n*) and b = b(n*). For N'n* ¢ M, # is the unique maximum of l(n*, m)
formeO n O,. AsN— oo, N{ (& — ) converges to N(0, X(z | p#*) in distribution,
where X(m | p#*) is defined by (1.21).

If m is the only x € ©, such that p;*(X) = p;*(x) for all j e A, such thatt, > 0,
then the probability approaches 1 that # is the unique maximum likelihood estimate

of &.

REeMARKS. The theorem’s conditions for asymptotic normality of #(n*) hold
if r, > 0 for all h e H, N,/N — 7, as N— oo, and E(zm | g*) is positive definite.
Since E(m | p*) is invertible, it follows from basic properties of projections that
I(m | p*) = P(m| po*)[E(m | £*)]~', where P(m|p*) is the projection on Q =
Q'(zr) with respect to E(m|p*). It can be shown that the conditions of the
theorem cannot hold if p,*() > 0 for all je J, if =, = O for some & ¢ H, and if
for some xe€®,, x, > 0forallhe H.

Proor. To verify that (1.18) and (1.19) hold for some B¢ Q*, note that
I(ge*, x) is maximized for x € ©, if x = =, for the information inequality (Rao
(1973, page 58)) implies that

Kp*s ) = Tier T Ljea, Pi*() 10g pi*()
(3.1) = 201 T Ljea, Pi¥(m) l0g pi¥*(x)
= l(p*,x), xXe0O,.
The implicit function theorem (Loomis and Sternberg (1968, page 231)) is

used to show that suitable open sets M and O exist. To apply this theorem, con-
sider the system of equations

(3.2) dl;,(;ln*, a>+(z,a)=0, 3eQ,

(3.3) L2, =0, heH.

If (1/N)n* = p*, then (3.2) and (3.3) have a solution with # € ®_, for one may
let# ==&, 2, =0ifr, > 0,and 2, = {, = B, — (9/d=,)m,(z | p*) > 0 if r, = O.
For the implicit function theorem to apply, the equations

(3.4) &l (p*,n,0) + (v,8) =0, 3ecQ,
(3.5) o + Ty, =0, heH,

must have the unique solution » = » = 0 for e Q, v eI'*, where I consists
of z ¢ Q* such that z, = 0if =, > 0. Tosolve (3.4) and (3.5) under the assump-
tions of the theorem, note that{, > 0ifr, = 0and{, = 0ifr, > 0. Ifr, = O,
then (3.5) implies that y, = 0. If =, > 0, then (3.5) implies that v, = 0. By
(2.36) and (3.4),

(3.6) acl(p*,9,7) + ¥ ) = (9, E(x| p#*)p) = 0.
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Since 9 € Q'(xw), » = 0. Thus (3.4) implies that
3.7 »,0)=0, 3cQ.

Thus peT'. SinceveIt, p=v=0.

By the implicit function theorem, open neighborhoods M, O, and A exist
such that g*eM c Q, w0 c 0, and { ¢ A = & + Tt and such that to each
(I/N)n* e M corresponds a unique A((1/N)n*) e A and a unique #((1/N)n*)e0
such that (3.2) and (3.3) are satisfied by # = #((1/N)n*) and 2 = A((1/N)n*).
The functions #(.) and 4(-) are continuously differentiable on M, and M can
be chosen so that if (1/N)n* ¢ M, then

£, >0 if =, >0,
2h>0 lf Tt'h:(),

and

(3.8) &, <% n*, v, v> <0 if veQ(R), v£0.

Given the choice of M, one may let A = { 4 T't, for if (1/N)n* ¢ M, then (3.2)
and (3.3) can hold for no more than one 4e§ + I't. It should also be noted
that if (1/N)n*e M and # €0, then (3.2) and (3.3) can only hold for a 2 € R¥
if they hold for some 2 e A. Thus if (1/N)n* ¢ M, then # is the only relative
maximum of /((1/N)n*, «) in 0.

For sufficiently small M and O, one has [((1/N)n*, £) > I(w*, x) for x € 90,
the boundary of 0. Thus # is the unique maximum of /((1/N)n*, .)in O n O,.
Since /(n*, x) = NI(N-'n*, x) for x € ©,, #(n*) = # is the unique maximum of
[(n*, «) in O n O, and #(n*) is the only element of O N O, such that for some
b(n*) = be Q-+, (1.10) and (1.11) hold.

To find the asymptotic distribution of #, d#,. must be computed by use of
(3.2), (3.3), and the implicit function theorem. Since I(+, X) is a linear function
on R’ for each x ¢ ®, and w* ¢ R’, one has

(3.9) AL (g%, dit o(WH), 8) + dl(W*, 8) + (dA.(W*), d) =0, 3ecQ,
(3.10) G dr, (W) + m, dA, (W*) =0, heH.
Given (2.12) and (2.36), it follows that if' 8 ¢ QU'(w), then
(3.11) — (3, E(x| p*) dit (w¥)) + (3, TI-(m)m(z| w¥)) = 0.

Equation (3.11) impkies that
(3.12) d& . = X(x | p*)[I-(m)m(z | -) .

To verify (3.12), note that by Halmos (1958, page 80), [P(w | t£*)]* is a projec-
tion on R¥ with range A+ and null space [Q'(x)]*, where

A={veR”: (v, E(mw|p*)Xx) =0 VxeQ(r)}.
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If v e R, then

(3, E(m | p*)X(m | p£*)Y)

= (8, E(m | #*)[E(x | )] [P | £*)]"v)
(3.13) = ({E(w | p*)[E(m | #*)]7}8, [P(m | )] %V)

= (3, [P(z | £*)]"V)

— (8 — {E(m | p*)[E(m | #*)]7}9, [P(m | £¥)]*Y) -
If x ¢ Q'(), then
(E(m | ) [E(m | £*)]7}'0, E(m | p*)X)
(3.14) — (3, E(m | p)[E(m | )] E(m | )
= (8, E(7 | #*)X) .

Thus 8 — {E(x | #*)[E(x | #*)]"}*8 € A. Since [P(m | p*)]* has range A+,

(8, E(z | p*)E(m | r*)V) = (3, [P(m | £)]*Y)
(3.15) — (P(x| ), v)

= (8,v).
Consequently, (3.11) reduces to
(3.16) (3, E(m| p)[dit ((w*) — (| p)TI-(m)m(zm |WH)]) = 0,  wreR’.
Since d# . has range Q'(x), (3.12) follows.
Given (3.12), standard arguments from large-sample theory (see Rao (1973,

pages 385-389)) may be used to show that
(3.17) Ni(# — ) = X(x | p*)II-(w)m(zc | N-}(n* — e*)) 4 o,
where o converges to 0 in probability and

(3.18) e;* = N, p;*(m) , jed,1 <k <K.

J

Since N-}(n* — e*) converges to N(0, S) in distribution, where

(3.19) (x*, Sw¥) = Tt Diea, X5 Wi ps* ()
— [Zjea, x*p M) [ 2 jea, WP ()]}
II-(z)m(z | N-}(n* — e*)) converges to N(0, V(w|7)) in distribution, and
Ni(# — =) and X(r | g*)[I-(zr)m(z | N-¥(n* — e*)) both converge in distribution
to N(0, X(r | p*)V(m | T)E(z | #*)). Here for 7, 8 € RY,
(7, V(m|7)d)
(3.20) = 2t Diea, (Wi(m), 9)(Wi(7), d)p;*(m)
; — [Xiea, (W;(®), Dp; @)X e 4, (Wi(7), O)p;*(m)]} 5
an
Wi () = 1,7 Liey; (, Dpa(m)[p;*(7) 5

(3.21) r, >0 and p;*(w) >0,

=0, r, =0 or pX*m =0.



PRODUCT MODELS 1139

Since
(3:22) Tieay P4 =1, xe@,, 1 <k<K,
differentiation of both sides of (3.22) shows that
(3.23) sy (W5(X), p,*(x) = 0, 2eQ(x), xeO, .

Similarly, differentiation of both sides of (3.22) at x = & shows that

(3.24) DiaaTe Djea, (Wis 8)(Wy, 9)p;*(mw) = (8, E(mc| *)y),  8,9eQ(x).
Thus

(3.25) (7, V(®|7)d) = (, E(w| 1*)d) , 8,7eQ(r).

Given (3.25), it is possible to show that V(m|z) is a generalized inverse of
X(m | #*). To do so, note that for x € Q'(x),

(2, [P(z | )" E( | p*)X) = (P(7r | p£*)2, E(7c| p2*)xX)
(3.26) = (P(z | p*)z, V(7| T)X)
= (. [P(w | p*)}*V (x| ©)x) . zER".
Thus [P(z | *)]*E(z | #*)x = [P(zr | #*)]*V (x| z)x. Furthermore, by Rao and
Mitra (1971, pages 3 and 20),
(2, E(x| ) P(se | pe*)[E(ae | )] [P | 1£%)]V (e | 7))
(3.27) = (2, E(m| p*)[E(x | )] [P | %) *E(ze | ) P(me | %)
= (2, E(z| po)[E(x | )] E(x | ) P(m | 1))
= (z, E(w | p*)x), zeQ(m).
Thus (x| #*)V(m | 7)x = x. Hence V(x| ) is a generalized inverse of X(x | p*).
If  is the only x € ©®, such that p,*(x) = p,*(z) for j ¢ 4, such that ¢, > 0,
then since ©, — O n O, is compact, there exists some ¢ > 0 such that

2 Tl pi*(X) — pi*(m)| = e

ifxe®, —0n O,. If #(n*) is an arbitrary maximum likelihood estimate of
z, then by Rao (1973, page 356), 7, p,*(w(n*)) converges in probability to
. p;*(m) for all je A4, and k such that I < k < K. Therefore, the probability
approaches 1 that N~'n* ¢ M and #(n*) e O n ©,. Since # is the unique maxi-
mum of /(n*, x) for xe O n O, if N-'n* € M, the probability approaches 1 that
#(n*) = #, the unique maximum likelihood estimate of . []

Given Theorem 3, # may be said to be asymptotically unbiased with asymp-
totic variance X(z |e*), where e* is defined as in (3.18). It is easily verified
that NX(x |e*) — L(m | #*). Various estimates of ¥(z | e*) are possible. A com-
mon choice is (7 |e*) = X(# |e*), where
(3.28) é* = N,p,*(#), jed, 1<k <K.

J

An alternative is X(Z | n*).
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It may readily be shown that both NX(#|n*) and NX(#|e*) converge to
I(z| p*) in probability. Thusif y e R and 0 < a < 1, an approximate level-
(1 — a) confidence interval for (7, &) is the interval

(72 B) + Zoolrs L(pe| €9)7)?

where Z,, is the upper a/2-point of the standard normal distribution. An alter-
native interval is

() &) = Zun(r, T(# [0*)7)* -

3.1. Alternative formulas and conditions. 1f Q'(zr) has dimension ¢, W is a linear
transformation from R? onto Q'(x), and § € Q'(x), then for some unique 7, # =
Wy + €. Under the conditions of Theorem 3, the probability approaches 1
that # — £ € Q'(wr) and # = W# + ¢ for a unique # € R?. Since
(3.29) 7 = [WE(z | p*)W ] WE(z | pr*)(# — Q) ,

=7 + [WAE(z | o*)W ' WHE(x | *)(# — ) ,
an elementary calculation shows that N¥# — y) converges in distribution to
NO, [WAE(z | #*)W]-). It also follows that N¥# — &) converges to N(0,
W[W4E(m | e*)W]~*W4) in distribution; that is,
(3.30) L(m| p*) = W[WAE(z | p*)W ] W4 .
Alternative expressions can be obtained by noting that
WAE(t | p*)W = WAV (m | T)W .

Also note that W4V(z | N)W is the covariance operator of W4II-(z)m(zx|n*).
Alternatives to (1.20) exist in Theorem 3. The following conditions are equiv-
alent to (1.20):

(A) (z, V(m|7T)z) > 0if ze Q(m), z £ 0;
(B) for some open sets N’ and O’ such that g* ¢ N’ C [0, o0)’,

we O c m + Q(x), there exists a differentiable function Z from N’ to O’ such
that if xe O’ n O, and

wi* =1, p;*(X) jedp 1=k =K,
then )
(3.31) Z(W¥) = X.
(C) If 8 € U(x) and
(3.32) 2, p(E)(Wy(m), 8) = 0, jed,1<k<K,

then ¢ = 0.

Verification of the equivalence of (1.20) to (A) and (C) is easily accomplished
by use of (3.21), (3.23), and (3.25). That (1.20) implies (B) follows from Theo-
rem 3 by replacing Q by Q'(w). The resulting function # is a possible Z in (B).
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That (B) implies (C) follows since differentiation of (3.31) leads to the equation
(3.33) dZ ft,(Wi(x), 2)p;*(z): je A, | Sk < K} =1z, zecQ(x).

If z 0 and z € Q'(x), then 7, > 0, (W,(x), z) = 0, and pi*(m) > 0, for some k
and some je 4,. Thus (C) holds.

3.2. Applicability of Theorem 3. The results of Theorem 3 need not apply to
all genetics models of the type considered in Example 1 or to all latent structure
models of the type considered in Example 3. Nonetheless, Theorem 3 can be

used with the two-loci model of Example 2 or the two-latent-variable model of
Example 4.

The two-loci model. In the two-loci model, it is known from the data that
Ty, Ty T, and w, are all positive, for all phenotypes occur with positive fre-
quency. Thus the conditions of Theorem 3 will be satisfied if N — oo and a
function Z and sets N’ and O’ are available which satisfy condition (B). Such
a function Z can be constructed with N’ = (0, 1)® and 0’ = {me®:m, > 0}by
use of the formulas

Zy'(W¥) = (w*)t,

Z/(W*) =1 — Z,(w*),

Z(W*) = (W P Z,,(w¥) ,

Zp(W*) =1 — Z,(w*).
Given this Z, it also follows that if p;*(x) = p,*(w) and x € 6,, then x = .
Thus the # in Theorem 3 can be chosen as any maximum likelihood estimate

of #. The probability approaches 1 that the choice is uniquely defined.
Observe that

Tp 1 0 ro
Ty _ ——1 l:n'T/:I 1
!~ o 1|lm,dF o
T, 0 —1 1

Thus the asymptotic covariance operator of # is determined by the asymptotic
covariance matrix of {(#,,, #,%, which is the inverse of the covariance matrix of

my, (7 | n*)
[1 —1 0 0} m(m|n*) | [mT,(n'|n*)—2N7rT,]/(7rT,n',,)}.
0 0 I —1J|my(z|n*) |~ [mz(7 |n*) — 2Nz, ]/(np7,)
m,(ax | n*)

Here the relationships

my(m [n*) = 2N — my,.(z |n*)
and
m(x |[n*) = 2N — m,(z |n*),

have been used. Given the equations

mp (7 | n*) = 2n* 4 n* 4 n*[1 — 73wt ps(7r)]
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and

mp(z | n*) = 2n*m, + 2n,% + n*[1 — 275, 7, 7w, /py(®)] + n*
computation of the asymptotic covariance matrix of (#,, #) is straightforward.
Details are omitted.

The two-latent variable example. In this example, conditions of Theorem 3
hold if N — co and if = satisfies the following conditions:

7, >0 forall heH,

”(1,1)”(2,2)/(”(1,2)”(2,1)) *1,
nkugiﬂk’ug lf légéz’ k’k,eDuw’ 1§W§2, 1§u§4

where D,, = {(w, 1), {w,2)}, u=1 or 3, and D,, = {{1,w), (2, wp}, u =2
or 4. This claim may be verified by use of a determinantal estimate of z as the
function Z in condition (B). This estimate is constructed in Goodman (1974).
The estimate # cannot be a unique maximum likelihood estimate since /(n*,
&) = l(n*, &) if
T = Ry

7".ku,g = Tca(k)ug ’

a(Ck(1), k(2))) = ox(k(1)), 9x(k(2)))
for some permutations ¢, and o, of {1, 2}. The estimate # can be defined as the
maximum of /(n*, x) for x € ©, such that xq 5, > X¢ 1 and Xg g > X am-
This restriction causes no difficulty since the labelling of the latent vaﬁable
classes is completely arbitrary. Computation of Z(w|g*) in this example is
somewhat tedious, but involves no special difficulties. Consequently, details
will be omitted.

and

3.3. Testing goodness of fit. The customary statistics for general tests of good-
ness of fit are the log likelihood ratio chi-square

(3.34) L =2 3hy Xjeg 0¥ log {n* [N, p;*(%)]}
and the Pearson chi-square
(3.35) X' = Yo Dies{n* — Nepi*(@®)F/[Nep*(®)] 5

where it is assumed that 0log 0 = ¢ = 0. Under the conditions of Theorem 3,
together with the added condition that z, >0 for 1 < k < K, L and X? are
asymptotically equivalent, and both statistics converge in distribution to the X?
distribution, where

(3.36) s = c(J*) — r — dim Q/(x)

and ¢(J*) is the number of elements in J* = {je J: p;*(w) > 0}. Statistical tests
may in practice be made with an estimate § for s, where

(3.37) §=c(jed: p;*(#) > 0}) — r — dim Q'(#) .
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As N— oo, P{§ = s} — 1. Verification of results in the section involves nn
special difficulties, so that proofs are omitted.

4. Solution of the likelihood equations by functional iteration. The simplest
approach to the determination of a solution # which satisfies (1.10) for some
b e Q* is to use an initial approximation z'® ¢ ©, for # to generate a sequence

{m} < O, of approximations to # by the equation

(4.1) 7 = w2 (fm")),

where

(4.2) [X) = n;*pi(x)[p;*(x) » iedpjed,
and for z € [0, o0)!, 7(z) is any maximum of

(4.3) l(z,x) = ¥,c; 2 log p,(x)

for xe ®,. Versions of this algorithm have been developed by Ceppellini,
Siniscalco and Smith (1955), Chen (1972), and Goodman (1974); however, a
systematic investigation of convergence properties has been lacking.

In this section, it is shown that the algorithm, although often slow to converge,
is very stable numerically and often very easy to apply. Results are illustrated
through use of the examples from genetics and latent-structure analysis.

In the direct observation case with / = Jand J; = {i}, f(x) = n and 7 is a
maximum likelihood estimate of z. More generally, {#*’} has the convergence
properties discussed in the following theorem.

THEOREM 4. Suppose ®w® c©, and I(n*, #'®) > —oo. Then the sequence
{} C O, defined by (4.1) is such that for v = 0, either

4.4 I(n*, ax™® + (1 — a)w+V) > I(n*, &), 0<a<l,
or for some b e Q*,
(4.5) my(x® | n*) = bz, heH.

Every subsequence of {m'’} contains a convergent subsequence, and if # is a limit
point of {m'"}, then # satisfies (1.10) for some b ¢ Q*.

Proor. To verify (4.4), note that for any x,z€ 0,

(4.6) (n*, %) = I(f(2), X) + q(f(2), %) ,
where for u e [0, co0)?,
(4.7) q(u, X) = — Xjes Dies; 4 10g [pu(X)/p;*(X)] -

Note that I(n, ) is the log likelihood kernel if n is directly observed. As shown
in Section 2, I(f(z), -) is concave for any ze®,. Since I(f(x'?, m*+V) >

l-(f(n'“"), 71.'“”),
(4.8) I(f(x™), ax™ + (1 — a)m@ ) = I(f(m™), #»), O0<a<l.
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Furthermore, strict inequality holds in (4.8) unless 7" is a maximum of
I(f(zx'), +). In this latter case, Theorem 1 implies that (4.5) holds for some
beQ*. For any x € ©,, the information inequality implies that

9(f(=™), x)
(4.9) = = 2jes * Lies,; [P(m™)[p*(m)] log [p(x)/p;*(X)]
2 —Tjes 1% Ties; [PAE) p*(m)] l0g [p(7) py ()]
= g(fix), 7).
Given (4.6), it follows that (4.4) holds unless (4.5) is satisfied for some b e Q.

Since 0, is compact, every subsequence of {z*’} contains a convergent sub-
sequence. If A(z) is the set of x € ®, which maximize i(z, ), then by Zangwill
(1969, page 156), A(z) is a closed point-to-set map from [0, co)’ to ©,; that is,
if 29—z, x* — x, and x” € A(z”) for r > 0, then x € A(z). Provided that
/(n*, X) > —o0, fis continuous at x. By Zangwill (1969, page 96, Corollary
4.2.2 and page 91, Convergence Theorem A), every convergent subsequence of
{m} has a limit # such that (1.10) holds for some b e Q.

The functional iteration algorithm need not converge to a maximum likeli-
hood estimate of ; however, (4.4) implies that if #® is sufficiently close to an
isolated maximum # of /(n*, .), then £ — #. If the conditions of Theorem 3
are satisfied and 7' = T(n*), where T(n*) converges to m in probability, then
the probability approaches 1 that z» — #(n*). Given the results of Section
3.2, these remarks apply to both the two-loci example from genetics and the
two-latent-variable example.

Implementation of the functional iteration algorithm is rather easy if the con-
ditions of Corollaries 1 or 2 are satified. If the conditions of Corollary 1 are
satisfied, then given z®, {#"'} is any sequence in 0, satisfying the equation

(4.10)  my(m n*) = 7, Ty, mu(m (0%, heH, geG,v=0.

Similarly, if the conditions of Corollary 2 are satisfied, then given m¥, {7} is
any sequence in ©, satisfying the equations z,'” = 0, ke N, v > 0 and

(4.11) Siwen, My (W | N*) = f,m, (04D S ,eq, Zh,qu m, (7 | n*)
heB,,ceC,v=0.
In the general genetics model, the functional iteration algorithm reduces to

the gene counting algorithm

1
(4.12) T = (x| %)
of Ceppellini, Siniscalco and Smith (1955).
In latent-structure analysis models of the type considered in Goodman (1974),
for each manifest variable u € U, K has a partition into disjoint nonempty sets
D,,, we W,. The set O consists of = € ® for which

Mg = Tiug » k,kKeD,,weW,, geL,uclU.
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Given (2.28) and (2.31),

(4.13) Tt = N-'m (7' [n*) , kek,
and
(4.14) 2iwreny, Mou (T | N*) = motD 2k e Dy Mo (T | ¥)

gelL,keD,, ,weW,ueclU.
If ® = 0, (4.14) reduces to

(4.15) My (| 0*) = 73 m (™ | n*) .

ug

5. Solution of the likelihood equations by the Newton-Raphson and scoring
algorithms. The functional iteration algorithm of the preceding section has the
virtues of simplicity and stability, but it can be rather slow to converge and it
provides no assistance in estimation of asymptotic covariance matrices. In con-
trast, the Newton-Raphson and scoring algorithms are generally more difficult
to implement, but they provide rapid convergence when good initial estimates
of # are available and they facilitate estimation of £(x|e*). These latter prop-
erties may make the Newton-Raphson and scoring algorithms preferable, at
least when asymptotic covariances are of interest.

To apply the Newton-Raphson algorithm, note that for z ¢ Q' (#),

(5.1) (z, TI~(#)m(# |n*)) = 0 .

The Newton-Raphson algorithm for solution of (5.1) uses an initial estimate
#'” € © to generate a sequence {z”} C O such that for z € Q'(z"),

(52) (Z, E(n-(v) | n*)(n(v+l) — ”(v))) — (Z, H—(n-(v))m(n-(v) | n*)) .

If one proceeds as in the proof of Theorem 3, one finds that

(5‘3) n-(v+1) — n-(v) + P(n-(v) | n*)[E(n-(v) | n*)]—[P(n-(v) | n*)]AH-—(n-(v))m(n-(v) | n*)
— + E(n'“” | n*)]‘[-—(n(v))m(”m |n*)

provided (z, E(z’ |n*)z) > 0 for all z ¢ Q"(x™), z # 0.

If (z, E(® |n*)z) > 0 for ze Q' (%), z # 0, if 7, = 0if #, = 0 and if & is
sufficiently close to #, then #> — # and {z'"’} has the quadratic convergence
property |[&w®*Y — #|| < c||w® — #|* for some ¢ = 0 (see Ostrowski (1966,
pages 183-194)). The large-sample analogue is that if the conditions of Theo-
rem 3 hold, if z#® = T(n*), where T(n*) converges to 7 in probability and
P(T,(n*) = 0} — 1if 7, = 0, then the probability approaches 1 that z> — #(n*).
If in addition, N*[T(n*) — =] converges to 0 in probability, then N4(# — z‘V)
converges to 0 in probability, so that #»’ and # have the same asymptotic dis-
tribution. If Z satisfies condition (B) in Section 3.1 and ' = Z(N-'n*), then
convergence is quite rapid, for # — = is then of order 1/N.

If sample sizes are small, then convergence is not assured. Stability can be
produced by calculation of #(f(=’)). One sets #**V = &(f(x'"")) if use of (5.3)
results in a £+ not in O, or if use of (5.3) results in a smaller value of /(n*,
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z@+1). In this way, the stability of functional iteration and the speed of the
Newton-Raphson algorithm may be combined.

An incidental benefit of the Newton-Raphson algorithm is that £(# |n*) is an
estimate of X(x | e*). This property may also be used in the scoring algorithm
in which $(z |n*) in (5.3) is replaced by X(z'’ |{N, p;*(®"): je 4, 1 £k =
K}). If condition (B) of Section 3.1 holds, other conditions required in Theo-
rem 3 are satisfied, and #' = Z(N-'n*), then it remains true in the scoring
algorithm that # — &V is of order 1/N. Nonetheless, the scoring algorithm
lacks the quadratic convergence property. The only reason for use of scoring
is that in some problems, it results in simpliﬁcations in the computations for
the Newton-Raphson algorithm.

Both the scoring and Newton-Raphson algorithms may be used with the ex-
amples considered in this paper. The programming labor is somewhat greater
than in the case of functional iteration, but a substantial saving in computer
time can be achieved with these algorithms.
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