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A LOCATION ESTIMATOR BASED ON A U-STATISTIC
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Let Xy, - -+, X, be i.i.d. F, and estimate the median of F by the median
T; of BX; + (1 — B)Xj, i # j, where B is a fixed positive constant. Then T}
is the solution of a U-statistic equation from which its asymptotic normal-
ity is readily derived. The asymptotic relative efficiency of T} is computed
for a few cdfs F and seen to be reasonably high for unintuitive choices such
as f=.9, 8 =2, and also to be remarkably constant for 8 > 1. Moreover,
the influence curves and breakdown points of {Ts: 8 > 0} are derived and
indicate that the good robustness properties of the Hodges-Lehmann esti-
mator (8 = %) are shared by the entire class.

Monte Carlo estimates of the variance of T for sample sizes n = 10,
20, and 40 indicate that some of these estimators perform as well as those
discussed in the Princeton Robustness Study when the underlying F is
double-exponential or Cauchy.

1. Introduction. Given X,, ..., X, i.i.d. F, consider estimating the median
of F by the median of {8X; + (1 — p)X;: 1 < i+ j < n}, where § is a fixed
positive constant. The case 3 = 1 yields the sample median; 8 = % yields the
Hodges-Lehmann estimator. The asymptotic efficiency and robustness of these
estimators are studied for various choices of F and 3. These estimators arise as
solutions to a U-statistic equation

(1.1) 2i; OX, — 0, X; —0) =0

where @(x, y) = 4[sgn (8x + (1 — B)y) + sgn (8y + (1 — B)x)] is the defining
symmetric kernel. The asymptotic normality of such estimators follows from
the results of Hoeffding (1948); see Section 3. The robustness properties are
more easily established by consideration of the solution to (1.1) in which the
i = j pairs (i.e., the original observations) are included. This estimator may be
expressed T4(F,), where F, is the empirical cdf and T,(F) is the functional de-
fined for arbitrary cdf F by the solution of the equation

(1.2) 2:(0) = §§ ©(x — 0,y — O)F(dx)F(dy) = 0.

(To ensure the existence of a unique solution to (1.2) for arbitrary F, we define
T,(F) to be the midpoint of the interval of # values for which 2,(6 + 7) = 0
and 2,(6 — 7) = 0 for all p > 0.) Itis easily seen that T,(F) is the median of the
distribution of BX 4 (1 — B)Y, where X, Y are i.i.d. F. When F is symmetric
T4(F) = median of F, so T,(F,) is a reasonable estimator of the median. When
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F is asymmetric, T,(F) will in general differ from the median and then T,(F,)
will not even be a consistent estimator of it. However, if T,(F) and the median
are close, T,(F,) may be a reasonable estimate for small samples; this possibility
is not further explored here.

In Section 4 of the asymptotic variances of T, are tabled for comparison with
those of maximum likelihood estimates in three cases of normal, Cauchy and
double-exponential densities. It will be seen that values of 8 > 1 are not un-
reasonable choices for the latter two densities and that 8 = .9 maximizes the
minimum efficiency over the three densities. Monte Carlo estimates of the vari-
ance of T',(F,) are tabled for n = 10, 20, and 40 for comparison with estimators
considered by Crow and Siddiqui (1967) and those of the Princeton study (1972).

The estimators discussed here fall within the large class of M,-estimators
introduced by Huber (1964). Test of symmetry based on U-statistics are dis-
cussed by M. K. Gupta (1967), but there is little overlap with the material
presented here.

2. Robusthess properties of the estimator T,. It is convenient to rewrite
2x(0) = Epky(Y, 6), where

@.1) kF(y,0)=1—F<0__ﬂ—>—F<w_>, 0<p<1

1 -8 B
—r(0=8) - p(O=tom), s> 1.

Note that kz(y, 6) is not a function of y — 6, even though T,(F) is location
invariant. Some of the robutsness properties (Hampel’s definitions [4]) of the
estimator are obtained in the following proposition.

PROPOSITION 2.1. Let F be a continuous distribution for which there is a unique
solution to (1.2). Then

(i) T, is continuous at F with respect to the topology of weak convergence;
(ii) the breakdown point d,* of T,is 1 — 27t =~ .29 forall 0 < B # 1;
(iii) if F has square integrable density f which is positive and continuous on an
open interval containing Ty(F), then the influence curve of T, at F is
—2kp(x, Ty(F))
Egky' (X, Ty(F))
where k;'(x, 0) = (8/00)k(x, 6); and

22) Qyx) =

(iv) under the conditions stated in (iii), the “gross error senmsitivity” y* =
sup, [Q,(x)| £ 1/Ep ki (X, Ty(F)) with equality if 0 < p < 1.

The boundedness and continuity of Q, indicate that T, will be rather insensi-
tive to outliers and local contamination. When F is symmetric, (2.2) reduces to

(2.3) Q,(x) = PLEBX/1 — B) — F(=((1 — )/B)0)]
VA — B)BIf() dy
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For 0 < B < 1, Q,(x) is odd and monotone increasing as well as bounded so
outliers tend to have the same effect.

When 8 > 1, [Q,(x)| tends to zero as |x| increases so that outliers have a
diminishing effect as their distance from the parameter increases. The examples
in Section 4 indicate that the asymptotic variance of T, (which will be seen to
equal E,Q,*(X)) is remarkably constant for values of 8 > 2. Thus we point out
that

2.4 lim,.., Q,(x) = ) _
24 g0 L25(%) TF0) &

The case 8 = 1 yields the sample median, which has already been discussed
in the literature [4]. By way of comparison, T, is continuous at F if and only if
{F~'(3)} is a singleton; 6,* = 4; r,* = 1/2£(0); and Q,(x) = (sgn (x))/2f(0). From
(2.3) we see that for continuous f, lim, ; Q,(x) = Q,(x).

Proor of ProposITION 2.1 (for 0 < 8 < 1). (i) Roughly speaking, if F, G are
close in the topology of weak convergence, then k, k; are uniformly close and
consequently 45(6), 45(6) are close for all 6, including § = T,(F), T,(G). More
precisely, let A(F, G) and =(F, G) denote respectively Lévy and Prohorov metrics
(each of which generates the topology). Then =(F, G) < é implies A(F, G) < 9,
which in turn implies

[ka(y» ) — kp(y, O)] < 200 + @£(9))

where a,(0) = sup, [F(x + d) — F(x)| is the modulus of continuity of F. It fol-
lows that

(2-4)  [2:(6) — 22(0)] = [§ ka(y, )G(dy) — § kx(y, O)F(dy)]

| = 200 + @7(9) + [§ ke(y, O)G(dy) — § kp(y, O)F(dy)] .
By result (a) of Section II.8, Oaten (1972), n(F, G) < 4 implies that the quantity
in absolute values is bounded by 26 + a, . 4,(6), which is independent of 4.
Hence the left-hand side of (2.4) converges to G uniformly in 6 as § — 0. When

the solution to (1.2) is unique any solution to 4,(¢) = 0 will clearly converge to
it as #(F, G) — 0.

Proor oF (ii). By definition, d,* = sup {9: sup, s g <; |T5(G)| < oo}.

We first show that T',(G) is bounded on {G: =(F, G) < d}onlyifd < 1 — 2-4,
To this end define
(2.5) F,, = (1 — 0)F + de,
where ¢, places mass 1 on x. Then writing out § k, ; dF, , we find that T(F, ,)
is the solution of

(26) S k(y, O)F(dy) = 1—_25—5 |:2k,,(x, 6) + (1 ¢ 0) sgn (x — 0)].,

The left-hand side of (2.6) is monotonically decreasing from 1 to —1 while the
right-hand side is monotonically increasing from —d(2 — d)/(1 — §)* to
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0(2 — 0)/(1 — 0)*. The solution(s) of (2.6) are bounded as |x| — oo if and only
if (2 — 9)/(1 — 0)* < 1. Hence d,* <1 — 2-4

To prove the reverse inequality, fix z(F,G) < d < 1 — 2-, We will show
that solutions to 45(f) = 0 are bounded by a constant independent of G. Again
using the fact that z(F, G) = A(F, G), we have

| G (91:_%) Gldy) 2 §ei-r [ F (”——7,;@1 — 3) — 3Gy

where x, = F~(0) + 0. The integrand is nonincreasing in y, and G is stochas-
tically smaller than F, on the range of integration, where

Fy(y)=10 y <X
=F(y—0)—3 x,,gy<?:il_ﬁ—_ﬁ£‘z
=1 ygo_(l_ﬂ)xa.

B

Hence

o(1=2) oy = st £ (L= - 3) o] ey,

which converges to (1 — 0)* as § — +oco. The same computation on § (G(6 —
(1 — B)y)/B)G(dy) shows 44(8) is bounded above by a function of F and # which
tendstol — 2(1 — 0)* < Oas @ goes to +oo. Thus any solution T,(G) is bounded
above by a constant independent of G. Similarly T,(G) is bounded below, and
g =1 — 274

PRrOOF OF (iii). Define 2, ,(0) = § k. ,(y, 0)F, ,(dy) where k, , is the kernel cor-
responding to (2.5). Then 4, ,(6) = (1 — 0)* { kx(y, O)F(dy) + 20(1 — d)kp(x, 6) +
0% sgn (x — 0) has strictly negative derivative for all 4 near T',(F) under the given
conditions on F. Moreover the solution of 2, ,(f) = 0, namely 6 = T(F, ,), is
near T,(F) for all sufficiently small 5. Hence by the mean value theorem

Tﬂ(Fz,a) = —lz,a(o)/'z;,a(TTﬂ(Fz,a))

where y = r(x, 0) satisfies 0 < y < 1. The result now follows easily from the
definition

Q,(x) = lim,, Tﬂ(Fz,a)a— TF)

The arguments for (i)—(iii) when 8 > 1 are analogous to those just given for 0 <
B < 1 and are thus omitted. The proof of (iv) is trivial.

3. Consistency and asymptotic normality of Ty(F,). The sequence of estima-
tors {TF(F,,)} is strongly consistent for 7,(F) whenever the latter is the unique
solution to (1.2). This follows from the continuity of 7', at F (Proposition 2.1(i))
and the corollary to Glivenko-Cantelli that 2(F,, F) converges to 0 almost surely.
The asymptotic normality of {T',(F,)} is obtained in the following proposition.
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PRrOPOSITION 3.1. Fix 0 < B # 1. Assume F has square-integrable density f and
that (1.2) has unique solution T (F). Then n}[Ty(F,) — T,(F)] is asymptotically
normal with parameters (0, E;Q (X)), where Q(x) is given by (2.2).

Proor. Assume without loss of generality that T,(F) = 0. Let T, (F,) and
T,(F,) denote the infimum and supremum of the interval of solutions to 4, (f) =
0. We will show that ntT,(F,) is asymptotically normal (0, E;Q,(X)); an iden-
tical argument for n*T,(F,) leads to the same asymptotic distribution, completing
the proof.

First note that P{ntT,(F,) < x} = P{4; (x/n*) < 0}. It follows from the results
in Hoeffding (1948) that ni[2, (x/nt) — 2z(x/nt)] is asymptotically normal with
parameters (0, 4 Var, k,(X, 0)). Moreover, nd;(x/nt) = § ni[kg(y, x/nt) — kg(y,
0)]F(dy) converges to xE, k;(X,0) by the dominated convergence theorem
(where again, k;/(y, ) = (3/30)ks(y, 6)). Therefore P{n:T,(F,) < x} converges
to O(xEg[k; (X, 0)}/2(Var, kz(X, 0))}), and reference to (2.2) completes the
argument.

4. Examples of estimator efficiency. The estimators defined by T, have been
shown to possess good robustness properties and it is natural to ask what pre-
mium is being paid in efficiency. The asymptotic relative efficiency of 7', relative
to maximum likelihood estimators is sketched in Figure 4.1 as a function of g

Var (MLE)/Var Tg

10 ‘ Cauchy
Double Exponential
0-8
Normal
06
0-4}
0-2f
1 1 1 1
[0} 05 10 15 2:0 B

FiG. 4.1.

for the three cases (a) normal, (b) double-exponential, and (c) Cauchy. The
Hodges-Lehmann estimator T, is clearly the most efficient of this class for
normal data; the median T, is the most efficient in the double-exponential case;
and for the Cauchy distribution T, has efficiency approaching one as § increases
without bound. '
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A value of 8 near .9 maximizes the minimum efficiency over the three densi-
ties. This maximin efficiency is approximately .73 which should be compared
to the value .82 obtainable by using the best trimmed mean (Crow and Siddiqui
(1967)). On the other hand, if only the wider tailed distributions are considered,
the best trimmed mean has maximin efficiency .88 while 7', attains .94.

In order to gain some insight into the finite sample behavior of T, Monte
Carlo estimates of the variances were found for sample sizes n = 10, 20, and 40
and selected values of 3. These are listed in Table 4.2 together with the asymp-
totic variances.

TABLE 4.2
Estimates of n x Var Tg(Fy)

" . B

.5 .6 7 8 .9 1.0 2.0 4.0 6.0
(a) Normal.
10 1.06 1.07 1 1.20 1.30 1.37 (1.38)* 1.55 1.62 1.65
20 1.06 1.06 .1 1.20 1.34 1.46 (1.47)* 1.54 1.63 1.70
40 1.05 1.06 1.10 1.20 1.34 1.52 1.55 1.57 1.63
© 1.05 1.06 1.10 1.20 1.35 1.57 1.53 1.54 1.54
(b) Double-Exponential
10 1.57 1.54 1.46 1.41 1.40 1.45 (1.45) 1.55 1.66 1.69
20 1.54 1.50 1.37 1.32 1.25 1.37(1.33) 1.42 1.51 1.51
40 1.40 1.36 1.34 1.23 1.17 1.23 1.25 1.33 1.38

1.33 1.31 1.25 1. 1.07 1.00 1.16 1.18 1.18
(c) Cauchy
10 11.2 7.8 5.9 5.8 4.5 3.33(3.36) 3.15 3.50 3.50
20 4.5 4.5 4.1 3.8 3.3 2.78 (2.79) 2.50 2.70 2.85
40 3.8 3.7 3.5 3.4 3.1 2.66 2.18 2.39 2.41
) 3.29 3.25 3.14 2.9 2.73  .2.46 2.00 2.00 2.00

* Values in parentheses are exact to two decimal places.

The normal variance estimates were obtained indirectly (see Hodges (1967))
through estimates of Var (T, — X) based on 4000 samples. Double-exponential
estimates were based on 5000 samples; Cauchy estimates on 5000 antithetic
samples. The estimated standard error divided by the estimate was calculated
for each table entry and found to be largest for a sample of size 10 from the
Cauchy distribution and 8 < 1, where it was approximately .05. In all other
cases it was less than .025 and for most estimates less than .01. Several remarks
are in order.

1. The asymptotically most efficient member of this class for normal data,
the Hodges-Lehmann estimator, appears to retain its primary position for finite
samples. :

2. For small samples of exponential data T'; appears to be more efficient than



A LOCATION ESTIMATOR 785

the asymptotically efficient median. In fact the lowest value of n X variance
for n = 20 among the 65 estimators considered in the Princeton study (1971) is
1.29 compared with 1.25 for T ,.

3. For samples of size n = 10, 20, and 40 from the Cauchy distribution, T,
does about as well as any of the Princeton study estimators. As mentioned
previously, larger choices of 8 will yield asymptotic efficiency as close to 1 as
desired. On the other hand, if we fix n and let § tend to infinity, T,(F,) becomes
T\(F,), the sample median, which is not efficient in this context. The apparent
conflict is resolved by letting 8 = §, approach infinity with n. Then the statistic
defining T, (F,) is of the form

4.1) nap (0) =2 N 30c; Pp (X; — 0, X; — 0) + 2, 5gn (X; — 0).

When 8, grows faster than n, the first term in (4.1) is of smaller order than
the second, and the latter sign test statistic leads to the sample median. When
B, is of smaller order than n, the second term is negligible relative to the first.
Moreover, the projection of the first term onto the linear space spanned by
functions of the form 33, #,(X, — 6,) (as required in the proof of asymptotic
normality), is 2 33, kx(X;, 6,) with k; given by (2.1). As g, — oo, this is equiva-
lent to (1/8,) X.(X; — 0,)f(X; — 6,) which is the statistic defining the maximum
likelihood estimator for the Cauchy distribution. Thus for 8, growing to infinity
at any rate less than n, T, (F,) will be asymptotically efficient for the Cauchy
distribution. The tabled values show that the optimal 8, for a given n may
actually be quite small; e.g., the optimal 8,, is about 2.
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