The Annals of Statistics
1977, Vol. 5, No. 4, 772-778

ADMISSIBILITY OF LINEAR ESTIMATORS IN THE ONE
PARAMETER EXPONENTIAL FAMILY

By MALAY GHOSH AND GLEN MEEDEN
Iowa State University

For estimating the mean in the one parameter exponential family with
quadratic loss, Karlin (1958) gave sufficient conditions for admissibility of
estimators of the form aX. Later, Ping (1964) and Gupta (1966) gave suffi-
cient conditions for admissibility of estimators of the form aX + b for the
same problem. Zidek (1970) gave sufficient conditions for the admissibility
of X for estimating an arbitrary piecewise continuous function of the
parameter, say y(6), not necessarily the mean. In this paper it is shown
that Karlin’s argument yields sufficient conditions for the admissibility of
estimators of the form aX + b for estimating y(f). The results are then ex-
tended to the case when the parameter space is truncated.

1. Introduction. Let X be a real valued random variable with probability
density function p,(x) = B(6) exp(6x) with respect to some o-finite measure z.
Also, €0 = {6: p'(f) = § exp(6x) du(x) < oo}. From the convexity of the
exponential function, © is an interval. The upper and lower end points of ©
are denoted respectively by # and ¢, which may or may not belong to ®. The
problem is the estimation of 7(6), some specified piecewise continuous function
of § with squared error loss. Conditions are stated under which linear estimators
of the form aX + b are admissible for estimating 7(6).

When y(0) = E,(X) = —p'(8)/8(6), sufficient conditions for admissibility of
estimators of the form aX were given by Karlin (1958). Implicit in Karlin’s
argument is the fact that the estimator is essentially generalized Bayes with re-
spect to some (possibly improper) prior distribution; sufficient conditions on the
tail behavior of the prior density guarantee the admissibility of estimators. A
different proof using the Cramér-Rao inequality was given by Ping (1964) under
the same sufficient conditions.

Zidek (1970) provides sufficient condltlons for admissibility of X in estimating
7(0) using Stein’s (1965) technique of aproximating improper priors by proper
ones. Unlike Karlin, Zidek needs an explicit condition to guarantee a formal
Bayes representation of the estimator, that is, its representation as the ratio of
two integrals. This extra condition is not necessary. Examples 1 and 2 in Sec-
tion 3 illustrate that an estimator may be admissible, even though Zidek’s con-
ditions are not met.

The main theorem of the paper is proved in Section 2 showing that Karlin’s
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technique can be used to prove the admissibility of linear estimators for esti-
mating 7(f), not necessarily the mean. Several applications of the theorem are
considered in Section 3. Finally, in Section 4, the argument is modified to in-
clude cases where the parameter space is truncated, thereby getting a generalized
version of a theorem of Katz (1961).

2. Admissibility of linear estimators. First, a heuristic argument is given
leading to a (possible improper) distribution with respect to which aX + b is gen-
eralized Bayes for estimating y(f) (if certain integrals exist), under squared error
loss. The prior distribution is assumed to be absolutely continuous with respect
to Lebesgue measure with a Radon-Nikodym derivative, say II(#). Then with
the notations @ = (2 4+ 1)7%, b = a(2 4+ 1), (2 = —1), h(0) = 7(0)B(O)II(H),
hy(0) = B(6)I1(6), one has the formal representation

(2.1) (x4 a)(2 + 1)t = § exp(Ox)h,(0) db]§ exp (0x)hy(0) dO .
Rearrangement of terms and integration by parts now lead to
2.2) (A + 1) § exp (0x)hy(6) db

= —{ exp(Ox)h;/(0) df + a § exp(Ox)h,(6) db .
The uniqueness property of Laplace transforms now gives (1 + 1)i,(0) =
—hy'(0) + ahy(0), or h/(0)/hy(0) = a — (4 + 1)y(6). Integrating, it follows that
(2.3) T(6) = p~'(6) exp[ad — (2 + 1) §47(r) ],

where d is an interior point of ©.

The following theorem shows that the tail behavior of II(#) essentially guaran-
tees admissibility of (X + a)/(2 + 1).

THEOREM. Let py(x) = B(0) exp(0x) be the density of the exponential family wrt
the o-finite measure p; 6 € © = {0: B~'(0) = | exp(0x) du(x) < oo}. Let 7(0) be
some specified piecewise continuous function to be estimated with squared error loss.
It is also assumed that ! y(0) d6 exists for all [a, b] in ©.

If 11(0) defined in (2.3) satisfies
(2.4) {2I-}6)d6 - o as u—0, (o II-(0)df — 00 as u—4,
where § and 0 are the upper and lower end points of ©, and c is an interior point of
O, then (X + a)/(A + 1)(A # —1) is admissible for estimating y(6).

PRrROOF. Suppose (X + @)/(2 4 1) is not admissible. Then there exists some
0(X) such that

§2. [0(x) — 7(0)F'B(9) exp (6x) dp(x)
< §2. [ + )4 + 1) — 7(O)'B(6) exp(6x) du(x) ,

§7. [0(x) — (x + @)/(& + 1)B(6) exp (6x) dpu(x)
(2.5) < 257, [(x + @) + 1) — 6(x)]
X [(x + @)X + 1) — £(6)]8(6) exp (6x) du(x) ,

or
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for all 6 € O, the inequality being strict for some § € ©. Next, it is shown that
0(x) = (x + @)/(2 + 1) a.e. (¢), and the theorem will follow by contradiction.

To this end, first multiply both sides of (2.5) by II(#) (defined in (2.3)), and
then integrate wrt ¢ over (a, b), (a, b) being some proper subset of ©. Then, on
reversing the order of integration on the RHS, one gets

§o [§7 [6(x) — (x + @)/(2 + 1)['B(6) exp(9x)dp(x)]TL(6)do
(2-6) S 2% [(x + @)/(2 4 1) — 9(x)]
X {§e (x + @)/(2 + 1) — 7(9)) exp[(x + a)0 — (2 + 1)
X $ar(r) dr] 6} dp(x) .
Now,
el(x + )/ + 1) — r(O)] exp[(x + @) — (2 + 1) {3 7(?) dr] db
@n = (A + 1)~[exp{(x + a)b — (2 + 1) 3 7(1) dr)
—exp{(x + @)a — (2 + 1) §ir(1) dr}] .
Using (2.7), the notation T(#) = {=,, [d(x) — (x + a)/(2 4+ 1)]B(0) exp(6x) du(x),
and Schwarz’s inequality, one finds that
{2 T(6)IL(6) db
(2.8) < 202 4 17{I() §2. [3(x) — (x + @)/(A + 1)] exp(bx)B(b) diu(x)
+ I(a) 2 [0(x) — (x + @)/(2 + 1)| exp(ax)B(a) dp(x)]
< 2|2 + 1|7II(b)T¥(b) + II(a)T*(a)] .
It suffices to show that T(6) = 0, for all @, since then d(x) = (x + a)/(2 + 1)
a.e. (#). This is accomplished by considering the following two cases:
I. liminf,_; II(6)T%(b) = A (> 0).
Fixa, and let H(b) = (! II()T(6) d(6). Then (2.8)leads to H(b) < K[H'(b)II(b)]%,
where, in the above and in what follows, K is a generic constant. Then, choos-
ing b, < b, and H(b,) > 0, one gets
$i2 [H'(6)/H*(b)] db = K {32 II7*(b) db
or,
H'(b) — H'(b,) 2 K (B TI-%b)db > 0 as b,— 0 from (2.4).
But H(b,) > 0, so that the left-hand side remains bounded, a contradiction.
II. lim inf,_; II(6)T#(b) = 0.
Let G(a) = (¢ TI(6)T(6) d6. Then, G(a) < KII*(a)(—G'(a))t. Hence, if a, is such
that G(a,) > 0, then, taking a, < a,,
{20(—G'(a)/G*(a))da = K {20 II-Y(a) da — as a,— 0.
But LHS = G-Y(a,) — G~'(a,) which remains bounded. Hence G(a) = 0 for all
a which implies T(§) = 0 for all # € ©. Hence, the theorem.
The above theorem includes Ping’s (1964) theorem as a special case when
7(0) = EfX) = —p'(0)/B(6). Note that in this case, choosing d such that 3(d) =

1, II(6) = exp(alf — (2 + 1) §4(—B'(¢)/B(?) d)g~(8) = p*(6) exp(af), and con-
dition (2.4) reduces to Ping’s condition.
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3. Examples. In all the examples considered, the loss is squared error.

ExAMPLE 1. Suppose X ~ Binomial (n, exp(6)/(1 + exp(f))), 0 € (— o0, ).
(Note that the distribution is suitably reparametrized to write the pdf in the form
given in this paper.) The parameter of interest is y(6) = exp(26)/(1 + exp(6))’,
and the estimator is X/n. Then, from (2.3),

@.0)  TY0) = (1 + exp(6)) " expin 14 [exp(20)/(1 + exp(1)'] dr)
= C(d) exp(—n exp(0)/(1 + exp(6)) ,

where C(d) is a positive constant depending on 4. Since II-(d) —» C(d) or
C(d)exp(—n) as § — —oo Or oo, (2.4) is satisfied, so that X/n is an admisssible
estimator of y(6).

Note however that in this case, Zidek’s (1970) condition regarding the repre-
sentation of the estimator as the ratio of two integrals is not met. To guarantee
admissibility, Zidek needs, in addition to (2.4),

3.2 exp(x6 — n§5r(t)d) >0,
as § — +oo for all x =0,1, ---,n. But the experession involved in (3.2) is
exp(fx)(1 4 exp(#))~"II(f) which at x = 0 tends to C-'(d) as § — — oo, and at

x = n tends to C~'(d) exp(n) as § — oo so that (3.2) is not satisfied. This point
is illustrated with another example.

ExAMPLE 2. Suppose X ~ Poisson (exp(f)), where § € (—oo, o). The pro-
blem is estimation of y(f) = exp(gf) for g > 1, while the estimator is X. In this
case, from (2.3),

(3.3) I-(6) = C(d) exp[—exp(6) + g~ exp(g0)] ,

where C(d) is once again a positive constant depending on 4. In this case,
II-*(f) — oo or C(d) according as § — oo or —oco. Thus, (2.4) is satisfied, and
so X is admissible for estimating y(f). However, the expression involved in (3.2)
is exp(6x — exp(6))I(#) which at x = 0 tends to C~(d) as § » — oo, so that

(3.2) is not satisfied.
Three more examples are presented to illustrate the theorem.

ExAMPLE 3. Suppose X has a general power series distribution (see Roy and
Mitra (1957)) with pdf of the form

3.4 fo(x) = a, exp(0x)8(0) , x=0,1,..., fe(—o0, ),

where 8-1(0) = X7, a, exp(fx) (assumed to be finite). Roy and Mitra (1957)
have considered the problem of minimum variance unbiased estimation of
exp(g0) for all positive integers g. For g > 1 typically such estimators are non-
linear estimators. In considering admissibility of estimators of the form (X 4
@)/(2 4 1), as in the case of Example 2, one can readily compute from (2.3),

II7(6) = C(d)(0) exp[—ab + (2 + 1)g~* exp(96)],
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and a sufficient condition to guarantee admissibility is (2.4) with § = oo, 8 =
—oo. On returning to the important special case of a Poisson distribution one
finds that for g > 1, any estimator (X + @)/(4 + 1) with 2 > —1, a = 0 is ad-
missible for estimating exp(gf), while any estimator (X + a)/(A2 + 1) with 2 >
0, @« > 0 or 2 = a = 0 is admissible for estimating exp(6). The latter conforms
with Gupta’s (1966) result concerning the estimation of E,(X) = exp(f).

ExAMPLE 4. Suppose X ~ N(6, 1) where ¢ is real. Then 8(6) = exp(—36?),
7(0) = 6°. Taking d = 0 (without loss of generality), II(f) = exp(af + 36* —
A+ 1)8). So for any 2> —1, {*II-%(#)dd > o0 as u— +oco and
{2 II7Y(0) d6 — o as u — —oo. Thus any estimator (X + a)/(2 + 1), a real,
4 > —1 is admissible for estimating 6°.

The conditions are not, however, met if 2 < —1. It is easy to see that in
this case the estimator (X + a)/(2 + 1) goes in the opposite direction as X, and
we can expect the former to be inadmissible for estimating 6°. In fact, it is
dominated by —(X 4+ a)/(2 + 1).

It can be easily seen in the normal case that the above conclusion holds when
7(0) is any odd-degree polynomial in 6, the coefficient of the highest power of
6 being positive. The conclusion is not, however, true for an even degree poly-
nomial. To see a simple example, let y(f) = 6°. Then, II(§) = exp(afd + 36* —
3(2 + 1)6°). Then for 2 > —1, the condition (¢ II-*(0)df — oo fails as u —

— oo, while for 2 < —1, the condition §* II-*(§) df — oo fails as u — oo.

EXAMPLE 5. Againsuppose X ~ N(0, 1), 8(6) = exp(—46*). Weare interested
in finding sufficient conditions on y guaranteeing X as an admissible proper Bayes
estimator. Thus, we require conditions under which II is a proper distribution
or equivalently g(f) = exp[—{¢ (7(f) — ¢) dt] is integrable. It is easily seen that
if for some constant M > 0, and for some ¢ > 0, y(f) = ¢t + (1 4 )t fort > M,
1@ =t+4+ (1 +¢ttfor t < —M and y is bounded on [— M, M], then g() is
a proper prior. On the other hand a sufficient condition for X to be an admis-
sible estimator of y is that for some constant M > 0, 7 is bounded on [ — M, M],
r@)=t—rttfort > M, r(t) <t — t'fort < —M. Asaspecial case, one gets
the admissibility of X in estimating y(6) = (1 + K/(1 + 6%), a fact mentioned
in Blyth (1974). .

From the above theorem and examples, one might end up with the misleading
conclusion that for the one parameter exponential family, any generalized Bayes
estimator with respect to some improper prior satisfying (2.4) type conditions is
admissible. This is however, not true. To see why this is so, note that a major
step in the proof of Theorem 1 is the reduction (2.7). In general if 6%(X) is a
generalized Bayes estimator with respect to a prior II(6) which satisfies (2.4),
and p,(x) is a density of X (exponential or not) with respect to some o-finite
measure y#, then defining

(.5)  M(x;a,b) = [3[0%(x) — 1(8)]po(x)IL(6) db/[ p(x)TL(b) + pu(x)T(a)] ,
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the condition E,M*(X; a, b) < K, E,M*(X; a, b) < K uniformly in a and b guaran-
tees the admissibility of d*(X) for estimating y(f) when the loss is squared error.
The proof repeats the arguments of Theorem 1. This fact was also noticed by
Katz (1961), who, however, set the stronger condition [M(x; a, b)| < K, uni-
formly in @ and b.

It is also possible to prove Theorem 2.1 using a Cramér-Rao type inequality
(see Blyth (1974), (8), page 469). This was essentially used by Ping (1964)
in proving admissiblility of estimators of the form aX + b in estimating E,(X) =
—pB'(8)/8(6). 1t is also clear from there that the Cramér-Rao technique presup-
poses the knowledge of II(#). However, once II(f) is known, Karlin’s (1958)
method seems to be much more intuitive than the Cramér-Rao method in as
much as the former imitates the admissibility proof of Bayes estimators.

4. Admissibility estimators when the parameter space is truncated. Assume
as before that X has an exponential density p,(x) with respect to some o-finite
measure g, but now 6€0, = {0|6 = a} C ® = (— 0, ), a being an intetior
point of ©. For simplicity, take a = 0. For estimating y(6), using the same
prior II(6) as before, one is led to the generalized Bayes estimator (X), where
3(x) = (x+@)(A+1)+9(x), 9(x) = (A+1)7 exp(—(A-+1) §3 7(2) di)/ 7 exp{(x0+
af) — (2 4 1) {4 7(t) dt} d6 (assuming the appropriate integrals to exist) being
the “correction factor” due to the truncation of the parameter space. Once again,
an explicit condition similar as (3.2) is not needed. An argument similar to the
proof of Theorem 1 establishes the admissibility of 6(X) for estimating 7(6).
Also this extends a result of Katz (1961) who proved the admissibility of ¢ in
estimating 7(6) = E, X using both Karlin’s (1958) and Blyth’s (1951) techniques.
Note that in the present case, the condition (2.4) can be simplified to
{2 II-Y(#) d9 —oo as b — oo, since the parameter space is truncated.
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