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Let A=, 4n), 4 £ +++ < 2n, and X = (xy, -++, Xx). A function
£(4, x) is said to be decreasing in transposition (DT) if (i) g is unchanged
when the same permutation is applied to 2 and to x, and (ii) g(a, x) =
&(2, x”) whenever x’ and x differ in two coordinates only, say i and j, (x; —
xj) - (i —j) 2 0, and xi/ = xj, x;/ = x;. The DT c¢lass of functions includes
as special cases other well-known classes of functions such as Schur func-
tions, totally positive functions of order two, and positive set functions,
all of which are useful in many areas including stochastic comparisons.
Many well-known multivariate densities have the DT property. This paper
develops many of the basic properties of DT functions, derives their pre-
servation properties under mixtures, compositions, integral transforma-
tions, etc. A number of applications are then made to problems involving
rank statistics.

1. Introduction and summary. In this paper we study the concept of functions
decreasing in transposition (DT). The DT concept allows us to make stochastic
comparisons among multivariate distributions. In the bivariate case, a function
f(%41, 435 x,, x,) is said to have the DT property if (a) f(4;, 43 X1, X;) = f(2y, 413 X5, X;)
and (b) 4, < 4, x; < x, implies that f(4,, 4;; x,, x;) = f(4,, 435 x5, x,); i.e., trans-
posing from the natural order (x,, x;) to (x;, x,) decreases the value of the func-
tion. One deals with precisely such comparisons in multivariate ranking pro-
blems.

This paper explores some of the basic aspects of DT functions, their preservation
properties and applications in ranking problems. In future papers we propose to
study other concepts such as DT families of distributions, other preservation
theorems, and their applications in statistics. The results of the present paper
generalize some of those of Proschan and Sethuraman (1977) and Nevius, Pro-
schan and Sethuraman (1977) and help unify the area of stochastic comparisons.
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We now present a summary of the rest of the paper. In Section 2 we show
that the DT class of functions includes as special cases other well-known classes
of functions such as Schur functions, TP, functions, and positive set functions,
all of which are useful in many areas including stochastic comparisons. Section
3 deals with various operations under which the DT property is preserved.
Notable are the composition theorem (Theorem 3.3) and the preservation theo-
rem (Theorem 3.7). These theorems are then used to show that many of the
common multivariate distributions have DT densities. Section 4 gives appli-
cations to rank statistics.

2. Definition and basic properties of functions decreasing in transposition.
Let S be the group of all permutations of {1, 2, ..., n}. A member of S will be
denoted by # = (=, - -, m,). The product operation is the composition of =,
wesS;ie.,

o mw'(i) = m(x'(i)), i=1,...,n, where ='(i)=n=/.
Thus S is a noncommutative group. The identity element is e = (1, - - -, n).

Let = and =’ be two members of S such that #’ contains exactly one inversion
of a pair of coordinates which occur in the natural order in =; e.g.,

1[:(7[1’...’n'i,...’ﬂj’..-’ﬂ”) and
zl:(ﬂl’---’ﬂj’.--,ﬁi,...’f[”),

where i < jand n, < n;. We say that =’ is a simple transposition of zr; in sym-
bols, # >txn’. Note thatw >tz =z >tx’'~L.

Let = and =’ be two elements in S such that there exists a finite number of
elements #°, %, - .., ¥ in Ssatisfyingw = x° >tat >t ... >° wt ==x';ie.,
is obtained from z by a finite number of simple transpositions. We say that z’
is a transposition of =.

Note that the elements of S are partially ordered by transposition.

We say that a function f from S into R* is decreasing in transposition (DT) on
S if # >*x’ implies that f(zr) > f(=’) for 7, #’ in S. Note that if =’ is a trans-
position of zr and f is a DT function, then f(z) = f(=’).

The following are some examples of DT functions on S, as can easily be veri-
fied. See also Lemma 2.2. Throughout the paper, the indices of sums and prod-
ucts range from 1 to n unless otherwise indicated.

I fi(m) = —(z, + -+ + =), where | < k < n;

2. fm) = 2 aym;, where g, < -+ < a,;

3. fim) = II 9(4;, =;), where 2, < ... < 4,, and g(4, i) is totally positive of
order 2 (TPy) for —c0o < A< c0andi =1, -..,n,i.e., g(4, 1) is a nonnegative
function such that —oo < 2, < 4, < o0, 1 £ i, < i, £ nimplies that g(2,,i;)9(2,,
Iy) — 9(4 L)9(4; 1) = 0;

4. f(m)y= X 9(4, m;), where 2, < ... < 2,, and g(2, i) is a positive set func-
tionji.e., —co < 4, < 4, < o, 1 £ i, < i, < nimplies that g(4,, ;) — g(4,, i,) —
9(4s 1) + 9(4y, 1) = 05
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5. fm)=1 if fix)=a

=0 if f(m)<a,
where fis a DT function on S.

Thus far we have considered functions of one vector argument. Next we con-
sider functions of two vector arguments. Let g(4, x) be a function from R* into
R'. Let 40 denote (2., - - -, 4, ), where & is a permutation in S. We say that
9(A, X) is permutation-invariant if

g(Aom, X o) = g(4, X)

for all ¢ S; i.e,, applying a common permutation to both vector arguments 2
and x leaves the function g unchanged.

Let A, M be subsets of R*. We say that g(4, X) is decreasing in transposition
(DT) on A" x M* if

(i) g(4, x) is permutation-invariant, and

(i) 2eA™, xeM", 1, < ... <2, x, < --- £ x,, ® >'x’ implies that g(2,
X om) = g(k, X o ).

(We shall see in Lemma 2.1 that 2 and x play dual roles.)

Note that condition (ii) just above may be replaced by the equivalent condi-
tion:

(ii") Define f, (7) = g(A, X o &), where 4, < ... < 1, and x;, < --- £ x,.
Then f, () is DT on S.

The following are some examples of DT functions on R™. This can be easily
verified from Lemma 2.2. We need some definitions before we present Example 6.

DEeFINITIONS. Let x;;; = - -+ = xg,; be a decreasing rearrangement of the co-
ordinates of vector x. Let x and x’ satisfy:
2 2 DX, i=1.,n—1

2ia1 X = 2iea X -

Then x is said to majorize x’.

A function f from R* into R® is said to be Schur-convex (Schur-concave) if x
majorizes x’ implies f(x) = (<) f(x).

6. 9g4(4, X) = h(A — x), where k is a Schur-concave function on R*: g4 (4, xX) =
h(2 + x), where £ is a Schur-convex function on R*,

7. 94, x) = [ ¢(4;, x;), where ¢(4,x) is TP, in —c0 < 2 < 00, —o0 <
x < oo. Note that a converse also holds: if a DT function g(4, x) is of the
form TT ¢(4;, x;) with ¢ > 0, then ¢ must be TP,.

8. 944, x) = 3 (4, x;), where ¢ is a positive set function.

We can also define DT functions on R*. A function / defined on M* is said
to be decreasing in transposition (DT) on M* if for everyx e M* withx, < ... < x,
and for every pair &, =’ € S satisfying # >* ', we have

h(x o ) = h(x o ') .
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Note that the corresponding function defined by
fu(®) =h(xom) is DT on §.

It is clear from the definitions above that DT is essentially a property of func-
tions on S. In most situations we can put A = R' = M, though in some cases
like Theorem 3.7 and in some applications, one has functions defined only on
A" X M, where A and M are proper subsets of R'. Thus it becomes more
convenient for many theoretical and practical applications to formulate the DT
property for functions on R* and on R*. We summarize the relationships among
the various domains in the following lemma. From now on we put A = M = R,
unless some essential generality is to be gained by doing otherwise.

LemMA 2.1. Let g(A, X) be a permutation-invariant function on R*. Define

(a) g*(x, ) = g(4, x) for , xeR",
(b) A (x) =9(4,x)forxeR", 2, < -+ £ 4,
©) fi(®)=9R,xom)for ;i < - - 2, < - ZXx,,andweS.

Then the following statements are equivalent.

(1) g is DT on R*.

(2) g* is DT on R*™.

(3) h,is DT on R" for each A such that 2, < --- < 2,.

(4) fi.is DT on S foreach Aand x suchthat 4, < --- < 2, andx; < --- < x,.

The equivalences follow immediately from the definitions of the various types
of DT.

The next lemma shows that the concept of a DT function yields as special
cases such well-known and useful concepts as (a) Schur-concave and Schur-
convex functions, (b) total positivity of order 2, and (c) positive set functions.

LemMA 2.2. (a) Let g(4,x) = h(2 — Xx). Then g is DT on R*™ if and only if h
is Schur-concave on R".

(b) Let g(4, x) = h(A + Xx). Then g is DT on R™ if and only if h is Schur-convex
on R™. :
(c) Let g(4,x) =[] h(4;, x;). Then g is DT if and only if h is TP, in 2 and x.

(d) Let g(A, x) = 3 h(Z;, x;). Then g is DT if and only if h is a positive set func-
tion.

Proor. We give the proof of (a) only. The rest are proved similarly. Let
A< handx, < x, < .-+ < x,. Nowg(R,x,,%,, -+, X,) —g(4, X5, Xy, - -+, X,) =
h(Ay — X 23 — Xgy vy Ay — X,) — B(A) — X3y 2y — Xy -+, A, — Xx,) and (4; — X,,
A, — x,) majorizes (4, — X,, 4, — X,). This shows that g is DT if and only if 4 is
Schur-concave. []

3. Preservation properties of functions decreasing in transposition. In this
section we show that the DT property is preserved under a number of basic math-
ematical and statistical operations.
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We begin with the following lemma which is sometimes useful in determining
whether a function is DT.

LeEmMA 3.1. Let g(4, xX) be DT on R*™. Let f and h be permutation-invariant and
nonnegative functions on R*. Then k(2, X) = f(4)9(4, X)h(x) is DT on R*.

Proor. This lemma follows immediately from the definition of a DT func-
tion. [J

The DT property is preserved under mixtures; stated formally:

THEOREM 3.2. Let f, be DT on S and integrable with respect to u, a positive
measure. Then f(x) = | f.(x) dp(a) is DT.

The proof is obvious and hence omitted.

A similar preservation under mixtures property holds for DT functions g(4, x)
on R* and DT functions 4(x) on R*.

We will find very useful the fact that the DT property is preserved under com-
position; stated formally:

THEOREM 3.3. Letg,be DTon R, i =1,2. Letg(x,z) = § --- § 8:(X, ¥)9(Y>
z)do(y,, - -+, y,) be well defined, where § , do(y) = §, do(y o &) for each permuta-
tion w € S and Borel set A in R*. Then g(x, z) is DT on R*.

Proor. That g(x, z) is permutation-invariant is obvious.
To complete the proof, it will suffice to show that g(x, z) — g(x,2’) = 0 for
NS o %2 < 2,2 =2,,2) =z,and 2/ =z, fori =3, ..., n. Write
9(x,2) —9(%, Z) = § - -+ §[0:(X3 Y1 Yoo =+ )9a(V1s Yoo ++ 3 20 2y )
— G1(X5 Y1 Yo+ )9a(Y1> Yo 05 2 215 -+ 2)] dO(Y)
where the . . .” indicates standard ordering of the omitted arguments. Breaking

up the region of integration into the two regions y, < y, and y, = y,, and making
a change of variable in the second region yields:

9%, 2) — g(x, 2") = § - -+ §,,), [0:(X5 y1s Yo =+ 2 )9a(V15 Yoo+ +5 20 2y - )
— g1(X;}’1,)’g, .. ’)gz(}’v}’z, ey Zyy Zyy e )
+ gl(x;yg,yl, . ‘)ga(}’z, Vir 005 2y Zgy v+ )
— 01X Y Y15+ 2)95(Yas Y1» ++ 05 Zs 21y - - +)] (V)
= § Gy [9:(X5 ¥)95(Y5 2) — 94(X; ¥)9u(Y5 205 25 - - +)
+ 920X Yas Yis - - )95 230 25 0+ ¢)
— 0:(X5 Vs Y1 -+ +)9x(Y> 2)] da(y)
by virtue of the permutation-invariance property of g, and of ¢. The integrand
may be rewritten as
[9:(%, ¥) — 606 Yo Y5 - )[9:(Y> Z) — 9x(¥ 2 25 -+ )] -

Since g,(g,) is DT, the first (second) square bracket is nonnegative. Thus the
integrand is nonnegative, and so g(x, z) — g(x,z’) = 0. []



FUNCTIONS DECREASING IN TRANSPOSITION 727

In a similar fashion, we may prove analogous composition theorems for DT
functions on S and on R"™:

THEOREM 3.3'. Let f, and f, be DT functions on S. Define
(&) = Taes [l o m () .
Then f is a DT function on S.
THEOREM 3.3"”. Let h, and h, be DT functions on R*. Suppose that
h(m) = § -+ § hy(X o ®Y)hy(x) dx, - - - dx,
is well defined for each & in S. Then h is a DT function on S.

An immediate application of the composition theorem (Theorem 3.3) and
of Lemma 2.2(a) is the following corollary:

CoRrOLLARY 3.4. Let h, be Schur-concave on R*, i=1,2. Let h(x)=
§ .-« § (X — Y)h(Y) dy, - - - dy, denote the convolution of h, and h,. Then h is also
Schur-concave on R".

Corollary 3.4 is equivalent to the main result, Theorem 2.1, of Marshall and
Olkin (1974).

Given a multivariate density f(4, X) with parameter vector 4, let F(4, x) denote
the corresponding distribution function and F(4, x) denote the joint survival
probability {7 --- § f(4,y)dy, --- dy,. Then the next corollary shows that
both F(4, x) and F(A, x) inherit the DT property from f(2, x).

COROLLARY 3.5. Let f(R, xX) be DT. Then F(, x) and F(&, x) are DT.

Proor. Write F(4,x) = § --- { f(4, Y)H(x — y) dy, - - - dy,, where H(u) =1
ifu;20,i=1,...,n, and 0 otherwise. Now f(4,y) is DT by hypothesis,
while H(x — y) is DT, as is readily verified. Thus F(4, x) is DT by the com-
position theorem. ,

Writing F(2, x) = § --- § f(4, Y)H(Y — X) dy, - - - dy,, we may prove F(2, x)
is DT by the same argument. []

The DT property of nonnegative functions is preserved under products; stated
formally:

THEOREM 3.6. Let g,(X, y) be a nonnegative DT function on R*,i = 1,2. Then
9(X, ¥) = 9:(X, ¥)gx(X, ¥) is DT on R*".

The proof is obvious and thus omitted.

A similar preservation under products property holds for DT functions f(z) on
S and DT functions k(x) on R".

To present the next preservation property of DT functlons we need an addi-
tional definition.

Let A and T be semigroups in R'. Let z be a measure on 7. It is said to be

invariant, if
MANT) = p(A+ %) 0 T)
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for each Borel set 4 of R' and each xe T. A measurable function ¢(4, x) inte-
grable with respect to y, defined on A x T" is said to have the semigroup pro-
perty with respect to p if, for each 4;, 2, in A" and x in T*, ¢(4, + 4,, X) =
§7n 8(41, X — Y)$(4y, ¥) dpe(yy) - - - dp(ya)-

The next theorem shows that the Schur-convex (Schur-concave) property of
functions is preserved under an integral transform through a DT function pos-
sessing the semigroup property.

THEOREM 3.7. Let f(X) be Schur-convex (Schur-concave) on R". Let ¢(A, X)
defined on A™ X T™ have the semigroup property with respect to an invariant measure
p and be DT. Let h(R) = §7x #(R, X)f(X) dp(x,) - - - du(X,) be well defined for A €
A*. Then h(R) is Schur-convex (Schur-concave).

Proor. We write

A+ 2)=(mod(A + A, X)f(X) dpe(xy) - - - dp(x,)
= Sran $R X — VPR, VI(X) di(ys) - - - dp(y) da(x) - - - dp(x,) -

Substituting z = x — y and using the fact that 4 is invariant, we obtain

h(A + 2) = §oa $(&, Y)[§2n (2, 2)f(2 + V) dps(2) - - - dp(2,)] dp(yy) - - - dp(ya) -

Since ¢(4, z) is DT in 4, z and f(z + y) is DT in z, y, the composition, appear-
ing within the square brackets above, is DT in 4, y from the composition theorem
(Theorem 3.3). By a second application of the same theorem, 4(2 + 2’) is DT
in 4,4, and hence A(4) is Schur-convex (Schur-concave), from Lemma
2.2b(a). O

The following special case of Theorem 3.7, equivalent to Theorem 1.1 of
Proschan and Sethuraman (1977), is obtained by restricting ¢(4, X) to be of the
form TT ¢(4;, x;).

CoRrOLLARY 3.8. Let f(x) be Schur-convex (Schur-concave). Let (2, x) defined
on (0, 00) X [0, o) obey the semigroup property in A with respect to an invariant
measure p on [0, oo), and be TP, in (2, x). Define

h() = § -+ § I1 ¢(A0s x)f(X) dpe(xy) - - - dpe(x,,) «

Then h(R) is Schur-convex (Schur-concave).

Interpreting ¢(4, X) as a multivariate density function with vector parameter
4, we may interpret Theorem 3.7 as stating that the Schur property of a function
on the sample space is transformed into a corresponding Schur property of the ex-
pected value of the function on the parameter space. This type of preservation pro-
perty is very useful in deriving inequalities and bounds for a variety of multi-
variate distributions, as shown in Proschan and Sethuraman (1977) and in Nevius,
Proschan and Sethuraman (1977).

By application of the next theorem, we may demonstrate that a large number
of well-known multivariate densities are DT.
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THEOREM 3.9. Let g(4, X) be a DT density of random variables X,, - - -, X,. Let
u(x) be a permutation-invariant function on R*. Then the conditional density g,(2, X)
of X given that u(X) = u is a DT density.

Proor.
gu(la x) = g(z’ x)[[u(x)=u]/h(2’ u) ’

where h(4, u) is the induced density of #(x). By hypothesis, g(2, x) is DT. Trivi-
ally, I, -, is permutation-invariant, as is the denominator. Thus by Lemma
3.1, the desired result follows. []

ExampLEs 3.10. The following multivariate densities are DT, as verified
following the listing. -

1. Multinomial.
‘ A

it
b

!

x,!

(& x) = NI ]

where 0 < 2;, x,=0,1,2, ..., i=1,..-,n, >4, =1,and )] x, = N.
2. Negative multinomial.
LN+ X x) N A%
2, X)) =_\V" T & *Jf] A)-V-Z=z Lt
9 ) T(V) {1+ 2 4) 311 X!
where 2, >0,x,=0,1,...,i=1,...,n,and N > 0.
3. Multivariate hypergeometric.
954, x) = I [24)/[%4] »
where 4, >0, x,=0,1, ..., 1 x, =N< X 4.
4. Dirichlet.
re+ > i) _ _
A,%x) =V T &t 0-1 -1
94 ) I‘(0)1‘[I‘(2i)( 2 %) T Xt
where 2, > 0,x, =20,i=1,.-..,n, Y x,<1,and 4 > 0.
5. Inverted Dirichlet.
Ap—
g4 x) = L0 L2 | E
FOTIIT@) (1 + X x)+=4
where 4, > 0,x,=20,i=1,...,n,and > 0.
6. Negative multivariate hypergeometric.
NI T(3 4) T(x, + 2)
94(4, X) = ¢
N = e n 4y T
where 2, >0, x,=0,1, .--,N, > x,=N,and N=1,2, ...,
7. Dirichlet compound negative multinomial.
04, x) = LW+ D)0+ ZATN+0) 13 T + 4)
TR TOIOIN + 0+ D4+ 2x) TR
where 4, >0, x,=0,1,-..,i=1,...,n,6 >0,and N=1,2, ....

b

2
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8. Multivariate logarithmic series distribution.
; — 1) A%
ax)=_ @&x-D' 4 2)"Ee [T 2L,
9s( ) log (1 + 3 4) I+ 2 4) II x|
where 4, >0, x,=0,1, ...,i=1,...,n,and } x, > 0.
9. Multivariate F distribution:
44, X) = T'(4) T17-0 (45)% TT x,-*:‘“l
II7-0 D(25) (4 + X 2;x;)
where 2, >0,j=0,1,---,n, A= 332;,x;20,j=1,...,n
10. Multivariate Pareto distribution.
(A, X) =a@+1)---(@a+n— (I 2,) (2 47x; — n 4 1)~+m
where x; > 4, >0,j=1,..--,n,a > 0.
11. Multivariate normal distribution with common variance and common covariance.
gu(l’ x) = |(2n)t X[ e tx-n I -0

b

where 3 is the positive definite covariance matrix with elements ¢* along the
main diagonal and elements po® elsewhere, o > —(1/(n — 1)).

To verify that g,, g, g,, 9; and g, are DT, note that 2* is TP,, and from Lemma
2.2c, the product g(4, x) = [T 4, of TP, functions is DT. The additional fac-
tors that appear are functions of 3] x, and are permutation-invariant. Thus by
Lemma 3.1, the desired conclusion follows.

To verify that g,, g, and g, are DT, we use a similar argument. We note that
the functions [;] and I'(2 4 x) are TP,. The remainder of the argument is as
just above.

To verify that g, is DT, we first note that g, is the joint density of
(X;/4)[(Xo/4)), j = 1, - - -, n, where X has a y’-distribution with 24; degrees of
freedom, j =0, 1, - - ., n. For fixed outcome X, = x, say, the conditional den-
sity of (X;/2,)/(X/4,) is TP, in 4;, x;. Thus the corresponding joint density of
(X2/2:)[(Xof ), -+ -, (Xa[2,)/(Xof45) is DT. By unconditioning on X, and using
the fact that the DT property is preserved under mixtures (Theorem 3.2), we
conclude that g, is DT.

Note g,, is DT since (3] 4,7'x; — n 4 1)~¢*™ js DT .

Eaton (1967) and Marshall and Olkin (1974) show that g,, is DT. (This can
be verified directly from the definition of DT by showing that (x — 2) Y} ~* (x —
S (K- T — A where xS 4 Sk, ASLS - <4,
and X’ = (x,, X3, X35 -+ -, X,).)

4. Applications to ranking problems. Given a set of real numbers {x, - - -,
x,}, let r, denote the rank of x;; i.e., r, =1 + 20 =i (x5 x;), where I(a, b) = 1
ifa>b,}ifa=2>5,and 0if a < b. If there are tied x’s, this definition yields
the average ranks. Letr = (r, - .-, r,), the vector of ranks, or the rank order.
Similarly, for random variables X, - -., X,, let R, denote the rank of X;, and
R=(R, -+, R,).
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THEOREM 4.1. Let X,, - - -, X, have joint density function ¢(2, X), a DT function
on R* with vector parameter A. Let g(,r) = P,[R = r] for r € R, denote the pro-
bability of rank order r. Then g(,r) is a DT function on R*.

Proor. We may write g(4, r) as:
4.1) 9(2, 1) = § #(4, X)J(X, 1) do(x;, - -+, X,)
where ¢ is a permutation-invariant measure and where J(x, r) = 1 if x; has rank
r, i=1,...,n, and = 0 otherwise. Since ¢(4, x) is DT by hypothesis and
J(x, r) is DT by construction, it follows that the composition g(4, r) given in
(4.1) is DT by Theorem 3.3. ]

Thus if a set of random variables has a DT density, the corresponding rank
order has a DT frequency function.

COROLLARY 4.2. Let f be a DT function on R*. Let R be the rank order of vec-
tor X where X has the DT density ¢(4, X). For real-valued a, define

hi(2) = P[f(R) = a] .
Then for each real fixed a, h,(R) is a DT function on R".

PrROOF. h,(2) = 2, I1;)2019(4, 7). By Theorem 4.1, g(4,r) is DT on R*.
Since f(r) is DT on R, it follows that I;,.,; is DT on R*. Thus by Theorem
3.3, the composition 4,(4) is DT on R". []

REMARK 1. Thusif 2, < --- £ 4, and @ >*x’, then the distribution of f(R)
when X has parameter 2 o r is stochastically larger than the distribution of f(R)
when X has parameter 2 o z’.

REMARK 2. Note that Theorem 4.1 and Corollary 4.2 do not require that the
DT density of X be absolutely continuous. Our theory easily covers “ties”; we
simply use average ranks and thus do not insist that r be restricted to the set S.
The reader should thus be aware that the subsequent applications discussed in
this section also apply to multivariate discrete DT densities such as g,, g,, g5, ge»
g, and g, of Section 3.

APPLICATION 4.3. (The trend problem). Let X, have TP, density f(4,, x) and
let 2, < ... < 4,. Then Theorem 1 of Savage (1957) states essentially that g(4,

r) = P,[R =r] is a DT function. Savage’s result follows from the application
of Theorem 4.1 to the function g, of Section 2. As a further application, put
Ur)= —2r,r, where 1 < m < n, and note that U(r) is DT on R*. From

Corollary 4.2, it follows thatif 4, < ... < 2,and # >*#’, then the distribution
of U(R) under 4 o & is stochastically larger than the distribution of U(R) under
Aom'. Restricting 4, =---=2,=1and 2,,,=---=4,=2>1 in the
above, we obtain a stochastic comparison result for the Wilcoxon statistic in the
two-sample problem if the experimenter mistakenly counts observations from
the second distribution as arising from the first distribution. These ideas are
generalized and summarized in the following theorem.
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THEOREM 4.4. Let the random vector X have a density ¢(2, x) which is DT on
R, Let R denote the vector of ranks of X,, ---, X,. LetE, <E,< ...-<E,,
be numbers (scores) and let T(r) = Y1, E,,, where 1 < m < n. Finally, let
A - S 4,andw > ', Then the distribution of T(R) under A o = is stochastic-
ally smaller than the distribution under A o x’.

Proor. The proof follows directly from Theorem 4.1, Corollary 4.2 and the
easily verified fact that 7'(r) is DT. []

Theorem 4.4 is applicable to many two-sample rank statistics including the
Wilcoxon statistic (E,; = i) and the normal scores statistic (E,; = the expected
value of the ith order statistic in a random sample of size n from a standard
normal distribution).

There is an open question in this connection that we have not solved, and
that does not follow merely from the DT concept. In Theorem 4.4, set
A= =2,=1,2,,=---=2,=2>1, and ¢(4, x) = [T ¢(4;, x;). Can
it be shown that the distribution of T(r) has a monotone likelihood ratio in 2?
This is closely related to the conjecture of Saxena and Savage (1969).

REMARK 4.5. In Application 4.3, Savage’s result for the trend case, the X’s
are assumed to be mutually independent. However, Theorem 4.1 is applicable
even when the X’s are dependent, as long as ¢(4, x) is DT. Thus Theorem 4.1
gives conditions under which one rank order is at least as likely as another,
under densities corresponding to dependent variables. In the spirit of Savage’s
paper, these results are readily translated into conditions for admissible rank
tests in dependency situations. Examples of densities corresponding to nonin-
dependent X’s are given in Section 3.

Similarly, Theorem 4.4 is applicable in two-sample cases where the assump-
tions of independence within each sample, and between samples, can be relaxed
to DT densities corresponding to nonindependent X’s such as those given in
Section 3. In this sense, Theorem 4.4 generalizes results of Savage (1956) to
dependency situations.

APPLICATION 4.6 (Randomized blocks with ordered alternatives). Consider
a randomized block experiment with n treatments and N blocks. Let X, =
(X5 -+, X,), i =1, ..+, N, be N mutually independent vectors. From Corol-
lary 4.2 and the independence of the X,’s, we can state:

COROLLARY 4.7. Let X, have density ¢,(4, X), where each ¢, is DT on R*. Let
f be a DT function on S. Let R, = (ryy, - -+, I',), where r,; is the rank of X;; among
Xy o o3 Xppe If 4, < --- < 4, and ™ >*x’, then the distribution of }.¥ f(R,)
when each X, has parameter 2 o & is stochastically larger than the distribution of
1Y f(R,) when each X, has parameter A o w’.

Corollary 4.7 gives power results about certain rank tests of H: 1, =
A, = --- = 4, versus ordered alternatives 2, < 4, < --- < 4, since many such
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tests are based on statistics of the form };X, T(R,), where T(R,) is a DT func-
tion of the form T(R,) = 7., ¢; E,, ,wherec, < ¢, < - -+ < c,are “regression”
constants and E,, < E,, < ... < E,, are scores. Ordered alternative test sta-
tistics of this form, for which Corollary 4.7 is applicable, include those due
to Page (1963) (¢; = j, E,; = j) and Pirie and Hollander (1972) (¢; = j, E,; =
the expected value of the jth order statistic in a random sample of size n from a
normal distribution). Note here that the blocks can have different densities ¢,,
and, once again, the ¢,’s need not be joint densities of independent random
variables.
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