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ON THE EXPONENTIAL BOUNDEDNESS OF STOPPING
TIMES OF INVARIANT SPRT’S

By HoLGER R0OOTZEN! AND GORDON SIMONS?
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at Chapel Hill
It is shown, under conditions which include invariant sequential prob-

ability ratio tests, that the stopping time is always expontially bounded
when the null or alternative hypothesis holds, except in a trivial instance.

1. Introduction and theorem. This paper is primarily concerned with show-
ing that, for invariant sequential probability ratio tests, the stopping time is
exponentially bounded under the null and alternative hypotheses, with the excep-
tion of trivial situations. This work is the by-product of a largely unsucessful
attempt to obtain general results under nonmodel distributions. Since we view
the lack of these general results as a major deficiency in the theory of sequential
analysis, we shall suggest what we believe is a reasonable conjecture and shall
discuss in Section 2 some of the past literature on the subject.

Let (Q, <Z) be a measurable space and {<Z,, n = 1} be a nondecreasing se-
quence of sub-o-fields of <%. A stopping time N adapted to {<Z,, n = 1}° is said
to be exponentially bounded for a family of probability measures .22 on (Q, &%)
if for each probability measure R e &2 there exist constants ¢ > 0 and p < 1
such that R(N > n) < ¢p*, n = 1,2, ---. Such a condition implies that N is
finite a.s. (<#2) and that N has a moment generating function in some neigh-
borhood of the origin for each R e .

Let P and Q be elements in <2 and let L, denote the P — Q likelihood ratio
for &Z,.* Sequential probability ratio tests are defined in terms of a stopplng
time N of the general form

€))] N = the first n>1 suchthat L,¢ (A4, B)

= oo ifnosuch n exists,

where 0 < 4 < B < oo. At this level of generality, it is easy to construct ex-
amples for which N is exponentially bounded for {P, Q} and others for which it
is not. All that is known, in general, can be derived from the following set of
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elementary inequalities (see Eisenberg, Ghosh and Simons (1976)):
AP(N > n) < Q(N > n) < BP(N > n), n=1,2,....
It follows immediately that

(a) PIN<K 0) =1iff QIN < 0) =1,
(b) foreachr >0, { N"dP < oo iff { N"dQ < oo, and
(¢) N is exponentially bounded for {P} iff it is exponentially bounded for {Q}.

Now suppose X;, X,, --- is a sequence of random elements on (Q, ZZ) (to the
statistician, “potential data”) and <%, = a(X;, - - -, X,) (the o-field generated by
Xy oo X,). If X, X, - -+ is an i.i.d. sequence under P and Q, then {log L,,
n = 1}is a random walk under both P and Q. It follows that N is exponentially
bounded for {P, Q} unless L, = 1 a.s. (P, Q). This is a well-known result due
to Stein (1946). We shall now describe a similar result for invariant sequential
probability ratio tests. :

Consider the following mathematical structure:

(i) “and & are two disjoint families of probability measures on (Q, 7).
(i) X, X;, -« is an i.i.d. sequence of random elements for each probability
measure Re F U &.

(i) Forn =1, &7, is a sub-g-field of a(X;, ---, X,) which is symmetric in
X, -+, X, in the sense that if B is a measurable set in the range of (X, .-+, X))
and <z, contains the event [(X,, ---, X,) € B], then, for each permutation
(i -+, i,) of the indices 1, - - ., n, it contains the event [(X,, - --, X, ) € B].

vy #cCcFcBBc---.

(v) For each n > 1, the probability space (Q, &, R) is the same for every
R e &, and is the same for every Re &.

This is the structure one encounters when invariant sequential probability
ratio tests are being considered. (For instance, for the sequential r-test [cf.
T. L. Lai (1975)], X,, X,, - - - is a sequence of independent normal random vari-
ables with common mean y and common variance o®. The object is to test
whether the ratio y/o equals 7, or some other value y,. The members of “and
& correspond to pairs (g, ¢%) for which the ratio is 7, and r,, respectively. The
appropriate o-field <%, can be expressed as o(X,/|Xy|, X,/| X, - - -, X,/|X])s n =
1.) If one wishes to test the (composite) hypothesis that the true probability
measure R belongs to .7 against the (composite) alternative that it belongs to
&, the following sequential probability ratio test suggests itself: Let Pe
and Q € € be chosen in an arbitrary manner, and let L, be the P — Q likelihood
ratio for &7, (n = 1). Because of property (v), each possible pair (P, Q) leads
to the same sequence of likelihood ratios L,, L,, ---. Let N be the stopping
time described in (1) and choose P or & according as N < oo and L, < 4 or
N < oo and Ly = B, respectively. (If N = co, no decision is made.) We have
the following theorem:
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THEOREM. Either L, = 1a.s. (U &) forn = 1, or N is exponéntially bounded
for F U .

Proor. In view of (c) and (v), N is exponentially bounded for & u & iff it
is exponentially bounded for {P}. Likewise, L, = 1 a.s. (°U &) for n = 1 iff
P(L, = 1) =1 for n = 1. Suppose the latter is false, i.e., that for some &,
P(L, = 1) < 1. For simplicity, we shall assume that k can be taken to be unity.
If a larger value of k is required, the proof we shall give that N is exponentially
bounded for {P} can be easily modified. Express L, as /(X;) and observe that
EL, < 1 and (since P(L, = 1) < 1) that Elog L, < 0. Set <&’ = o(l(X,), - - -,
I(X,)) and observe that L, = [[~, /(X,) is the P — Q likelihood ratio for <%’
in view of condition (ii) (» = 1). (For the sequential #-test referred to above,
&5, can be expressed in the somewhat simpler appearing form <7’ = a(X,/|X|,
X,/| X, - -+, X,/|X,]). The function [,(X;) equals @(y,)/®(y,) when X; > 0 and
equals ®(—7,)/®(—r,) when X; < 0, where @ denotes the standard normal dis-
tribution function.) Moreover, conditions (iii) and (iv) imply that <&’ c <,
and, hence, E€4+L, < L,'S for n = 1. Thus, for p < 1, to be chosen later,

PFyL, > 4, L, < ") < A“II[L,;,ép”]Egth = A"
and, hence,
P(N > n) < P(L, > A) = EPF%(L, > A)

= 470" + P(L, > p") .
Thus it suffices to show, for properly chosen o < 1 and p’ < 1, that

P(L > ) < (0')" -
Since EL, < 1, E(L,)' < 1for0 < ¢ < 1. In fact, if p is chosen so that Elog L, <
log o < 0, then there exists a small positive ¢, such that

o' = EelotlogL1-logo) 1,

Then (cf. H. Chernoff (1952), equation (3.6)),

P(L," > p") = P(I]i= I(X3) > p")

< e E[[T7. I(X;)]
— p—'ntOE'n(Ll)to — (pl)fn . D
REMARK 1. The case “L, =1 a.s. (P°U &) for n = 1,”. appearing in the
theorem, is of no importance since it corresponds to a testing situation in which
no “information” is available with which to distinguish between the families
and &, i.e., all of the probability measures R e Z° U & agree on <Z, for every

nz=1.

REMARK 2. Robert Berk has informed us of an earlier (unpublished) use of
the o-fields <7’ (appearing in our proof), namely in his Ph. D. thesis (1964,

% Equality holds if P and Q are equivalent probability measures on <z,
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pages 65-67). He uses them to show (the weaker result) that invariant sequential
probability ratio tests stop with probability one under the null and alternative
hypotheses.

REMARK 3. Our proof shows that the “single boundary” stopping time N* =
inf{n = 1: L, = A} is exponentially bounded for {P}.

REMARK 4. We suspect that our theorem would still hold if condition (iii)
above were replaced by the weaker condition:

(iii") For some Pe &’ and Q € & and each n = 1, there is a version of the
P — Q likelihood ratio L, which is a symmetric function of X, ..., X,.

With this replacement (and with the help of the Hewitt-Savage zero-one law
and the martingale convergence theorem), we have been able to establish the
weaker result that N is finite a.s. (Z° U &) (except, of course, when L, = 1 a.s.
(Z?U &), n = 1). This represents a mild improvement on Berk’s result, referred
to in Remark 2, but we can suggest no practical testing situation where the ad-
ditional strength is useful.

2. Discussion. It is reasonable to ask whether the theorem above can be ex-
tended to nonmodel situations. Specifically, it would be nice to know whether
the stopping time N of an invariant sequential probability ratio test is either (i)
exponentially bounded, or (ii) almost surely finite, when the observations X,
X,, - -+ arei.i.d. under a probability measure R not in &” U &Z. While the answer
for neither (i) nor (ii) is an unqualified “yes,” there still remains hope that there
are useful general theorems yet to be discovered.

R. Wijsman (1972) discusses an interesting example for which (ii) holds but
(i) does not. However, this example is defective in the sense that his probability
measure R is orthogonal to the probability measures in Z” U & on each of the
o-fields <Z,. The difficulty is that a P — Q likelihood ratio is uniquely defined
up to a Pand Q equivalence but not necessarily uniquely with respect to another
probability measure such as R. Indeed, there exist other versions of the likeli-
hood ratios L,, appropriate to his example (albeit less natural from a topological
viewpoint), for which (i) and (ii) both hold.

Recently, Wijsman (1976a) has been working with more revealing examples.
His probability measures R are not equivalent to the probability measures in
U &, but at least his R’s are dominated by them (on each o-field <Z,), which
implies that the likelihood ratios of interest are unique up to R-equivalences.
For these examples, again (ii) holds but (i) does not.

In our investigations, we have found even more discouraging examples. We
have examples for which R is dominated but not equivalent to the probability
measures in &’ U & and for which (i) and (ii) both fail in a nontrivial sense,
i.e., R(L, = 1) # 1 for some n = 1. In these examples, R(N = c0) = 1.

With such examples in mind, we have attempted, without success, to show
(ii) (except in trivial situations) for probability measures R which are equivalent
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to those in 22U &. We still conjecture that such a result holds but have re-
cently been informed by Wijsman that (i) cannot be demonstrated under the
same set of circumstances. The counterexample he has in mind is based upon
a variation (due to T. L. Lai) of Lai’s (1975) Lemma 5 (page 588).

We do not want to leave the reader with the impression that there are no re-
sults of a general nature concerning R ¢ Z°U &. R. Berk (1970) has obtained
results for what he calls parametric sequential prabability ratio tests and R.
Wijsman (1976b) has recently obtained a theorem concerned with exponential
boundedness. Their results exploit the fact that, in many useful examples of
invariant sequential probability ratio tests, the log-likelihood ratios {log L,, n = 1}
become a random walk asymptotically, in a certain sense, (under R) as n — co.
Nevertheless, there are practical examples where no asymptotic random walk is
discernable. Therefore, if our conjecture above has validity, some other ap-
proach will be required to show it. We have tried to show the conjecture by
using the auxiliary o-fields referred to in Remark 2 above, feeling this might be
the “other approach” required, but, as noted, without success.
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