The Annals of Statistics
1977, Vol. 5, No. 3, 565-570

A NOTE ON ORTHOGONAL PARTITIONS AND SOME
WELL-KNOWN STRUCTURES IN DESIGN
OF EXPERIMENTS!

By DENNIs C. GILLILAND
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Finney has used orthogonal partitions in the context of the search for
higher order (coarser) partitions of given Latin squares. Hedayat and Seiden
use the term F-square to denote higher order partitions that are orthogonal
to both rows and columns. This note is a short expository treatment of
orthogonal partitions in general and is based on the identification of a
partition with a vector subspace of Euclidean N-space RY. This identifi-
cation is not new as it is part of the usual vector space approach to analysis
of variance. This approach puts the concept of orthogonal partitions in a
simple light unencumbered by the language of design of experiments.
Another advantage is that certain published bounds on the maximum
number of orthogonal partitions of specified type are immediate from the
dimensionality restriction imposed by R¥. In addition, some counting
problems are identified which are of possible interest to researchers in de-
sign of experiments and combinatorics.

1. Introduction and summary. In design of experiments are found structures
which consist of arrays of symbols. An array of N positions filled with symbols
induces a partition of S = {1, 2, - . -, N} into subsets corresponding to the posi-
tions where the various symbols appear. For example, an n X n Latin square
has N = n? positions. The n symbols partition S into n subsets of size n as do
the row and column partitions. In this note (Section 2) we will identify parti-
tions II of S with subspaces 2(II) of R and define orthogonality of partitions
by the orthogonality of the corresponding subspaces. This simple device im-
mediately yields crude bounds on the maximum number of orthogonal F-squares
of specified types and the maximum number of constraints k in an orthogonal
array OA (N, k, s, 7). This approach is not used to obtain sharp bounds, but it
is conceptually simple and a convenient way to pose some counting problems
(Section 3).

2. Orthogonal partitions and some structures in design of experiments. In
this section we define orthogonality of partitions and in Remark 2 give a di-
mensionality constraint for a system of orthogonal partitions. -Let

S=1{1,2, ..+, N}

and for subsets T S, let |T| denote the cardinality of T. A partition II of S
is a collection of nonempty disjoint subsets of S called blocks whose union is
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S. Let II be a partition of S and define

k(‘II) = number of elements of II
and
¢(IT) = smallest block size in 1II.

Of course, 1 < k(I)e(I) < N.

Let R denote Euclidean N-space with the usual inner product denoted by
x'y and let 1 denote the vector of all 1’s. The orthogonal projection of x onto
1 will be denoted by x,. When it is convenient, subsets of S will be identified
with their indicator functions, i.e., vectors of 0’s and 1’s in R¥. For example,
if II={S,,---,8,} is a partition of S, then 3%,S, =1 and |S,| = S/1,
i=1,..-,k. )

For a partition II = {S,, - .., S} let

7(Il) = orthocomplement of 1 in the subspace spanned by {S,, - .-, S,} .

(If IT = IT*, then (1) = Z(I1*). See the proof of the remark in Gilliland
(1972).) Let .
d(Il) = dimension of Z(II) = k(II) — 1.

DeriNITION 1. IfII = {8}, - - -, S} and IT* = {S,*, ..., S%} are partitions of S,
we say that they are orthogonal and write Il | II* ifand only if (1) | 2(II¥)
in R,

The following remark gives the known and simple characterization for or-
thogonality of IT and II*.

ReMark 1. II | II* if and only if
|SiSj*|=|Si|]\|/S;(|, for all i=1,..-,k; j=1,"‘9k*-

Proor. Since {S; — S [i =1, ..., k}spans Z7(II) and {S} — S*|j=1, ...,
k*} spans Z7(11*), then Z(I) | Z(I1*) if and only if (S; — S, )'(S¥ — S¥) =0
for all i, j. The proof is completed by noting that S/S} = |S,8%|, S, 8% =
(ISINVS} = IS/]|SHIIN = S/S}, = S/, 5%,

Remark 1 provides a useful guide in the search for orthogonal partitions.
One consequence is that II | IT* implies ¢(IT) = k(IT*), k(I) < ¢(I1*).

The following remark is completely trivial, and, as we will see, it provides a
method of obtaining a crude bound on the maximum number of orthogonal
F-squares, the number of constraints k in OA (N, k, s, t = 2) and, more gener-
ally, the number of partitions in any regular system of mutually orthogonal

partitions.

REMARK 2. Let {I,|a e I} be a set of mutually orthogonal partitions of S.
Since the 7(Il,) are mutually orthogonal subspaces of R?, all orthogonal to
1, then

1+ Yaesd(Il) < N.
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The literature in design of experiments is replete with systems of orthogonal
partitions of which we give some examples.

ExaMpLE 1. (Latin and F-squares). Let N = n’ and identify each element of
S with a position in an n X n square. The partition &2 = {R,, - - -, R,} induced
by rows is orthogonal to the partition & = {C,, ..., C,} induced by columns
since 1 = |R;C;| = |R,||C,|/n* for alli,j =1, ..., n. A Latin square defines a
partition & = {L,, - --, L,} through the positions of the n symbols and since
each symbol occurs once in each row and each column, ¥ | &2, & | €.
Again it is easy to check by definition and Remark 1 that orthogonal Latin

squares induce orthogonal partitions. An F-square F(n; 4,, - - -, 4,) (see Hedayat
and Seiden (1970) for the definitions of F-square and orthogonal F-squares)
induces a partition & = {F,, ---, F,} with |F;| = A;n, j =1, ..., k which is

orthogonal to & since 1; = |F;R,| = |F,||R,|/n* = (;n)(n)/n’ for all i, j. Like-
wise, & is by definition orthogonal to <. It is equally easy to check that F-
squares % and & * are orthogonal according to Hedayat and Seiden (1970,
Definition 3.1) if and only if the induced partitions are orthogonal. It follows
from Remark 2 that the maximum number ¢ of mutually orthogonal F-squares
of type F(n; 2, - -+, 4,) satisfies 1 4+ (n — 1) 4 (n —'1) 4+ #(k — 1) < n* from
which ¢t < (n — 1)*/(k — 1).

Theorem 2.1 of Hedayat, Raghavarao and Seiden (1975) gives this bound for
the special case where the system of mutually orthogonal F-squares consists of
F-squares of type F(n; 1), i.e., 4 = --- = 4, = 2. The given proof does not
expose the simple dimensionality considerations that render the result as an im-
mediate corollary. The suggested alternative proof, which is essentially based
on a dimensionality constraint, is for readers familiar with the properties of
fractional factorial designs and is couched in the language of that area.

ExampLE 2. (Orthogonal arrays of strength 7 > 2). See Raghavarao (1971,
Definition 2.1.3) for the definition of an orthogonal array OA (N = s, k, s, 1).
The s symbols in a row define a partition of S into s blocks of size st~. Let
t =z 2. Then given any two rows, each pair of symbols occurs 1s*~* times across
the N = 4s* columns. Hence, if the partitions corresponding to the two rows
are denoted by IT = {S,, - - -, S,}and IT* = {S,*, ..., S§,*}, it follows that s*~* =
[S:8;:*| = |Si||S;*|/N = (As*=")(As*~)/(As?) for all i,j, =1, ...,s. Thus, the k
rows of OA (N, k, s, t) give k mutually orthogonal partitions of S. It follows
from Remark 2 that if # > 2, then the number of constraints k in OA (N, k, s, ?)
satisfies 1 + k(s — 1) < N which together with N = st yields k < (45 — 1)/(s — 1).

The above bound can be sharpened to the Rao (1947) bounds also given as
Theorem 2.2.1 of Raghavarao (1971). For example, let 1 = 3 and define
7 ()7 (11*) to be the subspace corresponding to the product partition IIII* =
{S:S;*|S; e I, S;* e IT*}. If II,, - - ., II, denote the partitions corresponding to
the k rows of OA (4s% k, s, 3), then it easily follows that 1® Y* 7(IL,) ®
25 7AL) 7 (L) (7)H1L,) @ 7(11,)) is an orthogonal decomposition of a subspace
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of R¥ from which 1 + k(s — 1) + (k — 1)(s — 1)’ < 2s*. For 1 = 4 one gets
10 X 7L ® Yi; 7)Y 7 (I)[(7(1L) ® 7111,)) is an orthogonal decom-
position of a subspace of RY from which 1 4 k(s — 1) + k(k — I)(s — 1) < st
The general 7 odd and ¢ even cases follow in an analogous way. Perhaps, readers
will find this development easier than that of Rao (1947) where an orthogonal
basis of factorial effects is defined.

Bose and Bush (1952) use an alternative (algebraic) method to get sharper
bounds for the ¢ = 2, 3 cases. Raghavarao (1971, Section 2.2) gives these and
other bounds.

3. Some counting problems. From design of experiments there is interest in
evaluating the maximum number of dimensions that can be extracted from RY
using systems of orthogonal partitions of certain types. Consider

DEFINITION 2. Foreachc=1,2,...,Nand N=1,2, ... let
p(N, ¢) = max {1 + Y ,.,d(IL)|{Il,|a e} isa set of mutually orthogonal
partitions of § with ¢(Il,) > ¢ forall ael}.
Here the restriction is to partitions with all blocks of size at least c. The evalua-
tion of p is an interesting problem. Of course, p(N, c) is monotone in ¢ with
1 =p(N,N) < p(N,N— 1)< - < p(N, 1) = N.
Since there does not exist a partition II with both k(IT) > 1 and ¢(II) > 4N, we
see that p(N, ¢) = 1 for all ¢ > }N. Furthermore, by taking a single partition
I with ¢(IT) = ¢, we see that p(N, ¢) = Njc.

We now give a few of the many properties of p which follow from known
constructive techniques and existence theorems in design of experiments. (See
e.g., Hall (1967), Raghavarao (1971) and Ryser (1963) for comprehensive cover-
age.) For example

o(s?, 571 = 5%, if a=1 and s isa prime power.
Since for each n = 1 there exists an n X n Latin square and since the row par-
tition is orthogonal to the column partition provided n = 2,
o(n*,n) =1+ 3(n—1), if n=2,3,..-.
This result is improved for all n = 3, n = 6 by using the fact that there exist
orthogonal n X n Latin squares for such n. Thus,
o(m’,n) =14 4(n—1), if n=23,4,..-,n+6.
Federer (1976) has constructed a complete set of orthogonal F(n; }n, }n)-squares
using a Hadamard matrix of order n, H,. Hence,
o(n*, n) = n*, provided H, exists.

Since the last n — 1 rows of a (normalized) Hadamard matrix H, yield a system
of n — 1 orthogonal partitions, each partition consisting of 2 blocks of size 3n,

o(n, n) = n, provided H, exists.
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If N=a-.-band c < a A b, where A denotes minimum, then by using the row
and column partitions of an a X b array we see that
pl@a-banbyzl+@—-1)+@®B-1), if a,6=1,2,....

Other simple results follow directly from the Remark 1 characterization of

orthogonality. For example, using Remark 1 it is easy to check that
e(2n,n) =2, if n is odd.
Also, if N is a prime then no two partitions are orthogonal. Hence,
o(p, ¢) = greatest integer in p/c, if p is prime.
Table 1 gives values for N < 13 and ¢ < {N. The orthogonal array OA (12,

11, 2, 2) in Plackett and Burman (1946) establishes the fact p(12, 6) = 12. This
also follows from the existence of a Hadamard matrix of order 12.

TABLE 1
Some values of o(N, c)
N
c

4 5 6 7 8. 9 10 11 12 13
2 4 2 3 3 8 9 6 5 12 6
3 2 2 8 9 3 3 12 4
4 8 2 3 2 12 3
5 2 2 12 2
6 12 2

Of particular interest is the evaluation of p(36, c) for various c. The orthogo-
nal array OA (36, 13, 3, 2) constructed by Seiden (1954) provides a system of
13 orthogonal partitions each consisting of 3 blocks of size 12. Therefore,
0(36, 12) = 27. (The Bose and Bush bound on k in OA (36, k, 3, 2) is 16 indi-
cating that at most 33 dimensions can be accounted for by 1 and orthogonal
partitions each consisting of 3 blocks of size 12.) Recently, Federer and Seiden
(1975) have found an F(6; 3) orthogonal to a given set of 8 orthogonal F(6; 2)’s
from which it follows that p(36, 6) = 28. Constructive techniques for orthogonal
F(even; 2) squares are given by Anderson, Federer and Seiden (1974).

We now consider extracting dimensions from R” with a system of orthogonal
partitions each containing no more than k blocks.

DEerFINITION 3. Foreachk =1,2,...,Nand N=1,2, ... let

o(N, k) = max {1 4+ ., d(Il,) | {Il,| @ € I} is a set of mutually orthogonal

partitions of § with k(Il,) < k forall ael}.
Monotonicity in k is immediate with
1<o(N, 1)< o(N,2)< --- <a(N,N) = N.
Since ¢(Il) = ¢ implies k(II) < [N/c] = greatest integer in N/c,
o(N, ¢) < a(N, [NJc]) .
There is strict inequality for some N and c, e.g., o(6, 3) = 2 and ¢(6, 2) = 3.
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There are many other constraints to place on the system of orthogonal parti-
tions in the search for maximal extraction of dimensions from R¥. For example,
for N = n* and requiring all partitions to be into n blocks of size n, the maximal
extraction of dimension from RY is 1 4 #(n — 1) where ¢ — 2 is the maximal
number of mutually orthogonal n X n Latin squares. For N = r’ and requiring
two partitions to be into n blocks of size n and the rest to be into k blocks of
size An (n = k), the maximal extraction of dimension from RV is 1 + 2(n — 1) +
t(k — 1) where t is the maximal number of mutually orthogonal F-squares F(n; 1).
The construction of systems which achieve the maximal extraction subject to
constraints remains a difficult problem in general.

Acknowledgment. The author wishes to thank A. Hedayat for his constructive
suggestions concerning the reorganization of this note.
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