The Annals of Statistics
1977, Vol. 5, No. 3, 561-564

ON THE EXISTENCE AND CONSTRUCTION OF
A COMPLETE SET OF ORTHOGONAL
F(4t; 2t, 21)-SQUARES DESIGN

By WALTER T. FEDERER
Cornell University

The purpose of this paper is to demonstrate the existence via construc-
tion of a complete set of mutually orthogonal F-squares of order n = 4¢, ¢
a positive integer, with two distinct symbols. The proof assumes that all
Hadamard matrices of order 4s exist; they are known to exist for all
1 £¢ <50 and for 22. Two methods of construction, that is, Hadamard
matrix theory and factorial design theory, are given; the methods are re-
lated, but the approaches differ.

1. Introduction and definitions. In an effort to conserve space, the reader is
referred to Hedayat and Seiden (1970) for details and definitions concerning
F-squares and orthogonality of F-squares design. The symbol OL (n, ) has been
used frequently to denote a set of + mutually orthogonal Latin squares of order
n, when t = n — 1, the set of orthogonal Latin squares is complete. For a set of
t mutually orthogonal F-squares of order »n and of the form F(n; 4,, - - -, 4,), m
a constant, we use the following definition:

DEFINITION 1.1. Asetof 2 < ¢t < N,, = (n — 1)}/(m — 1), an integer, mutu-
ally orthogonal F(n; 2, ---, A,)-squares is denoted as O F(n; 2, ---, 4,; 1).
When t = N, the set of mutually orthogonal F(n; 4,, - - -, 4,)-squares, is said to
be complete.

Hedayat et al. (1975) have shown how to construct an O F(n = s?; 4, - - -, 4}
(s — 1)/(s — 1)) set for s a prime power. In extending their results, Mandeli
(1975) has shown how to obtain a complete set of F-squares with variable num-
bers of symbols, that is, m = s* for 1 < k < p, instead of for a constant number
s; he also demonstrated a one-to-one correspondence with factorial design theory
and a way to make s* a maximum when Latin squares are not used in the set.
In this paper we show how to construct an O F(4t; 2t, 2t; (4t — 1)?) set and hence
prove their existence, on the presumption that all Hadamard matrices of order
4t exist; they are known to exist for all 1 < ¢ < 50 and for all » = 2». Thus,
if all Hadamard matrices exist, a complete set of mutually orthogonal F-squares
with the minimum number of symbols, m = 2, has been shown to exist for one-
fourth of all positive integers, a considerable extension over the set of prime
numbers. The results are expected to have application in zero-one graph theory,
in orthogonal arrays, in coding theory, and other areas. It illustrates how
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analysis of variance and factorial design theory can be used to construct a com-
plete set of mutually orthogonal F-squares, and thus provides a new tool for
construction purposes.

2. Construction of a complete set of F(41; 21, 2f)-squares design. The use of
orthogonal contrasts in the analysis of variance for factorial experiments to
construct Latin squares was indicated by Federer et al. (1971). Mandeli (1975)
also used this procedure. It would appear that there is considerable potential
in using the orthogonality of single degree of freedom contrasts from the row
by column interaction to construct F-squares and Latin squares. The following
theorem represents one such example:

THEOREM 2.1. For all values of t for which a Hadamard matrix exists, there exists
a complete set of (4t — 1)* mutually orthogonal F(4t; 2t, 2t)-squares design.

Two proofs are given for the theorem, the first for the more mathematically
inclined reader and the second proof for the more statistically oriented indivi-
dual. The second proof is considered important in that linear model theory for
factorial experiments and for the analysis' of variance is being utilized for a
statistical design construction problem.

Proor 1. The first proof utilizes Hadamard matrix theory (e.g., see Hall
(1967), Raghavarao (1971), etc.). A normalized Hadamard matrix H, is one in
which there are all plus ones in the first row and in the first column with the
remaining elements being plus and minus ones. A necessary condition for the
existence of H, is that n = 2 or n = 0 (mod 4). Hadamard matrices are known
to exist for n = 4¢ for 1 < ¢ < 50 and presumed to exist for all z. All but the
first row of H,, will contain an equal number of plus ones and of minus ones.
The Kronecker product of two normalized Hadamard matrices, i.e., H,, ® H,, =
H,,, = A, is also a normalized Hadamard matrix of order n* = 162. Denote the
ithrow of 4 by A,,i=1,2,---,n,n+ 1, .-, n’, with elements a,;, a;5, - - -,

Q> Ainit> = s Aipa_pyrs -+ > Qipa, and make the correspondence of 4, to the fol-
lowing n X n square:

a; Qs a;y,

Qi1 Qinta Aion

Ain2—nt1  Qin2—nts * " Qin2 -

If we do not consider the first 4¢ rows, the 4¢ 4+ 1st row, the 8¢ + 1strow, - - -,
16¢* — 4t + 1st row (8¢ — 1 rows in all), there will remain 16* — 87 4- 1 =
(4t — 1)*rows of A under consideration. When each of the rows are arranged in
an n X n square as above, the sum of the coefficients within any row or within
any column will be zero, with the number of plus ones being equal to the num-
ber of minus ones. This follows from the orthogonality of each of these rows
with the 8¢ — 1 rows not being considered. In each of the (4t — 1)’ rows of 4
under consideration, let the plus ones be replaced by the symbol a, and let the
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minus ones be replaced by the symbol a, to form (4t — 1)*F(4¢; 2t, 2r)-squares.
This method of construction produces the complete set, O F(41; 2t, 2t; (4t — 1)),
of mutually orthogonal F-squares with the minimum number, two, of symbols.

Proor 2. The second proof of the existence is by construction through single
degree of freedom contrasts in the analysis of variance procedure. The n* ob-
servations from an n-row by n-column square may be partitioned in such a
manner as to have n* orthogonal single degree of freedom contrasts. The result-
ing sums of squares are also orthogonal. For n = 4¢, the particular sets of row
and column contrasts we shall use are those from a normalized Hadamard matrix
of side 4t. There will be 2¢ plus ones and 27 minus ones in all rows and columns
of a normalized Hadamard matrix, say H,,, except the first row and column.
The complete set of n* orthogonal single degree of freedom contrasts is obtained
as H, ® H,, = Hy,,. Designate the 47 row contrasts as H,, = (R/, R/, - - -,
R!,_,)" and the 4¢ column contrasts as H,, = (C;/, C/', - -+, Ci,_;)". Let the ele-
ments of the row vector R; be r,,, g = 1,2, ---, 4t, and let the elements of the
column vector C; be ¢;;,, h = 1,2, ---, 4t. Then a single degree of freedom
contrast of the n* observations is obtained as the Kronecker product of R; and C;,
that is R; ® C;, with the igjhth element in this 1 X 167* row vector being r;,¢;;.
Note that this element will be either a plus one or a minus one and that there
are 2t of each since this is a contrast. The one exception is R, ® C, which has
167 plus ones and corresponds to the correction for the mean in the analysis of
variance table.

From the above we may now construct the following analysis of variance
table for the n? = 16¢* observations.

TABLE 1

Source of Variation Degrees of Freedom Sum of Squares
Correction for the mean 1 (Ro Co)?/16¢22
Rows 4t — 1 ' sum of following

Ry ’ 1 (R1Co)?/16¢2

R, 1 (R2Co)?/16¢2

Rt i (Rat—1 Co)?/16¢2
Columns 4t — 1 sum of following

Cy 1 (RoCh1)?/16¢2

C; 1 (R0C2)2/16t2

Cutt i (RoCiu-1)?/16¢2
Row x Column interaction (4t — 1)2 sum of following

RiCy 1 (R1Ch)?/16¢2

RiC: 1 (R1C2)?/16¢2

RiCaos i (Ri Cy—1)?/16¢2

R:C, 1 (R2Ch)?/16¢2

Ryt-1Cie1 i (R4t_1. Cyi-1)?/1622
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In computing sums of squares in the above table, the sign for r,,c;, is applied to
the igjhth observation and a single sum is obtained; it is denoted as R,C;. This
sum is squared and divided by 16¢* to obtain a sum of squares with one degree
of freedom. From factorial and analysis of variance theory we know that these
are orthogonal sums of squares.

In order to construct an F(41; 21, 2)-square, we proceed by noting that any
R; ® C; contrast may be arranged as follows:

column number

row 1 2 . 4¢
contrast  column contrast coefficient

number coefficient ¢ Cis M Ciy
1 T rnCj T Cjg Fi1Cha
? T Fi2Ci1 T;2Cj2 Ti2Ciat
4t — 1 Vit TiueCin Tt Cha T4t Ciay

In each row and in each column of the above 4¢ x 4¢ square, there will be 2¢
plus ones and 27 minus ones. Let the symbol 4, replace the minus ones and the
symbol g, replace the plus ones to produce the F(4r; 2¢, 2t)-square. Since there
are (4t — 1)’ single degree of freedom contrasts in the row X column interaction,
since each one may be used to construct an F(4¢; 2z, 2¢)-square, and since each
contrast is orthogonal to the remaining (41 — 1)* — 1 contrasts, (4 — 1)* or-
thogonal F(4t; 2t, 2f)-squares are thus formed, and the theorem is proved.

Acknowledgment. The author appreciates a comment from Esther Seiden to
the effect that the theorem be proved using Hadamard matrix theory, and some
helpful comments by A. Hedayat and a referee.
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