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THE STRONG UNIFORM CONSISTENCY OF NEAREST
NEIGHBOR DENSITY ESTIMATES

By Luc P. DEVROYE AND T. J. WAGNER!
The University of Texas at Austin

Let Xi, - - -, X» be independent, identically distributed random vectors
with values in R¢ and with a common probability density f. If Vi(x) is
the volume of the smallest sphere centered at x and containing at least &
of the Xi, - - -, X» then fu(x) = k/(nVi(x)) is a nearest neighbor density esti-
mate of f. We show that if k = k(n) satisfies k(n)/n — 0 and k(n)/log n — o
then sups | fu(x) — f(x)] — 0 w.p. 1 when f is uniformly continuous on R¢.

Introduction. Suppose that X;, - - -, X, are independent, identically distributed
random vectors with values in R and with a common probability density f. If
V,(x) is the volume of the smallest sphere centered at x and containing at least
k of the random vectors X, - - -, X,, then Loftsgaarden and Quesenberry (1965),
to estimate f(x) from X, -- -, X,,, let

1) falx) = k[(nV(x))
where k = k(n) is a sequence of positive integers satisfying
@ @ k(n) 1 o0

(b) k(n)/n— 0.

(The factor k — 1 was used instead of k by Loftsgaarden and Quesenberry; this
has no effect on any of the asymptotic results stated here.) They showed that
f.(x) is a consistent estimate of f(x) at each point where f is continuous and
positive. This result can also easily be inferred from the work of Fix and Hodges
(1951). For d = 1, Moore and Henrichon (1969) showed that

sup, | f,(x) — f(x)] — 0 in probability
if f is uniformly continuous and positive on R and if, additionally,
3) k(n)/logn — oo .
Wagner (1973) showed that f,(x) is a strongly consistent estimate of f(x) at each
continuity point of f if, in addition to (2b),
4) nre ™ < oo forall a >0.

(Notice that (4) is always implied by (3) but (2a) and (4) are needed to imply
(3).) The result of this paper is the following theorem.
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THEOREM. If f is uniformly continuous on R* and if k(n) satisfies (2b) and
(3) then
¢ sup, |fu(x) — f(x)] »,0 w.p. 1.
Ful) = Tt K((x — Xy)/r(m)/nr(n)* ,
where K is the uniform probability density for the unit sphere in R* and {r(n)}
is a sequence of positive numbers, the recent results of Moore and Yackel
(1977) (see Theorem 3.1) and the above theorem immediately yield that

sup, | fu(x) = f(x)| >0 w.p. 1

whenever f is uniformly continuous on R? and r(n) —,0, nr(n)*/logn — co. This
fact, an improvement over the previously published convergence results for the
kernel estimate with a uniform kernel (e.g., see Theorem 2.1 of Moore and
Yackel (1977)), also is a special case of Theorem 4.9 of Devroye (1976) who
proves the same statement for all kernels K which are bounded probability den-
sities with compact support and whose discontinuity points have a closure with
Lebesgue measure 0. '

Proor. To simplify notation we assume below that multiplications are always
carried out before division. Let ¢ > 0 and choose § > 0 such that

1f) = f] < ¢f2
whenever x and y are within a sphere of volume 6. Deferring measurability
arguments for the moment,

P{sup, | fu(x) — f(x)] > ¢}
= P{U. [Vi(x) < k/n(f(x) + T} + P{Uu: s> [Vilx) > k[n(f(x) — o)} -
The event U, [Vi(x) < k/n(f(x) + ¢€)] implies that, for some x, there must be
a sphere centered at x with volume less than k/n(f(x) + ¢) and containing k of
the random vectors X,, - -+, X,. If k/ne < d then the probability measure of '
such a sphere must be less than k(f(x) + ¢/2)/n(f(x) + ¢) so that, for one of
these spheres S,
k _ k(f(x) +¢/2)
pal(S) — p(s) > K _ KU) + ¢2)
) '>5 n(f(x) + )
_ ke < ke
2n(f(x) +¢) — 2n(F +¢)
where F is the maximum of f on R¢, x is the measure on the Borel subsets of
R? corresponding to f and g, is the empirical measure on the Borel subsets of
R¢ for X,, - - -, X,. Thus, for k/ne < 9,

&) P{U. [Vi(x) < k[n(f(x) + ¢)]}
< P{supse,, [1#a(S) — #(S)| > ke[2n(F + )}

where &7, is the class of all spheres in R? whose volume is less than 4k/ne.
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Next, with 4k/ne < 4,
Us:rmrse [Vi(®) > k[n(f(x) — )] S Ub:rerse [Vilx) > k/n(f(x) — (3¢/4))]

which implies that, for some x with f(x) > ¢, there is a sphere S centered at x,
with volume < 4k/ne, and

#(S) Z k(f(x) — ¢/2)/n(f(x) — (B)e) »
/"n(s) é k/n ’ and
() — 1) = kefAn(f(x) — 3)e) -

Thus
(6) P{U.:rrse [Vi(x) > kn(f(x) — €)]}

< Plsupse,,, |14(S) — pa(S)| = ke[4nF},
so that

P(sup, [fu(x) — f(¥)] = ¢} < 2P[supse ., |1a(S) — ()] Z ke/4n(F + <)} .
The proof will be completed if we show that for eache >0

(7) 2 Psupse ., [#4a(S) — p(S)| = ke[An(F + €)} < oo .

To prove (7) we employ a variation of the argument used by Vapnik and
Chervonenkis (1971). In this variation use will be made of the following result.
If Y, - - -, Y, represent independent drawings without replacement from a popu-
lation of k 0’s and 1’s then, for e > 0 and k = n,

®) PSSt Yln — p] = <] < 2e-nebcwso

where z, the {number of 1’s}/k, is assumed to be < 4. Additionally (8) holds
when Y,, - .-, Y, are Bernoulli random variables with parameter 2 < 4. (Use
the two-sided version of Theorem 3 of Hoeffding (1963) along with # < } and
log (1 4 (¢/#)) = 2¢/(2p + ¢). See also Section 6 of this paper.)

Now, if sup,, #(4) < M and n = 8M/#*, an easy modification of Lemma 1
of Vapnik and Chervonenkis (1971) yields

(9)  Plsup,, |p(A) — p(A)| Z 8] < 2P[sup,, |¢a(A4) — p/(A)] Z 9/2]
where p,/(A) is the empirical measure for 4 with X, ,, - -+, X,, and .7 is any
class of Borel sets in R? for which
sup,, |m(A) — p(A)]  and sup, |p(4) — p/(4)]
are random variables. Putting % = .9/, we see that M can be taken to be
4kF|ne. Since, for a > 0,
P[sup,, |¢(A) — p/(A)] = 9/2]
(10) < Psup,,, |1(A) — 1/ (A)] Z 925 sUp,,, () = aM]
+ Plsup,,, tu(4) > aM]
we see, using (3) and putting § = ke/4n(F + ¢), that (7) follows whenever both
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terms of the right-hand side of (10) are summable for some & > 0. Looking at
the first term, we note that it equals

1

§ r2na W 2 I[supynmn(m—p;,ungs/z] I[supyn,uz,n(A)§aM] dQ

where [ is the indicator of the set £ Z R® and Q is the probability measure on
R for X,, - - -, X,, and where the inner summation is taken over all (2n)! per-
mutations of x;, - - -, x,,. But this last integral equals

1
§ r2na (—2‘;1‘)‘,‘ PN Ttsup oy, vyt rSa) SUP., L=y arizara1 40

1 .
= {rena Z_Z—n—)r PN I[Supyann(A)éaM] SUP s Iy =y arizarm 49

1
= SRW ZAsy’ I[supyn;t2n(A)§aM] {W Z ][I#,,L(m—#zn(mlgs/ﬂ} dQ

where %" = &(x,, .-+, x,,) is any finite subclass of %, which yields the
same class of intersections with {x, - - -, x,,} and where the inner summation
is again taken over the (2n)! permutations of x,, - - -, X,,. The quantity within
{+} is bounded above, using (8), by

2e—10%/(32p9,, (A)+43)

whenever p,,(4) < §. Since M = 4kF/[ne we see, from (3), that for all n suf-
ficiently large the last integral is upper-bounded by

2 (pona e~ @S 1) 4O |

Choosing .o7" to be a smallest possible subclass, we have (Vapnik and
Chervonenkis (1971), Cover (1965)) that (X,... 1) <1 + (2n)?** and, using
(3) again, that the first term of (10) is summable for all « > 0.

Looking at the second term of (10), let  be the radius of a sphere in R?
whose volume is 4k/ne. If some sphere of radius r contains / of the points
Xy -+« X,, then there must be at least one sphere or radius 2r, centered at one
of the points X}, ..., X,, which contains at least / points. Thus

Plsup,,, #u(4) > aM] < 2nP[1,(S,(2r)) > aM]
where S,(f) denotes the sphere of radius ¢ centered at x. But

P[,a%(SXl(Zr)) > aM]
= mMaX,epd Ppan-1(S.(2r)) > (a2nM — 1)/(2n — 1)]
= MaX,epa Ppty,—1(S2(2r)) — (S,(2r)) > [(@2nM — 1)/(2n — 1)] — 2%4kF [ne] .

At this point it is not difficult, using (3) and (8), to show that the second term
of (9) is summable as long as & > 2¢,

Finally, to complete the proof, it is easy to see that all of the uncountable
unions over x are indeed events and that the various supremums over .97, are
indeed random variables.
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