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SCHUR FUNCTIONS IN STATISTICS
I. THE PRESERVATION THEOREM!'

By F. PROSCHAN AND J. SETHURAMAN
Florida State University

This is Part I of a two-part paper; the purpose of this two-part paper
is (a) to develop new concepts and techniques in the theory of majorization
and Schur functions, and (b) to obtain fruitful applications in probability
and statistics. The main theorem of Part I states that if f(xi, -+, x,) is
Schur-concave, and if ¢(1, x) is totally positive of order 2 and satisfies the
semigroup property for 21 >0, 22 > 0: ¢(A1 + 22, ») = S b1, X)p(A2, y —
x) dpu(x), where p is Lebesgue measure on [0, o) or counting measure on
{0,1,2,---}, then Ay, - ++, An) = § -+ - § TI¥ #As, Xa)floxr, « « +, xn) dpeoxy) + -+
dp(x,) is also Schur-concave. This theorem is then applied to obtain re-
newal theory results, moment inequalities, and shock model properties.

1. Introduction and summary. The purpose of this two-part paper is (a) to
develop new concepts and techniques in the theory of majorization and Schur
functions, and (b) to obtain fruitful applications in probability and statistics.
More specifically, we (a) derive a basic theorem concerning the preservation of
Schur functions under certain integral transformations (Part I), (b) introduce a
stochastic version of majorization and develop its properties (Part II), and (c)
obtain a number of applications of the preservation theorem and introduce the
new notion of stochastic majorization to multivariate distributions.

1.2. Some definitions and the preservation theorem. We give definitions of ma-
jorization and Schur functions because, unfortunately, some previous definitions
of majorization suffer from the lack of distinction between a vector and the
vector resulting from a decreasing rearrangement of its coordinates.

Given a vector X = (x;, - -+, X,), let x;;; = x;; = - -+ = x;,; denote a nonin-
creasing rearrangement of x, - - -, x,. A vector X is said to majorize a vector x’ if
; o .
Zf:lx[i] = Zg=1x[i]a J = L ...,n—1,
and

2 X = Lie Xy s
in symbols, x =™ x’. Notice that whenever (z, - .-, x,) is a permutation of
(1, ---,nmand X’ = (x,, - -+, x, ), we have x =™ x’and x’ =™ x. If a function
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[ satisfies the property that f(x) = (<) f(x’) whenever x =™ x’, then f is called
a Schur-convex (Schur-concave) function. Functions which are either Schur-con-
vex or Schur-concave are called Schur functions (or alternatively, are said to
possess the Schur property). Note that a Schur function is necessarily permuta-
tion-invariant; that is, f(x) = f(x’) whenever x’ = (x_, - -, x; )and (7}, - - -, 7,)
is a permutation of (1, - - -, n). A Schur function need not be measurable. How-
ever, throughout this paper when we say that fis a Schur function we will always
mean that f is a Borel measurable Schur function.

A function ¢(4, x) on R, is totally positive of order 2 (TP,) if (a) ¢(4, x) = 0,
and (b) 4, < 4,, x; < x, imply that

B0 %) D %) < ¢
P x1) (A )|
For instance, see Karlin (1968), Chapter 1.
A function ¢(4, x), defined on (0, o) x [0, o0), is said to satisfy the semigroup
property in A if
(1.1) (A + 4y X) = |7 G(4, X — y)P(4y, ) dpa(y)
where throughout this paper u will denote either Lebesgue measure on [0, o) or

counting measure on the nonnegative integers.
We may now state the preservation theorem whose proof appears in Section 2.

THEOREM 1.1. Let the function ¢(2, x) defined on (0, o) % [0, co) be TP, and
satisfy the semigroup property. Let f(X) be Schur-convex (Schur-concave). Let
(1.2) h(A) = §¢ - 5 f(X) Do ¢(4e x) dp(xy) - - - dpe(x,)
where the integral is assumed to exist. Then h is a Schur-convex (Schur-concave)
function.

There is a long history of preservation theorems in the literature. Typical

among these are the following:

THEOREM (Karlin, 1968, page 130). Let f(x + y) be TP, for x > 0, y > 0 and
let (4, x) be TP, for 2 > 0, x > 0 and satisfy the semigroup property in A. Define
e(t) = {7 ¢(1, 0)f(x) dp(x) t>0,
where 1 is either Lebesgue measure or counting measure. Then c(t + s) is TP, for
t, s > 0.
(Actually Karlin gives a more general version involving higher order total
positivity.)
THEOREM (Marshall-Olkin, 1974). Let f(x) and ¢(y) be Schur-concave functions,
and let h(R) = § f(X)¢(A — x) []7 du(x,) be well defined. Then h is Schur-concave.

Preservation theorems have generally enabled one to understand the property
preserved (such as TP,, Schur-concavity, etc.) and to generate other functions
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with the same property. Our preservation theorem generalizes the Karlin theo-
rem since 7 f(x;) is Schur-convex in X whenever f(x + y) is TP,. The Marshall-
Olkin theorem and our preservation theorem overlap when ¢(4, x) is of the form
II7 ¢(2; — x;) and, in general, neither theorem can be derived from the other.

1.3. Importance of the preservation theorem. Theorem 1.1 shows that the inte-
gral transform A(2) given in (1.2) inherits the Schur property from the function
f(x) being transformed. The deceptively simple preservation Theorem 1.1 will
be shown (especially in Part II) to have many applications to statistics. In one
statistical context, we identify the ¢(4, x) of Theorem 1.1 as the density function
of a random variable X, with parameter 2, and f(x) as the indicator function of
some set in R,. Equation (1.2) then states that, under certain conditions, the
probability of an observation lying in this set is a Schur function of the parame-
tric vector 4. A typical application is the following result of Wong and Yue
(1973).

LemMa 1.2, Let Z(p) = (Z,(p), - - -, Z,(P)) be a multinomial random vector with
parameters (N, p). Let W(p) = {§Z,(p) = 0} be the number of empty cells. Define
fi(p) = P(W(p) = k). Then, fork = 0,1, ---,n, f,(p) is a Schur function of p,
that is, p =™ p’ implies _

P[W(p) = k] = P[W (D) = k].

A simple proof of this result and various generalizations to other multivariate
distributions are obtained as consequences of Theorem 1.1. Theorem 1.1 has
many applications to statistics. In Section 3 we briefly indicate some of these
applications to total positivity, shock models, renewal theory, and moment in-
equalities.

2. Preservation of the Schur property. In this section we prove the Schur
property preservation result stated in Theorem 1.1 above. We first prove the
result for the bivariate case in Lemma 2.1. We recall that ¢ stands for Lebesgue
measure on [0, co) or counting measure on the nonnegative integers.

LemMA 2.1. Let ¢(4, x) be TP,, ¢(2, x) = 0 for x < 0, and ¢(2, x) satisfy the
semigroup property. Let f(x,, x,) be Schur-convex (Schur-concave). Let
2.1) b4y, 25) = (8 §5 f(x1 x,)B(A0s x,)P(Ry X,) dpe(xy) dpe(xy)
where the integral is assumed to exist. Then h(A,, A,) is Schur-convex (Schur-concave).
Proor. We shall prove the result for f Schur-concave. The result for f Schur-
convex will follow by considering — f.
Let (4, 4,) =™ (4/, 4,/). Without loss of generality, take 2, > 2,, 4,/ > 1.
Then
h(zv '22) - h('zll: '22’)
= 1§ [#(4s x)B(45, x;) — S(A)s X)P(A), x,)] f(x15 x5) dpe(x,) dpe(x,)
= 0(4h — 4, ) S [$(As X1 — »)p(4s, X3)
— $(4's X)P(Ae X, — Y)f(x15 X,) die(x,) dp(x,) dpe(y)
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[using the semigroup property and the fact that 4, — 2, = 4, — 4,]
= {64 — 4/,)) xSan [0+ ps %) — flx X + p)]
X [ X)) (e X5) — (A5 X)P (A X1)] dpr(xy) dpe(x,) dpe(y)

[by a change of variables and the permutation-invariant property f(x;, x;) =
f(x;, x;). The special nature of the measure £ is also used in this step].

Now, f(x, + y, xy) — f(x;, X, + y) < 0 since fis Schur-concave. Also, ¢(4/,
X,)B(Ags X5) — (A, X;3)9(45 %) = 0 since ¢ is TP, and 4, = 4;and x; = x;. Thus
h(2y, 2) — h(2/, 2) £ 0, i.e., k is Schur-concave. []

The proof of Theorem 1.1 is now an easy consequence.

ProoF oF THEOREM 1.1. We shall prove the result for f Schur-concave. The
result for f Schur-convex will follow by considering —f.

Let 2 =™ A’. By the result of Hardy, Littlewood, and Pélya (1952, page 47),
there exists a finite sequence of vectors 2, =™ 4, =™ ... =™ 4, such that 4, = 2,
A, = A',andforeachi(i = 0,1, ..., k — 1), 2, and 4,,, differ in two coordinates
only. We may therefore, without loss of generality, assume that 4 and 4’ differ
in two coordinates only, i.e., 2 = (A, 4y A5y -+ +5 4,)s &' = (4, &5 45, -+, 4,)s
and (4,, 4,) =™ (4/, 4/). It follows by Lemma 2.1 that for fixed x,, - - -, x,,

112 ¢(2is x;) §§ (4 X)P (A0 X,)f(X) dpr(x,) dpe(x,)
= I8 ¢(Ze x0) §§ @(4, x)B(4)5 x,)f(X) dp(x,) dpe(xy) -
Integrating each side of the inequality with respect to du(x,) - - - dp(x,), we
conclude that A(2) < A(A"). It follows that A(R) < A(4'), i.e., A(A) is Schur-
concave. []

REMARKS.

1. The requirement ¢(4, x) be TP, cannot in general be dropped from the
hypotheses of Theorem 1.1. Counterexamples are easy to construct; one such
can be extracted from the counterexample in Section 4 of Part II.

2. Let A be a semigroup contained in (0, co). For instance, A could be the
set of positive integers. A function ¢(4, x) defined on A x [0, co) is said to
satisfy the semigroup property on A if (1.1) holds for 4, 4, A. A function
h(y, - -+, 4,) defined on A x ... x A is said to be Schur-convex if A(2) = A(4")
whenever 4, ¢ A x ... x Aand 2 =™ A’. Theorem 1.1 still holds if the first
sentence in it is changed to “Let ¢(2, x) defined on A x [0, o) be TP, and satis-
fy the semigroup property on A.” Corollary 3.3 uses this slight extension of
Theorem 1.1.

3. Applications. We now give a few illustrative applications of Theorem 1.1
in the areas of total positivity, shock models, renewal theory and moment in-
equalities.

Consider the following shock model. A device is subject to n types of shocks.
Let the probability of surviving k, shocks of type 1, ..., k, shocks of type n be
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Py..., Assume that shocks of type i occur according to a Poisson process
having rate 2,, i = 1, - .-, n, with the n processes mutually independent. Then
the probability H,(2) of surviving until time ¢ is given by

(3.1 H(2) = D=0t =0 1182 [e~*(4, t)ki/ki!]lskrukn .
An application of Theorem 1.1 yields the following result:

CoROLLARY 3.1. Let P, ..., be Schur-concave (Schur-convex) in k. Then for
fixed t > 0, H/(2) given in (3.1) is Schur-concave (Schur-convex) in A.

For an example of a survival probability satisfying the conditions of Corollary
3.1, consider
Pkl,m,kn = IIix P/ﬁ'; ’

where P, * is log concave in k (i.e., the independence case). It follows that
P, ..., is Schur-concave, and thus H,(2) is Schur-concave in 4. Since

I-?t(Z) = [Iia ﬁ:*(xi) s
where

H*QA) = N, Bre- ()t /k!

it follows that H,*(2) is log concave in 2. This conclusion corresponds to (3.2)
of Theorem 3.1 of Esary, Marshall and Proschan (1973).

COROLLARY 3.2, Let X;;, i=1,.-.,n; j=1,2, ..., be independently and
identically distributed according to a log-concave density g with support [0, co). Let
fluy, -+, u,) be Schur-concave. Define h(k) = Ef(3 %1, Xy;, « -+, 2oy X ).
Then h(K) is Schur-concave.

This result follows from Theorem 1.1 by expressing 4(k) as shown below:

h(k) = § - § I g5 @) fQuy, -« o5 u) duy - - - du,,
where g'¥'(u), the k-fold convolution of g(u), satisfies the semigroup property:
grto(u) = § g — x)g*(x)dx and is TP, in k = 1,2, ... and u = 0 (Karlin
and Proschan, 1960, Theorem 1).
An interesting special case of Corollary 3.2 may be stated as follows:

CoroOLLARY 3.2a. Let X;;, i=1,.--,n; j=1,2, ..., be independently and
identically distributed according to a log-concave density g with support [0, co). Let
S be a set in E™ such that x € S and x Z™ x' imply x' € S. Then k =™ K’ implies

(3.2) Pl Xy e, i Xa)eS] S P[(Z'f;' Xy oo D Xoi) € ST

Corollary 3.2a follows from Corollary 3.2 by choosing f(x) = 1 if xe § and
= 0 otherwise, and noticing that f is Schur-concave.

In our next applications, we obtain inequalities for moments of a class of
multivariate distributions.

CorOLLARY 3.3. Let g(X) be a Schur-concave density, with g(x) = 0 if any of
X;, +++y X, iS5 negative.
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For0 < a, < o0, -++,0 < a, < oo, let

xlal—l xnan—l

I'(a)) . I(e,)

(3.3) Ma)=F§.--§ 9(x)dx, --- dx,
be a corresponding normalized multivariate moment. Then M(a) is Schur-concave,
where it is finite.

Proof. In Theorem 1.1, choose ¢(«a, x) = e=*x*~!/I'(a) for x = 0, « > 0, and
= 0 elsewhere. Then ¢(a, x) is TP, and satisfies the semigroup property, as is
easily verified. Let f(x) = g(x) exp(2;? x,). Then f(x) is Schur-concave. The
derived conclusion follows immediately from Theorem 1.1.

Corollary 3.3 generalizes Theorem 1 of Karlin, Proschan and Barlow (1961)
for the univariate case when the density is log-concave.

REMARK 3.4. Corollary 3.3 yields Schur-concavity for the normalized mo-
ment M(e) under the assumption of Schur-concavity of the density. The result
derives additional interest when we note that the ordinary (nonnormalized)
multivariate moment

(3.4) m(a) = §5 - (& []r, t5f(t) de, - - - dt,
is Schur-convex for any density f(t) on [0, co) x --- x [0, co) which is invariant
under permutation. See Tong (1976).

A closely related result for multivariate Laplace transforms may be similarly

obtained.

COROLLARY 3.5. Let f be a nonnegative, integrable function on [0, co) x -+ X
[0, o) which is invariant under permutation. Let
(3.5) 48 = N5 - Sp e Sttty dr, - d,
be defined and finite for 5 < s, < oo, i =1, -.-,n. Then f* is Schur-convex on
[5° o0) x -+ x [5,°, o).

Finally, Schur properties for binomial moments may be obtained as in Corol-
lary 3.3, Remark 3.4 and Corollary 3.5. Thisis a consequence of the fact that
é(i, n) = (%21) and ¢*(n, i) = (%) are TP,. We leave the details to the reader.
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