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COMPOUND MULTINOMIAL LIKELIHOOD FUNCTIONS ARE
UNIMODAL: PROOF OF A CONJECTURE OF I. J. GOOD

By BRUCE LEVIN AND JAMES REEDS
Columbia University and Harvard University

I. J. Good’s 1965 conjecture of the unimodality of the likelihood func-
tion of a symmetrical compound multinomial distribution is proved by the
variation-diminishing property of the Laplace transform. The result is a
special case of a several sample version with asymmetrical compounding
Dirichlet distributions. The technique of proof is applied to yield similar
results for the negative binomial distribution and a two point mixture of
Poissons.

1. Introduction. Let n = (n,, - .-, n,) be a sample of size N = };5_, n; from
a t-category multinomial distribution with parameters p = (p,, ---, p)- If p
has a Dirichlet (generalized beta) distribution with parameters @ = (a;, - - -, @,)
then marginally the counts (n,, - - -, n,) have a compound multinomial distribu-
tion which we shall denote by n ~ CM(N, 1, &), or by n ~ CM(a) when N and
t are fixed. The probability mass function of the CM(a) distribution is

Prnlay = (M) (DT a)) (1L L+ )
Mo/ \ T D)/ \T(N + 250 ay)
When ¢ = 2 this is the beta-binomial, or Pdlya, distribution which arises from
the Polya urn scheme (Feller (1968), page 120). The likelihood function for the
CM(a) distribution is
L(a|n) = (X5 @)/ 1= D@))(IT= D(ny + ap)/TN + T @) -
Assume @ = kA for known A with 2, 4+ --- 4+ 4, = 1. Given a sample of m
independent observations n,, - - -, n,, from the CM(N, ¢, @) distribution, we may
view the likelihood function
(1.1) L(ky = TI7 L(@|n;)
as a function of k, whose domain may be extended to (0, co] by continuity:
L(o0) = lim, ., T2 L(kA|n) = [17 TTjos 457 -

(Notation: n; = (n;, - -+, n;).) In the special case m = land a; = a, = --+ =
a, = k[t we have

L(k) = (k)T (k[t))(TT5=1 T(n; + k[D[TN + k)
(1.2) = L= IS (b + kO[T (k) i k< oo

=¥ if k=oco.
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Empty products in (1.2) and throughout this paper are to be interpreted as unity,
and empty sums when they appear are to be interpreted as zero.

I. J. Good (1965, 1967, 1975) and Good and Crook (1974) have used these
likelihood functions in estimating multinomial parameters. Good (1965, page
37) conjectured that the likelihood (1.2) is unimodal:

“Given a Type I sample (n,, ---, n,), the Type II log-
likelihood of the flattening constant k (k > 0), that is, of
" the symmetrical Dirichlet Type II distribution of parameter
k when regarded as a function of k, has at most one local
maximum. It takes its maximum at k = co if * <t — 1
and for a finite value of k if ¥ > ¢ — 1, where

2= (t/N) i (n, — Njo*.”

As Good (1965) showed, the conjecture is true if (d/dk)log L(k) = O has at
most one root, but until now no complete proof guaranteeing this has appeared.
Our proof, which uses the variation-diminishing property of the Laplace trans-
form, shows the relevance of the y* condition in a natural way.

Theorem 1 of this paper yields, as a special case, a proof of Good’s conjec-
ture. Theorem 2, an extension to a multivariate negative binomial distribution,
answers Anscombe’s question ((1950), page 367) about the uniqueness of the
maximum likelihood estimate of the exponential parameter of the negative
binomial distribution. Theorem 3 shows that the likelihood function for the
mixing parameter of a mixture of two known Poissons is unimodal. An appen-
dix gives an example showing that the “smoothing step” in the proof of Theorem
1 is indispensable.

2. Main result.

THEOREM 1. The likelihood function (1.1) has at most one local maximum. It
occurs for finite k if

(2.1) > i ti(ng/N) —m
and for k = oo otherwise, where

L= N Doy — N2 N2,
and forj =1, ..., t,t;, = A andn,; = 3" n,;.

If (2.1) is satisfied, every derivative of log L(k) has exactly one zero in (0, co); if
(2.1) is not satisfied, none of the derivatives of log L(k) have any zeros in (0, oo).

ProOOF OF THEOREM 1. Write

(2:2) L(k) = TIr = T (B + kAT (B + )™
The logarithmic derivative of (2.2) is

d nyi—1 1
@3) S 10gL(k) = D Thes Ti% Yk + he)) = T mi(k + B
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This is the Stieltjes transform of a certain signed measure:
g}z log L(k) = (5> 1/(k 4+ u) dG(u) — (5= 1/(k + u) dF(u)

= §5 1(k + u) d(G — F)(u) -
where F is a measure placing mass m at each of the points# = 0,1, ..., N — 1
and G is a sum of measures G,; placing unit mass at the points ¥ = hr; for 0 <
h < n,;. (If n;; = 0 then G,; is the zero measure.) The lower limit of integra-
tion indicates any point to the left of zero; since G — F assigns no mass for
u < 0, this point is arbitrary. ‘
The general strategy of the proof is to apply the well-known

LEMMA 2.1. If the function A(u) has Laplace transform 2 ,(y) = (5 e~ " A(u) du,
then the number of roots of . ,(y) in (0, co) is not greater than the number of sign
changes of A(u) in (0, co0).

Proor. For the general result, see Karlin (1968) or Pélya and Szego (1964).
We only make use of the special case where A(x) has at most one sign change,
in which case it is easy to verify the lemma making use of the monotone ratio
property of e=*. []

As a matter of notation, if M is a finite, signed measure on [0, co) we shall write

Lan(y) = (5 e dM(u)
and
Zy(y) = S e M(u) du , where M(u) = (¢ dM .
We freely use the relation .., (y) = y - .4y (y) for all y > 0.
Returning to the proof of Theorem 1, note that
(5 ekror dy = 1/(k + u)
whence

.j_k log L(k) = §¢ e~ {2 e~ d(G — F)(u) dy

= {7 e o(y) dy = (k)

¢(y) = {5 e d(G — F)u) = Zy6-r()) »

which is the Laplace transform of the signed measure G — F. Once we show
that ¢(y) has at most one sign change in'(0, c0), we apply Lemma 2.1 and we
are done. The “distribution” function G(#) — F(u) = {{- d(G — F) has many
sign changes, however, and in order to prove that ¢(y) behaves as desired, we
must smooth G(x) — F(u).

First convolute G(x) — F(u) with the distribution function of a uniform ran-
dom variable on [0, 1] and call the result (G* — F*)(u). Thus

(G* — F*)(u) = U(u) » (G — F)(u) where Uu) =0 u<O0
=u 0Zugl

where
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Since F* is mN times the distribution function of a random variable whose
integer part is uniformly distributed over {0, 1, - .-, N — 1} and whose fractional
part is uniform on [0, 1], we see that F* is just mN times uniform measure on
[0, N] with

dF*(u) =0 <0
= mdu 0u<N
=0 u>N.

Similarly G* is the sum of measures which are each Lebesgue measure on inter-
vals of the form [jr, jr + 1],j=0,1, ..., 8 (for nonnegative integer f), and
zero elsewhere. We claim G* is described by

LEMMA 2.2. For allu = 0,

(2.4) i x dG*(x) < (4f2) - §i- dG*(x) .
Proor. It suffices by linearity to prove the lemma for G* such that
dG*(u) = du if tugje+1, j=0,.---,5
=0 otherwise.

Define b = b(u) = min ([u/7], 5) where [x] denotes the greatest integer < x. Then

(2.5) G*(u) = (3~ dG*(x) = b + u — b if u<zb+1
4+ 1 if u>h+1.
Similarly
(2.6) (o xdG*(x) = eb(b — 1)/2 + bJ2 + L(w* — (zb)*) if u< b+ 1
+ b 4+ 3 if u>cbh+1.

In the first case u < b + 1, (2.4) holds if and only if
th(b — 1) + b + u* — (zb)* < ub + w* — urh
if and only if
(1 +7b—u)-br —1) =0, whichis true.
In the second case u > b + 1, (2.4) holds if and only if
b — 1)+ b+ 2ctb + 1 Zub + 1)
which is also true. [J '

Now by the convolution theorem for Laplace transforms,
pe _ p 1 — e -
L ar—pn (V) = (V) a—p (V) = ) awi—r(¥)

so that it suffices to show that ./ ._,.(») has at most one zero on (0, co).
Consider the convolution of G*(u) — F*{u) with the function

Iwy=u uz=0
=0 u<O,
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which is
H(u) = I(u) « (G*(u) — F*(u)) = (i (0 — x) d(G* — F*)(x)
= §i- (G*(x) — F¥(x)) dx.
Then

LD = L) Fawrn ) = (F5) 00

and another application of Lemma 2.1 shows that (1 — e7¥)/y*)¢(y), and hence
#(y), has no more sign changes than H(x). By Lemma 2.3 below, if H(x,) < 0
for any u,, then H(u) < O for all # > u,. Thus H has at most one sign change.

LemMA 2.3. u = 0 and H(u) < 0 implies H'(u) < 0.

Proor. Suppose H(u) < O for some # > 0. If u > N we have immediately
F*(u) = mN = G*(u) since the total mass in G* is mN. If u < N then F*(u) =
mu and (¥ F*(x) dx = mu?/2 = (u/2)F*(u). Thus H(u) < 0 implies

i (u — x) dF*(x) > {3 (u — x) dG*(x)
which implies
@[2)F*(u) > uG* () — §i- x dG*(x) = (u/2)G*(u)
by Lemma 2.2, and thus H'(x) = G*(u) — F*(u) < 0. ]
Summarizing, H has at most one sign change on (0, co), hence the same is
true for ¢, hence (d/dk) log L(k) has at most one zero on (0, o).

To show that the higher derivatives of log L(k) have at most one root, we
need only notice that
d” 2
S log L(k) = A4k where W(y) = (=))"76(0)
The preceding argument carries over exactly.
To show the necessity of the yx* condition (2.1) we will prove that if y* <
>, ti(n.;/N) — m then H(u) = O for all u. First, for sufficiently large values of
u, we may evaluate H(u) using (2.5) and (2.6) as

W(GH(u) — FHW) + §3 x dFH(x) — §i- x dG*(x)
=04+ "V T G — 1)+ nf2)

= NJ2(Xf=1ti(ny5/N) —m — 17)

which is = 0 by assumption. Thus H(x) = 0 for all u > 0 since Lemma 2.3
showed that otherwise lim, ,, H(x) < 0. Now H(u) is not identically zero since
F and G are not identical, and therefore ..2 (y) is strictly positive. Thus ¢(y),
W(y) and (d”/dk") log L(k) all have no roots in (0, o).

For sufficiency, it is clear that unless we have the trivial case in which all but
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one of the n;; (j =1, - -, t) equal zero, for eachi =1, --., m, we must have
lim,_, (—1y7 % log L(k) = oo .
dk®
An elementary asymptotic expansion of (2.3) shows
lim,_, (— 1y % log L(k) < 0
dk®

if (2.1) is satisfied. Thus continuity ensures a root of (d?/dk®) log L(k) in (0, co). []

REMARKS. 1. Whenm = 1 and 4; = 1jtforj = 1, ..., ¢, the condition (2.1)
reduces to y* > t — 1 given in Good’s conjecture. This condition for the exist-
ence of a local maximum can be rephrased in terms of the “sample repeat rate”
or “index of coincidence” of the sample n. The minimum variance unbiased
estimate of the repeat rate p = > %_, p;° is

p = Xi=ani(n; — HIN(N — 1),
and the condition y* > ¢t — 1 is exactly p > 1/r. The population repeat rate p
must satisfy o = 1/t by the Cauchy-Schwarz inequality, with strict inequality
if the p, are not all equal. Thus to observe y* < ¢ — 1 is to observe p < 1/t
which should signal the anomalous situation.

2. A somewhat simpler proof can be given for the special case of Good’s
conjecture (m = 1, 4; = 1/r). The initial convolution of G — F with U is not
necessary in this case, and Lemma 2.2 can be simplified. In the example given
in the appendix, only the final convolution with /(x) is used.

I

3. Extensions to other distributions. Analogous results hold for the negative
binomial distribution and the Poisson mixture.

3.1. Let (n, ---,n,) be a vector of observations whose components n; are
independently distributed as negative binomial random variables with parameters
p and a;, with probability mass function

1
Pr(n;|p, a;) = P L(n; + a;)/T(a;)pri(1 — p)*
;!
= ("= D i = s
n.

J

for n; =0,1,2, .-+ and &; >0, 0 < p< 1. Define k = 35, a;, A=k'a
and assume A known as above. With a sample of m such observation vectors
n,, ---,n, we obtain the likelihood function

3.1 L(p, k) = L(p, k|4, ny, ---,n,)
, kA — 1\ m
= II [ <”’ * N )P“(l -

i

where N = ., >ii_, n,;.
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THEOREM 2. The likelihood function (3.1) has at most one local maximum at
(p, k) where p = N(N + mk). The maximum occurs for k < oo if and only if
=175 2im yg(n; — 1) > N*jm.
(The solution k = co corresponds to independent Poisson (NA;/m) random
variables.)
Proor. The likelihood equations yield p = N/(N + mk) trivially and & satisfies
the equation
i DRt 1 (k + k) — mlog (1 4+ N/mk) = 0
with t; = ;7' > 1. Here the measure F is simply m times Lebesgue measure
on (0, N/m) since for k > 0,
§o/™ 1/(k + u) du = log (1 + N/mk) .
The measure G is identical with that described in Section 2. We now verify
directly that the function H(x) = (¢ (1 — x) d(G — F)(x) obeys the conclusion
of Lemma 2.3 using the formulae
F(x) = mx for 0 < x < Nm

=N for x = N/m

and
(v F(x)dx = mu*2 if u< N/m

= _’25 (N/m)* + N(u — Njm)  if u > N/m.

For let H(u) > 0 for some u = 0. If u < N/m we have
0> H(u) = (§- G(x) dx — (i~ F(x)dx = (u/2)G(u) — (i F(x) dx
= (4/2)(G(u) — F(u)) implies H'(u) < 0.

(The inequality (- G(x)dx = (#/2)G(u) follows from a simple modification of
Lemma 2.2.). If u > Njm then already F(u) = N = G(u). Thus unimodality is
established. The necessary and sufficient condition is obtained from

0> lim,  H@u) = 3m, 26, 2! (u — he;) — (Nu — LN?*/m) for large u

=3(N?/m — 3, e ting(ng — 1)) . U
3.2. Consider two Poisson distributions Z#(4,) with known means ,, i = 1, 2
and 0 < 4, < 4;,. Suppose we have observations n,, - .., n, where the n, are

iLid. from pF(4) + (1 — p)F*(4,) with unknown mixing proportion p, 0 <
p = 1. The likelihood function is

3.2) L(p|n) = TIr, (peh12/n! + (1 — p)e=*22,%/n,!) ,
and the likelihood equation may be reduced to
=1 1/(ri + x) - m/(l + x) =0

where x = (1 — p)/pand for i =1, ..., m, r, = el2="1(2,/2,)™.
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THEOREM 3. The likelihood function (3.2) has at most one local maximum as a
Sfunction of pin (0, 1). The necessary and sufficient condition that the maximum oc-
cur in (0, 1) is that both 3 7 r, > mand 37, r;=* > m. Otherwise the maximum of
(3-2) occursat p=0orp=1lasi = (1/m) 3m n,is > or < A, — A,/log (A/2,),
respectively. If equality obtains, (3.2) is constant for all p.

Proor. Consider
) = Zr 1(r + x) — m)(1 4 x) = (& 1/(x + u) d(G — F)(u)

where F-puts mass m at #« = | and G is a sum of m measures G, placing unit
mass at u = r;. Let H(u) = {§ (G(x) — F(x)) dx so that f(x) = £,(x) where

() = Lae-m(y) = VL u(y) -

The conclusion of Lemma 2.3 applies to H: if H(u) < 0 then { F(x)dx > 0 and
u =1 so that F(u) = m = G(u) and H'(u) < 0. Hence H, and consequently ¢
and f all have at most one sign change.

If f has exactly one root in (0, co) then by the foregoing H(x) must have a
sign change, so that H(co) =m — 3, r, < 0. Butm — 37 r, = lim,__, xf(x)
showing f(x) < O for large x so that f{0) == 7, r,* — m > 0 is also necessary.

Conversely, if both >r, > m and 3.7 r,"' > m, then f(0) > 0 and for all
sufficiently large x, f(x) < 0, so that f has a root in (0, c0). The reader may
examine the values of (3.2) at the endpoints p = 0 and p = 1 to derive the re-
maining assertions in the theorem. []

APPENDIX
The following graphs illustrate the need to smooth. Figure 1(a) gives the
graph of the mass function d(G — F)(u) for the multinomial datar = 4, N = 16,
n=(1,3,57),m=1. Herey’ =5. Figure 1(b) gives G(x) — F(u) and Figure
I(c) gives H(u) = I(u) x (G — F)(u). Each graph is the indefinite integral of the
previous one. Only H(u) exhibits just one sign change.

3i-
dG-Fw 2

o _ t
bbb PR TR T

FiG. 1(a). Each arrow 1 represents one delta-function. Graph displays 8 sign changes.

t 4,

3

G(u)-F(u)_éE_L—l rLl ur_l 1‘1 ] — u
- ﬂjﬂf

Fi1G. 1(b). Vertical lines added for clarity. Graph displays 3 sign changes.
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—“ DWW DO O @®O
I

H (u) ? u
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-13
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F1G. 1(c). Graph compressed for space. Graph displays 1 sign change.
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