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WEAK CONVERGENCE OF PROGRESSIVELY CENSORED
LIKELIHOOD RATIO STATISTICS AND ITS ROLE IN
ASYMPTOTIC THEORY OF LIFE TESTING!

By PrRANAB KUMAR SEN
University of North Carolina, Chapel Hill

Progressive censoring schemes are often adopted in clinical trials and
life testing problems with a view to monitoring the experiment from the
start with the objective of a possible early termination of the experiment
depending on the cumulative evidence at its various stages. Along with a
basic martingale property, a Wiener process approximation for progres-
sively censored likelihood ratio statistics is established here and the same
is incorporated in the formulation of some asymptotic sequential tests for
the life testing problem.

1. Introduction. For n (= 1) items under a life test, the smallest observation
comes first, the second smallest second, and so on, until the largest observation
emerges last. Thus, the entire span of experimentation may be quite time con-
suming (as well as costly), and hence, the experiment is often carried out either
for a specified length of time (truncation) or until a prespecified proportion of
the subjects respond (censoring). In most practical problems, a single point of
truncation or censoring may lead to considerable loss of efficiency; a too early
termination usually leads to an increased risk of making incorrect statistical
decisions, while unnecessary prolongation may involve greater amount of cost
and time as well as more sacrifice of lives of the experimental units without
any significant increase in the sensitivity of the experiment. Also, for the
censoring scheme, the actual period of experimentation is a random variable
and may run into conflict with the other limitations on time as set by other
practical considerations on the study. For these reasons, in clinical trials and
life testing problems, progressively censoring schemes (PCS) are often adopted to
monitoring the experiment from the start with the objective of an early termi-
nation whenever feasible, and this usually leads to a substantial amount of
savings of time, cost and lives of the experimental units. By constitution, the
statistical procedure based on a continuous updating of the data in a PCS is
essentially sequential in nature and this introduces additional complications in
its formulation.

The current paper is devoted to a basic invariance principle for progressively
censored likelihood ratio statistics (PCLRS) for a broad class of survival distributions.
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Along with the preliminary notions, the main theorem is formulated in Section
2. Section 3 is devoted to the proof of the main theorem. Section 4 deals with
a class of asymptotic (sequential) tests for the life testing problem based on the
basic invariance principle for the PCLRS. A potential reader interested only in
the applications may look carefully in Section 2 and then proceed to Section 4.

2. Preliminary notions and the main theorem. Let {X,, i > 1} be a sequence
of independent and identically distributed random variables (i.i.d. rv) with a
continuous probability density function (pdf) f;(x) and distribution function (df)
Fy(x), x € R, the real line (— o0, ), § € ® C R. In a life testing problem, the
X, are nonnegative, so that F,(0) = 0 for all # ¢ ®. We desire to test the null
hypothesis

(2.1) H,: 6 = 0, (specified), against one or two-sided alternatives.

For n(= 1) items under a life test, the observable random variables are
X,, < -+ <X,,, the order statistics corresponding to X, ---, X,; by virtue
of the assumed continuity of F, ties among the X; (and hence, X, ;) can be neg-
lected in probability. In a censored plan; for some fixed r (1 < r < n), the
experiment is terminated at X, . and the test for H, in (2.1) is then based on
(Xu1 +++»X,,). In a truncated scheme, the experiment is continued for a
predetermined length of time 7 (0 < T < o), and if r* (0 < r* < n) of the
observations lie in the interval [0, T], the test is based on them; if r* = 0, one
works with the probability {1 — F,(T)}", while for r* > 1, with X, ;, - -+, X,, ..
In a PCS, we allow the possibility of terminating the experiment prior to X, ,
through monitoring from the beginning. Here, if for some k (< r), (X, -,
X, ) advocate a clear statistical decision in favor of either of the hypotheses, the
experiment is stopped following X,, ,. Thus, both the stopping number k and the
stopping time X, , are stochastic variables.

We denote by

22 Zy=X., ZH=(Z,-Z), 1Sk=n; Z,=Z9=0.

Then, for every k: 1 < k < n, the (joint) pdf of Z* is

(2.3) - po(2®s m) = n"TTE, fu(z) {1 — Fo(zo}*~";
nl'=n...(n—k+1),

and (2.3) is defined on the domain 4,™ = {z®:0< 2, < .-+ < z, < oo}. In
the sequel we relate the censoring number r to n by letting r/n — p as n — oo,
where p e (0, 1]. Also, we assume that © is an open interval (C R), fy(x) > 0
for every x € R*, 0 € O, f,(x) is a continuously (twice) differentiable function of

6 and for every 6 € O,

(2.4) (81867 f)(x)] < U(x)  where {2, U(x)dx < oo, i=1,2;
(2.5) 0 < J(O0) = §5 f5*(x) dFy(x) < oo,

where for a nonnegative ky(x), hy(x) = (3/30) log h,(x) and h,(x) = (3/36)h,(x).
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Let r,(x) = fy(x)/{1 — Fy(x)}, x € R* be the hazard function and assume that
VoecO,
(2.6) [(9¢/06%)ry(x)| < U;*(x) where (=, U*(x)dx < oo, i=1,2.
Note that by assumption fy(x) > 0 for all x e R*, 6 € ©, so that
2.7) re(x) > 0 whenever 0 < Fy(x) < 1.
We assume that for all § € O,
(2.8) . (eiAX)dF(x) < oo and (@ FA(x) dF,(x) < oo .
Then, if we denote by F,(x) = {r,(x)}7(3°/00*)ry(x) = Fs*(x) + Fo(x), we have
(2.9) § FA(x) dFy(x) < 0o, forall 6¢®.

Further, let us denote by G,(x) = 1 — F,(x) and define the logarithmic deriva-
tives G,(x) and G,(x) as before. Note that G,(x) = fy(x) — F4(x) and G,(x) =
fa(x) — F4(x), so that by (2.5) and (2.8),

(2.10) |E,Gy(X)| < 0 forall 0e®©.
Finally, for every a € (0, 1), let
@.11) T{0) = V&5 f(x) dFy(x)
+ (1 = ) {§75 1w folx) dF ()}, 0e®,

so that for every 8 € ©, J,(0) is /" in a € (0, 1) and lim,_, J,(0) = J(0).
We are primarily concerned with an invariance principle for the partial
sequence

(212) Zn,k = pa(Z(k), n) N k = 1, BRI (] and ln’o =0.
To formulate this, we define
(2.13) Jao0) =0 and Jox(0) = Ejf22,}, for k=1,...,n.

Note that J,, ,(0) is nondecreasing in k (1 < k < n) for every 6 € ©. For every
(n,r) (n = r = 1), consider a stochastic process W, , = Wi, ={W, (1,0 =
t < 1} by introducing a sequence of integer-valued, nondecreasing and right-
continuous functions {k,(¢), 0 < ¢t < 1} where

(2.14) k() = max {k: J, (0) < tJ, ()}, 0<r<1
"and then letting
@.15) W) = 2 i 2.,6) 0o<r<1.

Then, for every n = r = 1, W, , belongs to the D[0, 1] space, endowed with the
Skorokhod J, topology. Then, the main theorem of the paper is the following.

THEOREM 1. Under the assumptions made before, whenever rin — p( € (0, 1]) and
7,(0) > 0,
(2.16) W,.—5 W, in the Skorokhod J, topology on D[0,1],
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where W = [W(¢), 0 < t < 1} is a standard Wiener process on the unit interval
[0, 1].

The proof of the theorem is considered in Section 3. Also, under some
additional regularity conditions, the result is extended in Section 3 for contigu-
ous alternatives (viz., Theorem 2). The latter result is useful for the study of
the asymptotic power properties of the tests considered in Section 4.

3. Proof of the main theorem. First, we consider the following three lemmas
which are needed in the main proof. Let <7, , be the sigma-field generated by
Z®, for k=1, ...,n and £5,, be the trivial sigma-field. Then, for every
n(= 1), ,, is nondecreasing in k: 0 < k < n. Also, define the 2,, as in
(2.12). )

LeMMA 3.1. For every n (= 1), {2, 4, Pri» 0 < k < n} is a martingale.

ProoF. Given &, ,_,, the conditional pdf of Z, (defined for Z, > z,_,) is
given by
B.1) 4o Ze| FBrper) = (n — k + DfW(ZN1 — Fy(Z)}' {1 — Fy(z, )",
so that forevery k: 1 < k < n,

(3.2) Po(Z®, n) = po(Z*1, 0)q(Zy| By or) = 11k 9o(Zi| Frimn) 5

(3.3) Ao = Db A e = 4o(Zy| Py i) k=1,.-,n.
Now, assumptions (2.4) through (2.8) insure the integrability of 2}, and the
differentiability under the integral sign, so that for every 1 < k < n,

(34)  E(A| Fhwa) = §5,_,{(9/90) 10g 4u(2| 2, 1-1)}90(2| B ) 2
= (9/30) \z,_, 90(2| 1) dz = 0.
Hence, the lemma follows from (3.3) and (3.4). (]

LEMMA 3.2 Under the regularity conditions of Section 2, rin — a( € (0, 1]) in-
sures that
(3.5) nJ, (0) > J(0) forall 0cO.

Proor. Forr=n, we note that J, ,(0) = —E, p(Z™, n) = Y1r_, Ej{ —f(X)} =
nJ(6). So, we need to prove the result for @ < 1, where for large n, we may
take r < n — 1. Note that by (2.3), for r < n,

(3.6)  Juil0) = —E,pAZ7, n) = T Ef—fo(Z)} + (n — NE—Gy(Z,)} .
Hence, forr < n — 1,
nt i Ef —f(Z)} = 07t Diey EfE{—f(Z)| Z,11})

= e 5 (=) )

X AFA2 1 = o)~ dF(2)
= B }s 1) = {0} dF0)

3.7)
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where X,_, , is the rth order statistics of a sample of size n — 1 from the df F),.
Thus, by the moment convergence of sample quantiles [viz., Sen (1959), Sarkadi
(1974)] and (2.5), the rhs of (3.7) converges (as n — o) to

(3.8) — {07 fo(x) dFy(x) = — {5074 ((3*/007)f,(x)} dx
+ §507H0 f(x) dFy(x) .

The same moment convergence result of the sample quantiles implies that as

n— oo,
n(n — nE,{—G,(Z,)}
3.9) o —(1 — a)Gy(FyY(a)) i
= _S;‘og_l(a)fﬂ(x) dFB(x) + (1 - a)_l{seﬁo'g_l(a) fﬂ(x) dx}2 .
Then, (3.5) follows from (3.7), (3.8), (3.9) and (2.11). []
Let {Y,,i = 1} be a sequence of i.i.d. nonnegative rv’s with a continuous
pdf A(y), y € R*, where we assume that
(3.10) 0 < A(0) = lim,,, A(y) < oo .
Also, let g = {g(y), y € R*} be such that in some neighbourhood of the origin,
g(y) has a continuous first derivative g’(y) and lim, , g'(y) = ¢'(0) exists and
further for some d > 0, E|g(Y)|* < co. Finally, let Y,, = min(Y,, ---, Y,),
n=>=1.
LemMA 3.3. Under the assumptions made above, E{|ng(Y, ,)|*} exists for every k:
0 < k £ nd, and for every (fixed) a (= 0),

(3.11) lim, ., E{[n]g(Y...) — 9(O)|I*} = |a + 1{|g"(0)|/~(0)}" .

The proof follows along the lines of the proof of Theorem 3.1 of Sen (1961),
and hence is omitted.

Let us now proceed on the proof of Theorem 1. We define
(312) agp,k = E{R:,zk |‘%’n,k—1} , k=1,.. R 031.,0 =0 and

— k 2 —
Vn,k— s=00 k—O,"',n'

n,8 9

Then
(3.13) Ey0 , = JF(0) = E, 2% and

E0 Vn,k = "n,k(o) = f=o J:,s(o) ) k = 09 e,

To prove (2.16), we verify the conditions of Corollary (3.8) of McLeish (1974);
by our Lemma 3.1, we need to prove only that as n — oo,

(3.14) Vaseyr/In,(0) =, 1, for every 1¢][0, 1],
(3.15) Dii E{E (A | > et ()Y, (6) — 0, for every ¢ >0,

where r/n, — p, k,(t) is defined by (2.14), I(A) stands for the indicator function
of the set 4 and the conditional Lindeberg condition in McLeish (1974) is
replaced here by (3.15) for its relative simplicity of verification. Since
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0% = E(—§(Z,| By 4-1) | P, -1}, We have for every k: 1 < k < r(= n),

n_an,k =nt :l;=1 E( _f;(Zx) |‘@n,s—1)
(3.16) — Nk, (n — )E(—G(Z)| Py uma)

F ok (n— s+ DGW(Z,)s  Z=0,

which can be rewritten as

—n7t T fl(Z) + 17 SE (A Z) — E(fo(Z)| o)}
(3.17) — n7(n — k)Gy(Z,)

+ nt Yk (n — sWGW(Z) — E(GAZ,)| DB, u-)} -

Thus, by virtue of (2.14) and Lemma 3.2, to prove (3:14) it suffices to show
that for every a: 0 < @ < 1 and k/n — a, as n — oo,

(3.18) — Tt YT Fl(Z)) =, §ETH [ fy(x)} dF (%) 5
(3.19) nt S foZ) — E(f(Z)| Bru)} =4 0,
(3.20) nt Nk, (n — GHZ) — E(Gy(Z)| B ur)} =50
(3.21) n=(n — k)Gy(Z,) —, (1 — a)Go(Fy;™(a)) -

Now, (3.21) follows from the stochastic convergence of Z, to F,"'() and the
continuity of G,(x) (in x). Also, on denoting by F,(x) the empirical df based on
X, .-+, X,, we may rewrite (3.18) as

(3-22) §en 1k [ f(x)} dF(x); F,7N() = inf {x: Fu(x) = 1} .
Since F,~'(k/n) converges in probability to F,”}(a) and by the law of large
numbers,
(3-23) 5071 fix) dF(x) = n7 Dt fo(X)IX, < Fo(@)
=, 1§07 fol(x) dFo(x) »
the proof of (3.18) follows readily from (3.22), (3.23) and some standard steps.

Hence, we need to prove (3.19) and (3.20). Note that, by constitution, the
summands in (3.19) or (3.20) are mutually orthogonal, so it suffices to show that

(3.24) 2 Tt E(fy(Z) — E(f(Z)| FBhy)f >0 s n— oo,
(3.25)  nt Xk, (n — SPE(Gy(Z,) — E(G)(Z,)| B, )} >0 as n—oo.
We prove only (3.25); the proof of (3.24) follows on parallel lines.

Let now X, -, X,_,,, bei.i.d. rv’s with a df F(x) = {F,(x) — Fy(Z,_)}/{1 —
Fy(Z,_))} for x = Z,_, and 0 otherwise. Then, f(x) = (d/dx)F(x) = fy(x)[{1 —
Fy(Z,_)}, x = Z,_,, and hence, by (2.7), AZ,_,) = ry(Z,_;) > 0 a.s. Also, given
B, .1, Z, has the same (conditional) df as of min (X,, - -, X, _,,,) and further,
(3.26)  (n — s)E(Gy(Z,) — E(G(Z,)| B, )}

é (n - s)zE{[Gﬂ(Zs) - Gﬂ(Zs—l)]zl‘@n,x—l} s
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and, finally,
(3.27)  (d/dx)Gy(x) = ry(x){FA(x) + Fo(x)},  forevery xeR*.

Consequently, by (2.8), Lemma 3.3 and (3.27), we obtain by standard argu-
ments that the rhs of (3.26) exists (a.s.) for every n > r > 1, and as n — oo, it
is convergent equivalent (a.s.) to

(3.28) i (Zso) + FoZo)f = 2F(Z,) -
Also, we note that
(3-29) n=t Pa Efdr(Z,20)} = n7t T Eg{f(Z,)} < n7t 2oy Ep{F(Z,)}
= (& FA(x) dFy(x) < o0, by (2.9).
From (3.26) through (3.29), we conclude that (3.25) holds. Hence, the proof
of (3.14) is complete.

To prove (3.15), by virtue of Lemma 3.2, it suffices to show that under the
hypothesis of the theorem, for some m > 2,

(3.30) limsup {n=! 337_, Ep|2%,|"} < oo .
Note that by definition of the % ,, for m > 2,
(B30 S 27 HR(Z)I" + |(n — k + D{G(Z) — Gl Zp-)I™) »
where foreveryn 2 r = 1, m < 4,
(3:32)  n7 R Eglio(Z)|" = n7t i Eglto(Z)™ = 7 |F(x)|™ dFy(x) < oo,
by (2.8). Similarly, on writing
(3:33)  E|GZ) — GZy)l" = EE(GYZ) — G Zyi)|" | By i) »
and following steps similar to those in (3.26) through (3.29), it follows that as
n— oo,
7t Vi Eofl(n — k + 1)(Go(Zy) — Go(Z,-))™)
(3:34) = 17 Dha Eofl(n — k 4 1)(Go(Ze) — Gi(Z,))|"}
= |m + 15 [f(x)|™ dFy(x) < oo,
for every m < 4. Hence, (3.30) follows from (3.31), (3.32) and (3.34). The

proof of Theorem 1 is complete.
We would like to extend Theorem 1 to contiguous alternatives. For this, we

consider a sequence of values of 6, specified by
(3.35) 0,=10,+ntu, where u is real and finite, 6,0 .

We are then interested in the limiting behaviour of the process W, when the
true ¢ is specified by ¢, in (3.35). For this purpose, we make a comparatively
more restrictive regularity assumption: for &,(x) = —f,(x) or —Gy(x),

(3.36) lim,_, Ey {SUpyg_g <5 [Ro(X) — By (X)[} = 0.
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Now, (3.36) implies that
(3.37) 1im,_o {SUPy. 9oy <s Eg[Fs(X)]} = Ep[hs,(X)] -
THEOREM 2. Under (3.35), (3.36) and the regularity conditions of Theorem 1,

asn— oo,
{(Wo,(t) —ut, 0 =t 1} > W, in the J, topology on D[0,1].

Proor. For testing H,: 6 = 6, vs. H,: 6 = 6,, the usual log-likelihood ratio
statistic based on Z,, ..., Z, is

(3.38) A, = log py (Z, n) — log py (Z", n) .

By the usual expansion, one obtains that ) ‘

(3.39) A = n4E (GuWi (1) + (Juh)yn~'p, (Z7, n); 0, =0, + hun=t,
where 0 < 2 < 1. Now, by (2.3),

(340)  —nT P2, m) = w7 T (~fiZ)) — {(n = imG(Z,)
= §r (—fu0) dF(x) + 2L {=Gu(Z,)} -

Thus, proceeding as in (3.18) through (3.29) and using (3.36)—(3.37), it follows
that the second term on the rhs of (3.39) converges in probability to —LuJ, #(6,),
so that under H,,

3.41 2=, LA O uWh (1) — Lu?}, as n-—o0.
) »Yp ) 2

Also, by Theorem 1, W,(1) is asymptotically normally distributed with 0 mean

and unit variance, so that by (3.41), under H,, 1) , is asymptotically normally

distributed with mean — 4%/ }(6,) and variance #°J,(6,). Hence, by the Le Cam

first lemma (viz., Hajek and Sidak (1967), page 204, Corollary), we conclude

that {p, (Z‘", n)} is contiguous to {p, (Z", n)}, and this implies that the sequence

of densities {p, (Z'*, n), 1 < k < r} is contiguous to {p,(Z‘*, n), 1 < k < r}.
For a process x € D[0, 1], we define for every d: 0 < d < 1,

(3.42) o, (x) = sup {min (|x(¢) — x(s)|, |x(@) — x(H)): 0 s<t<u =1,
u—s<o}.

Then, by the tightness property of W/, (under H,), established in Theorem 1,

(3.43) lim,_, lim, sup P{w,'(Wi,) > ¢|6,} =0 for every ¢ > 0.

By virtue of (3.43) and the contiguity of {p, } with respect to {p, }, we conclude

that

(3.44) lim,_, lim, sup p{w,'(Wi,) > ¢|0,} =0 for every ¢ >0,

that is, under H,: 6 = @, in (3.35), the process {W,} is also tight. Thus, to
prove Theorem 2, it suffices to show that the finite dimensional distributions of
{Wh(t) — ut,0 < t < 1} converge to those of W when {H,} holds. For this,
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note that under the hypothesis of the theorem, whenever k/n - a: 0 < a < 1,
(3.45) n"i{pgn(Z"", n) — p,,o(Z"", n)} —, —uJ(0,), as n-—oo.

Thus, for every (fixed) m (= 1) and t,, - - -, ¢, (all belonging to [0, 1]), on de-
fining the k,(7;) as in (2.14) and noting that J, , ,.,(0,)//,.(0.) = t;; j = 1,

m, we obtain from (3.45), Lemma 3.2 and Theorem 1 that under {H,}, as n — oo,

(3.46) (Wi (t;) —uty, j=1, - o,my - {W(t;), j=1, -+, m}.
Hence, the proof of the theorem is complete.

4. Asymptotic theory of progressively censored life testing. For simple
exponential distributions, Epstein and Sobel (1954, 1955) considered some
(sequential as well as nonsequential) life testing procedures which rest on a
simple Poisson process characterization of the associated likelihood ratio process
on which the celebrated results of Dvoretzky, Kiefer and Wolfowitz (1953) di-
rectly apply. However, the theory does not hold when f,(x) is not a simple
exponential pdf. Our Theorems 1 and 2 provide us with the necessary tools for
constructing a class of asymptotic tests for a broad class of survival distributions,
and we present the same as follows. '

First, consider the one-sided alternative H,*: 6 > 6, Given (n,r) and a
desired level of significance a (0 < a < 1), we conceive of a positive constant
C¢), and continue monitoring of the experiment so long as {k <r and
Po(Z*, n) < C7} 1, for the first time, for k = N(Z 1), po (2, n) = C.7.,
we terminate experimentation along with the rejection of H, in (2.1). If no
such N (< r) exists, the experiment is termlnated when X, , has been observed
and H, is accepted. For testing H, vs. H,~:6 < 6,, we simply change
Po(Z*), n) to (—1)p, (Z*, n), k = 0. From Theorem 1, it follows that asymp-
totlcally (as n — oo, with rjn— pe (0, 1]), n7iC{", — 7,,J,4(0,), where 1 —
®(c,) = ,0 < B < land Disthe standard normal df: For two-sided alternatives
H*: 6 =+ 0,, we replace p, (Z‘*, n) by | po(Z%, n)|, k = 0 and proceed similarly.
Again, by Theorem 1, asymptotlcally, I, — w,J,4(0,) where o, is the upper
100a 9% point of the df ®*(x) = 37 _. (—l)k{®((2k + 1)x) — O((2k — 1)x)},
x = 0. From Theorem 2, it follows that for local alternatives in (3.35), the
power function of these tests can be expressed in terms of appropriate boundary
crossing probabilities of a drifted Brownian motion on the unit interval [0, 1].
Chatterjee and Sen (1973) have considered a class of progressively censored
sequential tests based on linear rank statistics. Though the two problems are
different (and so are the basic invariance principles), the properties of the tests
are similar. In view of this, we refer to [2] for further motivation and other
properties of this type of tests.

Secondly, as in Sen and Ghosh (1974) dealing with sequential rank test for lo-
cation, we may consider another type of asymptotic tests as follows. Suppose that

4.1 Hy:0=86, vs. H,:0=0=0,+A4A,
A (> 0) is small and specified.
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Then, we introduce
4.2)° T, = Dpp(Z®, n)[J }(0%) ; 0* =60,+ 10, k=0,

and corresponding to the desired strength (a, f): 0 < a, § < %, we choose two
numbers (b,, a,): —oc0 < b, < 0 < a, < oo and continue monitoring experi-
mentation as long as {k <r and b, < T,, < a,}. If, for the first time, for
k=N(<n),T,yis < b, (or Z a,), we accept H, (or H,); if no such N(< r)
exists, the experiment is stopped when X, , has been observed, and H, or H, is
accepted according as T, , is < or > 0. Here also, Theorems 1 and 2 provide
us with the asymptotic (as A — 0 with n — oo and r/n — p € (0, 1]) expressions
for a, and b,, where we need to use the basic theorms of Anderson (1960) on
the boundary crossing probabilites of the drifted Wiener processes on finite
intervals. Basically, the properties of this test are similar to those of the se-
quential rank tests considered by Sen and Ghosh (1974), and in view of this, we
shall not enter into a detailed discussion on these.

We conclude this section with the final remark that even for the single point
truncated or censored scheme, Theorems 1 and 2 provide us with the necessary
tools for constructing a (nonsequential) test based on 2, , (or 2, ,.), making use
of its asymptotic normality property. For the truncation scheme, r*/n —
F,(T) = p*, say, so that as an immediate corollary to Theorem 1, we conclude
that under H,, 2, ./J%(0,) is asymptotically normally distributed with 0 mean
and unit variance, while Theorem 2 provides the parallel result for the contigu-
ous alternative hypotheses.
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