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OPTIMAL DESIGNS FOR LARGE DEGREE
POLYNOMIAL REGRESSION

By J. Kierer! AND W. J. STUDDEN?
Cornell University and Purdue University

Polynomial regression of degree n on an interval is considered. Opti-
mal designs &, are discussed for various optimality criteria. The behavior
of &, for large n is investigated and comparisons of &, with the limiting
design & are made.

1. Introduction. Let " = (f;, f}, - - -, f,) be a vector of linearly independent
functions on a space -2°. For each x or “level” in .2 an experiment can be
performed whose outcome is a random variable Y(x) with mean value f'f(x) =
2. B fi(x) and variance o2, independent of x. The functions f;, i = 0,1, ---, n
are called the regression functions and are assumed known to the experimenter
while the vector of parameters 5’ = (8, f,, - -+, B,) and ¢® are unknown. An
experimental design is a probability measure & on 2. If & concentrates mass
&, at the points x,, i = 1,2, ..., rand §,N = n, are integers, the experimenter
takes N uncorrelated observations, n, at each x,, i = 1,2, ..., r. The covari-
ance matrix of the least squares estimates of the parameters §, is then given by
(’/NYM~'(§) where M(§) = (m;(£)), m;(§) = § fu(x)f;(x) dé(x) is the information
matrix of the experiment or design &.

In experimental situations it may be desirable to use a design £ which mini-
mizes a particular functional of the matrix M(§). For instance we may consider

(i) [M~'(§)| = determinant of M~(§);
(ii) sup,. . f'(x)M~(€)f(x); here f'(x)M~(§)f(x) is proportional to the vari-
ance of the estimate of the regression function at x;
(iii) f'(x))M~(§)f(x,), or ¢/M~*(§)c for any vector ¢, or more generally
tr CM~'(§) where C is symmetric and positive semidefinite.

All of these are used in regression theory and are explained more fully in
Fedorov (1972). It is known, see Kiefer and Wolfowitz (1960), that the mini-
mization problems in (i) and (ii) are equivalent. Other results of this type are
given in Fedorov (1972) and Kiefer (1974).

In the present paper we wish to examine the case where 2 is the interval
[—1,1]and f'(x) = (1, x, - - -, x™), i.e., the situation where our regression func-
tion is polynomial }}7_, 8;x*. A given minimization problem of the type described
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1114 J. KIEFER AND W. J. STUDDEN

above, e.g., minimization of |[M~'(§)|, then gives rise to a sequence of designs &,
one for each degree n. That is, for a fixed degree we suppose &, satisfies

min, [M-X§)] = |[M~(E,)] -

We wish to examine the designs &, for large values of n, in particular the limit-
ing design &, if it exists, and to compare, say,

|M~(&,)] and |M7X(E)|  or
perhaps f/(x)M~'(E,)f(x) and [/ (x)M7}(E)/(x) -

The paper is motivated by an attempt to find single designs, for various crite-
ria, which would work reasonably well for all degrees. This search led naturally
to investigating whether there was any regularity in , for large n. In practice
the regression function will usually be of low degree. It turns out, as in various
other investigations, that the limiting design &, performs reasonably well even
when used in a linear regression. For example the D-efficiency, using the gener-
alized variance and defined below after Lemma 2.2, is about 709, and increases
to the value one with increasing degree. Other, seemingly natural, definitions
of efficiency involving sup, f"(x)M~(§,)f(x) are decreasing with the degree. We
have indicated in Theorem 2.2 how the limiting efficiency in this case can be
improved. The material here should also provide information on what to look
for in more complex situations (see for example, Kiefer (1975) where quadratic
regression on an n-simplex is considered).

In some situations sequential experimentation is costly but a large number of
observations can be taken nonsequentially. If the degree is not known, we can
obtain some idea of the cost, from using a design which is optimum for a very
large degree, over what one could achieve with an approximately optimum se-
quential design which would determine the right degree with high probability
and act accordingly. The material should also be of some theoretical interest.

The paper is divided into three more sections. In Section 2 we consider the
determinant of the information matrix |M(£)| as mentioned above. The extra-
polation problem minimizing f’(x,) M~*(§)f(x,) for a fixed x, outside of 2~ is con-
sidered in Section 3. Results similar to those given in Section 2 and 3 for the op-
timal designs for estimating the separate coefficients g, are discussed in Section 4.

2. The generalized variance. Consider the case where
) =% ) =f6) (ay), 2 =[-11],
M, (&) = (L f(x)f"(x) d€(x)
and maximize the determinant |M,(¢)|. The design &£, maximizing |M,(§)| is

called D-optimal. The following theorem is given in Fedorov (1972), page 91.
We include a short proof here for completeness.

THEOREM 2.1. The sequence &,, n = 1,2, ... of D-optimal designs converges
weakly to &, where &, has density 1/n(1 — x?)t,
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Proof. The proof follows fairly readily from a number of known results.
The D-optimal design &, concentrates mass (n + 1)~! on the n 4 1 zeros x,,
v=0,1,...,nof (1 — x*P,/(x), where P, is the nth Legendre polynomial. See
Karlin and Studden (1966a). If 6, are defined by x, = cos8,, 0 < 0, < x, it is
known (see Erdds and Turan (1940)) that the 6, become uniformly distributed
on the half circle 0 < 6 < « in the sense that if N(a, b) denotes the number of
6, in [c, d] then

n'N(c, d) — ld—d

T B
It then follows that &, — &, where &, is the distribution of ¥ = cos X and X is
uniform on (0, #). The statement of the theorem then follows.

Let d,(x, &) = f,/(x)M,~"(§)f,(x) and denote sup, d,(x, §) by d,(§). The quan-
tity d,(x, §) is proportional to the variance of our estimate of the regression curve
at the point x assuming our regression was of degree n and we used the design .
We will compare d,(x, §,) and d,(x, &,) for small values of n and consider whether
&, is “asymptotically optimal” in some sense. We also compare |M,(£,)| and
|Mo(€0)]-

A general calculation for d,(x, &) can be made. The quantity d,(x, &) is

invariant under a change of basis for our functions 1, x, x, ..., x*. We use
as a basis the polynomials which are orthonormal on [—1, 1] with the weight
or measure &, These are the polynomials 1, 2{T(x), ..., 2!T,(x) where

T)(cos §) = cos k@ are the Chebyshev polynomials of the Ist kind. In this case
we find that
dy(x, &) = 14 2 35, T\ (%)

_ 1 1 sin (2n + 1)0
@1 =t et T g

=1+ } 4 $Un(x)
where U,(cos 0) = sin (k + 1)6/sin 6 are the Chebyshev polynomials of the 2nd
kind.

It is known that d,(,) = sup, d,(x, §,) = n + 1 and that the sup is attained
at the points where &, concentrates its equal mass. These are the zeros of
(1 — x*)P,/(x), where P, denotes the Legendre polynomial. If we use &, instead
of &, we have that d,(§) = n + % + §sup, U,,(x). Since sup, Uy(x) < k + 1
(see Davis (1963)) it follows that d,(£,) = 2n + 1. This value is about double
the value n 4 1. The sup here is reached only at the end points x = +1.

We shall consider both functions d,(x, §,) and d,(x, &) forn = 1,2 and 3.
For n = 1 the D-optimal design has equal mass at x = +1. Simple calculations
show that

dx,&)=1+x* and dy(x, &) =1 + 2x*

so that d\(x, &) < d(x, &) for all x. The next case, n = 2, seems to be somewhat
more indicative of the general situation. Here the D-optimal design has mass 4
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on points x = 1, 0, 1. Calculations then give
dZ(X, 52) =3 - %xz _|_. g_x4
dy(x, &) =3 — 6x* 4 8x*

and we have dy(x, &) < dy(x, &) for |x| < (3) = .655. Thus the approximate D-
optimal design is better for x in the middle of our interval [—1, 1]. Forn = 3
the situation is more complicated, as expected. The D-optimal design has equal
weight 2 on +1 and +1/5% = +.447. More calculations give dy(x, &;) = 3.248 +
8.261x* — 26.267x* 4 18.756x° while dy(x, &) = Z + 3(sin 76/sin ), x = cos§.
The values are roughly comparable in the range |x| < 0.9. A small table of
values is given below. Both functions are symmetric about zero.

14 90 80 70 60 50 40 30 20 10 0
x=cos O 174 342 5 .643 .766 .866 .94 .98 1
d(x, &) 3.25 3.47 3.88 3.96 3.50 2.84 2.58 2.98 3.66 3
dy(x, &) 3 3.33 3.91 4.00 3.39 2.73 3.00 4.44 6.20 7

If we define the G-efficiency (see Atwood 1969) of a design & as (n + 1)/d,(€)
we then note that the limiting design &, has G-efficiency (n + 1)/(2n + 1) which,
unexpectedly, decreases to the value 4. It is natural to inquire whether there
is a design with limiting G-efficiency equal to one. In this regard we have

THEOREM 2.2. For each ¢ > 0 there exists a design &, such that

2.2) liminf, " +t1>1_.
d,&.)

PrOOF. The result is obtained using the following lemma from Szego (1959),
page 31.

LeMMA 2.1. Let p(x) be a polynomial of degree | on [ —1, 1] and write p(cos 0) =
|h(e)[* where x = cos 0, h(z) is of degree I, h(z) + O for |z| < 1 and h(0) > 0.
Let h(e*) = c(0) + is(0) and w(x) = (d[z)(1 — x*)~t/p(x) where d is such that
§ w(x) dx = 1. Then the polynomials orthonormal with respect to w(x) are given by
po(x) = 1 and

Pi(cos ) = (%)* {¢(0) cos kb + s(6) sin k) k>1.

The idea is to change the measure &, by putting some mass near +1. This is
accomplished by changing ¢, to a design €, with density w(x) where o(x) depends
on d(¢). For fixed 6 = d(¢) we let p(x) be a polynomial such that

< px) 149 for —1<x=<1,
I1<p(x) 146 for —14+d6<x<1-9,
0t < p(x) < 204 for 1 —|x|<d/2.

The proof of the theorem will be to show that (n 4 1)/d,(€,) = 1 — « for large
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n when § = d(e) is taken sufficiently small. Such a polynomial exists by the
Weierstrass theorem and we denote its degree by /. Applying the above lemma
we then have

dy(x, &) — 1 = 2 pi(cos 0)
- %{c’(ﬁ) Y17 cos? kO + s¥(8) Yp sin® kO + c(6)s(6) X7 sin 2k6) .

Inserting the values cos® kf = (1 + cos 2kf)/2 and sin® k6 = (1 — cos 2k6)/2 and
using o(0) = ¢*(6) 4 s*(0) we obtain

Y1 pi(cos ) = dY{np(8) + (c*(6) — s*(8)) X7 cos 2k0 -+ 2¢(0)s(0) X7 sin 2k6) .

From the choice of p(6) it is easily seen that d = d(6) — 1 as § — 0 so that the
first term is d~'np(f) = n(1 + 0(3)). The other two terms can be readily
handled. Since p(0) = c*(0) + s*®) it follows that |c*(0) — s*(0)| < 20(6) and
le(0)s(0)] = p(0). The remaining two terms are then bounded by

2d-1p(0){| X7 cos 2k6] + | X7 sin 28]} .

Now for 1 — |x| < 6/2, p(0) is small and the term in brackets is bounded by 2n.
For 1 — |x| > d/2 the bracket can be bounded by a term depending on § but
not on n. Therefore the remaining two terms can be bounded by £(3) + no(9).
The result then follows.

We now turn to a comparison of the two determinants |M,(¢,)| and |M,(&,)|.
The ratio can be calculated in a fairly explicit form. We let D,(€) = | M, (£)|.

TueoreM 2.3. If &, is the D-optimal design and &, has the arcsin density as
described in Theorem 2.1 then

(2.3) DossCars) — pptenn
D, (&)
where
— 1 % _1_ _ _ o _ k Cn(k) — _1_
Cd) b= { Bt —lunf — Bp, (1 O (12 )
and

1 o 1
C,,(k) = Z?=1 '17 s C(k) = Zl=l ‘l—k— .
Before proving Theorem 2.3 we shall state an additional relevant lemma and
make a few additional remarks.
LemMA 2.2 (Rubin). If 8, is defined above in (2.4) then
d,—0=4%—13log2 — 30" (1)
~ —.00464602 .

The proof of Lemma 2.2 will be omitted. The quantity {’(—1) is the deriva-
tive of the zeta function at —1 and has value {’(—1) = —.165421142. (See
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Walther (1926)). If one wished to use the ratio (2.3), the only complicated
quantity is d,. If we replace 4, by d and consider

psy = — Denilé)
2n}eaD‘n+l($n+l)

then p, ~ 1.00465 and p, seems to be decreasing to one. (The limit of course
is equal to one.) Moreover the quantity e’ ~ .99536 so that the ratio in (2.3)
is essentially 2nt.

In terms of efficiency, the appropriate quantity is the D-efficiency of &, (see
Atwood (1969)) defined by

E, = <DD:_((§:;_>1/<”+,, .

The values of E, for n =1, 2, 3, 4 can be easily calculated to be 0.71, 0.75,
0.79 and 0.81 respectively. By Theorem 2.3 it is easy to see that &, has limiting
D-efficiency equal to one. This immediately raises the question about the rela-
tionship between the G-efficiency and the D-efficiency of a design. We note that
by the Kiefer-Wolfowitz equivalence theorem D-optimality or D-efficiency equal
to one is equivalent to G-optimality or G-efficiency equal to one. Using inequali-
ties (see Kiefer, 1960) of the type

D) > _

e B expln+ 1= di@)
one can show that a limiting G-efficiency of one produces a limiting D-efficiency
of one. The converse however is not true as our example shows. (A limiting
G-efficiency of 1 — ¢ produces a limiting D-efficiency of exp —e/(1 — ¢).)

We note finally that the design &, (used in Theorem 2.2 to give a better G-ef-
ficiency than the limiting design &) should presumably have a better D-efficiency
than &, calculated from equation (2.3). This however is not the case as will be
seen from Theorem 2.4.

ProofF oF THEOREM 2.3. From Szego (1959), page 28, we find the value
D, (&) = TI7-1 k,* where k, = 2#2"-* is the coefficient of x* in 2!T,(x): these
being the polynomials orthonormal to &,. In this case D, (&) = 27"**. The value
D,(£,) is given by (see Karlin and Studden (1966b))

D,(£,) = 2 +([T 5y %)™ I3, v
Letting
_ D.(§.)

R, = )
Dn(EO)

n

a straightforward calculation gives

Ry _ (14 1/m"
R, (1 + 1)2np+1 "




OPTIMAL DESIGNS 1119

Then
log%—l- = (1 + log(1+ %) — @+ Nlog(1+ )
- 4i1 R l"k((;:zkl) (1)
and
log%—;—lﬂ = X log%“
iz ()

Since R, = 2 it then follows that

R 1 - C(k)(-l)"( 1)
log Znt1 — 1 [ | } — > 2\PAT ) (1 — R
og b 8 {Zl—l ] nn ik k(k £ 1 >
and Theorem 2.3 follows.
The asymptotic behavior of D, () for designs ¢ with densities can be ascer-
tained from results on Hankel determinants. The next result follows nearly
immediately from Grenander and Szego (page 84) and Szego (page 142).

THEOREM 2.4. If & has density g(x) then

Dnl/m+l)($) —~ Dnl/(n+l)(1)e6(o) R
where
log g(x)
G(g) = \*, 227 (x,
(9) § 17t(1 Xy X

and
Dn(l) — 2—n(n—1) H?-—-l y3v—2n(n + D)"-v .

The approximation is taken in the sense that the ratio of both sides tends to one.

A variational argument shows that G(g) is maximized by &, or gy(x) =
1/m(1 — x*)t. It then follows that g, is the only density which has asymptotic
D-efficiency equal to one. Thus the designs &, used in Theorem 2.2 have asymp-
totic D-efficiency less than one.

3. Extrapolﬁtion. In this section we consider the minimization of

(3‘1) dn(xw 5) =fn,(x0)Mn_l(€)fn(xo) ’ ,xol > 1 .

Using the design § and assuming an nth degree regression, the quantity d,(x,, £)
is proportional to the variance of the least squares estimate of the regression at
the point x,. Since |x,| > 1 and observations are confined to [—1, 1] we have
an extrapolation problem. It is known, see Hoel and Levine (1964) or Studden
(1968), that the optimal design &, minimizing d,(x,, £) concentrates mass p, on
the points s, = cos vz/n, v = 0, 1, - - -, n. The value p, is given by

|lv(x0),

Pv =  —= 1 _
25=0 [1u(x0)]
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where [,(x), v =10, 1, ..., n are the Lagrange polynomials of degree n specified
by I,(s,) = 9,,, i.e., fixing v, /,(x) vanishes at all the values s, except s, where it
has the value one.

THEOREM 3.1. If&, is the optimal extrapolation design then &, — &, where &, has
density
(X' — 1)t
Tlx, — x|(1 — x%)

ProoF. We consider only the case x, > 1. The measure £, has weights pro-
portional to |/,(x,)| at s, = cos vx/n. The Lagrange polynomial /, is given by

L(x)) = Iz (%o — 5,) .
(xo - sv) H#*v (s,u - Sv)

Since the numerator is constant we see that &, is proportional to a measure
dpa(x)
Xo— X

where dp, has mass []],., (s, — 5,)]" = r, at 5, = cos vz/n. Substituting the
values s, = cos vrr/n in 7, and using the law

cos A — cos B = —2sin (A4 4+ B)/2sin (4 — B)/2

a straightforward calculation reveals that the values y,, 7, -- -, 7, are propor-
tional to 1,2, 2, ..., 2, 1. It then follows as in Theorem 2.1 that the limiting
measure has density proportional to

1
(%o — x)(1 — x2)t
The CRC tables (Handbook for Probability and Statistics, 2nd edition, page 609,
formula 215) give a value of 7/(x,> — 1) for the integral of (3.2) over the range
—1 to 1. The theorem then follows.

We will now make a comparison of d,(x,, §,) and d,(x,, §). From Studden
(1968) we know that d,(x,, §,) = T,*(x,) where T,(x) is the Chebyshev polyno-
mial of the first kind. In order to evaluate d,(x,, &) we use the fact as noted
above that the expression for it given in (3.1) is invariant under a basis change
so that

(3.3) dy (X0, §0) = k=0 Pi’(X0)

if we let p,(x) denote the polynomials orthonormal with respect to the measure &,.
In order to evaluate (3.3) we use Lemma 2.1. We apply this result with p(x) =

(xo — x). We find that ¢(¢) = (a + b cos ), s(f) = bsin & where a and b satisfy

the two conditions

(3.4) @+ b =x, 2ab=—1.

(3.2)

The restrictions on #(z) in the lemma give

(3.5) @ =3+ (5 — DY), 8= b — (5 — 1)),
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This then gives
(3.6) Pu(cos 0) = <£>* {(a + b cos ) cos kO + b sin 0 sin k6)
4

= <%>* {acos kb + bcos (k — 1)6}

where ¢ = (x* — 1)L
In order to evaluate 3}3_, p,*(x;) we use (3.6), some half-angle trigonometric
formulae, some series summation from Jolley (1961), and simplify the following
expression:
2ik=1(acos k@ + bcos (k — 1)0)*
= r[a’cos’ kO + b*cos? (k — 1)0 + 2ab cos kf cos (k — 1)0]
= b+ a’cos’nf + x, Y 2zicos’ k@ — Y n_, cos k6 cos (k — 1)0
= b + @ costnf + xo<n —1 n cosnﬁsin.(n — 1)0)
2 2sin @
— 3 2.1 (cos (2k — 1)0 + cos 0)
n— 1 cosndsin (n — 1)0>

— b + a*cos® nf <
tacosnd Yol 2sin 0

1 sin 2n6
_(L 0
2<2 sin 0 +”°°S>

= b + a*cos’ nf — 52_‘1 — L cosnfcos(n— 1)6.

Using equation (3.5) and T ,(cos #) = cos nf we then have

B0 = ‘1)* (0 + (6 = DAT,(x0) — Tt Tums(9)] -

The following theorem can then be readily deduced.

THEOREM 3.2, Let d,(x,, §) be as in (3.1) and let r,(x,) = d,(xo, £,)]du(X0> &0)-
Then .

1 _ 1 2 _ T,_y(xo)
r, (%) = m {xo + (%, 1) W} .

For linear regression we have r,7*(x,) = 1 + (x,! — 1)¥/x,; while for quadratic
regression r,7'(x)) = 1 4 2x,(x; — 1)}/(2x,> — 1). Note as expected that both of
these values are near 1 for x, close to 1. Bounds and other limit relations can
be obtained using the following two lemmas.

LemMmA 3.1. The ratio a, = T,(x,)/T,_,(x,) is increasing to x, + (x; — 1)%.

Proor. Since T,,,(x)) = 2x,T,(x;) — T,_,(X,) we have a,, = 2x, — 1/a, and
then a, is seen to be increasing using induction. The actual limit value follows
from the fact that (see Szego (1959), page 189)

(% + (x' — 1)} -1

lim, .
2T, (xo)
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LemMA 3.2. For fixed x,, the ratio r,(x,) decreases to the value }.

The proof follows immediately from Lemma 3.1. Note in particular that
% < r.(x,) and of course r,(x,) < 1. One can show further that lim, _, r,(x,) = 1
and lim,,oqm ra(%,) = 3.

The asymptotic behavior of d,(x,, §) can also be evaluated for any design ¢
with density using results from Szego (1959).

THEOREM 3.3. If the design & has density g then

2n
zim — 1
zom

d,(xy, §) = (2m)™D,7*(z,77)

9

where zy = x, + (x, — 1)}, and

1 4 ze=% dﬁ} .

1 .
D,(z) = exp {4_7—1_ {* . log [g(cos @)|sin 6]] T 7e7®

The approximation means the ratio converges to one.

Proor. From Szego (1959), page 295 we. find that if p,(x,) denotes the nth
polynomial orthonormal with respect to g then
Pa(x0)) = (2m)~z"{D(z7)}"

The result then follows by a simple Abelian argument since

dy(x0 §) = X%=0 Pi'(X0) -
COROLLARY. Among designs which are absolutely continuous with respect to
Lebesgue measure, the one which asymptotically minimizes d,(x,, §) has density
(X' = 1)

go(X) = 7z'|x0 — x|(l - xz)* .

Proor. This result-follows by noting that D (z,) must be real. We therefore
maximize |D,(z,)|*. A variational argument shows this to be g,(x).

4. Individual coefficients. Analyses similar to Sections 2 and 3 can be given
for the estimation of the individual coefficients. Since a more complete investi-
gation of the asymptotic properties of the information matrix is presently being
made, we shall be somewhat briefer and proofs will be omitted.

We consider the estimation of §, in the model Y %_, 8,x*. The variance of the
LSE using a design ¢ is denoted by V(n, k, §) and the optimal design is devoted
by &(n, k).

It can be shown that for k fixed, £(n, n — k) has limit density g,(x) = 7#~(1 —
x*)~t while if k/n = q and ¢ is fixed with 0 < ¢ < 1 then &(n, k) has limiting
density proportional to [¢* + (1 — ¢*)x*]*(1 — x*)~. Inthecase k = n,let§, =
&(n, n) and &, denote the design with density g,(x). Then

V(n, n, §,) T e
4.1) m 5 D*(0)
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where D(z) is defined in Section 3. The value D(0) is maximized by the design
with density g,. The efficiency given in (4.1) is constant and equal to {. This
value “agrees” with the remark in Section 3 that r,(£,) — % (the case x, — oo
and the highest coefficient are equivalent problems in certain respects).

For k fixed the designs &(n, k) degenerate to having all mass at the origin.
Thus for estimating the slope at the origin or the coefficient 8, the optimal de-
sign concentrates its mass closer and closer to zero as n — co. The actual rate
of this convergence has been ascertained.
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for providing basic ideas and the referee and editors for their helpful comments.
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