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ON THE ATTAINMENT OF THE CRAMER-RAO
LOWER BOUND

By V. M. JosHI
University of Michigan

It is often stated that the variance of an unbiased estimator of a func-
tion of a real parameter can attain the Cramér-Rao lower bound only if the
family of distributions is a one-parameter exponential family. A rigorous
proof of this statement, subject to certain regularity conditions, has been
given by Wijsman. However, in general, the statement is not true. As-
suming a revised set of regularity conditions it is shown here that there
exists a more general class of distributions for which the Cramér-Rao lower
bound for the variance is attained for almost all or even all values of the
parameter in an interval. The class reduces to the exponential class only
by imposing a restriction requiring the absolute continuity in the parame-
ter of a function involving the logarithm of the probability density.

1. Introduction. Let X be a random variable having a density P,(+) which
involves a real parameter §. Let a real valued statistic #(X) be an unbiased esti-
mator of a real valued function m(f). It is usually stated that the variance of
#(X) can attain the lower bound provided by the Cramér-Rao (abbreviated here-
after as C-R) inequality

Var, (X) = [m'(6)] / Var, a% log p,(X)

if, and only if, the distribution of X belongs to the exponential family ([1], [2]
and [5, page 187]). No rigorous proof of the assertion seems to have been given
previously to that of Wijsman [4]. Wijsman shows the statement to be true
provided certain regularity conditions are satisfied.

But the “only” part of the statement viz that the C-R lower bound is attained
only if the density is exponential is not true in general. In Theorem 3.1 is
determined a more general class of density functions for which the C-R lower
bound is attained for almost all ¢ in an interval. Even requiring the attainment
of the lower bound for all ¢ instead of almost all # does not restrict the distri-
butions to the exponential class. The restriction to the exponential class is
secured by imposing a condition of absolute continuity in ¢ either of log p,(x)
for fixed x or of a linear combination of terms log py(x,), i = 1,2, 3, 4 for fixed

This is proved in Corollary 3.1 and Note 3.1 below it.

The result proved in Corollary 3.1 corresponds to but is more general than
the theorem of Wijsman [4]. A comparison of the two is made in Section 4.

X,

I

2. Notation. The sample space is an arbitrary measure space (27, %, ) with

Received January 1974; revised February 1976.

AMS 1970 subject classification. Primary 62F10.

Key words and phrases. Cramér-Rao lower bound, variance of unbiased estimate, attainment
of lower bound, one-parameter exponential family.

998

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIK@J:Y

%5

o 2

®

WWw.jstor.org



ATTAINMENT OF THE CRAMER-RAO LOWER BOUND 999

p sigma-finite. The parameter space is the measure space (0, 7, v) with © a
Borel subset of the real line, <%’ the Borel g-field of subsets of ® and v Lebesgue
measure. There is given a random variable X with values in 22~ and distribution
Py(dx) = py(x)p(dx), 0 € ©.

For convenience, differentiation with respect to ¢ is denoted by D. Any inte-
gration with respect to ¢ will always be understood to be over the whole of 2.
The following conventions are used: a.a. x means almost all x with respect to
the measure g on 22, a null set K of 22 means a set K € .%7, such that x(K) = 0,
with corresponding conventions for 6.

3. Main results. The following is an example of a nonexponential density
for which the C-R lower bound is attained for all § € (— oo, o). The example
is interesting as the density satisfies most of the usual regularity conditions.

EXAMPLE. Select any number « such that 0 < @ < 1. Determine 8 by
§2(* — 1)exp(—1}2)dt = 0. Put A(r) = 2if a < |t| < B, and A(¢) = 1 other-
wise. Let

pulx) = CA(x — o) exp| ~E= O],

where C is the normalizing constant. For this density function X is an unbiased
estimator of # with variance equal to 1, which is also the value for each ¢ of
the lower bound provided by the C-R inequality.

The example shows that a density for which the C-R lower bound is attained
is not necessarily exponential. A general class of such densities subject to cer-
tain regularity conditions is determined in the following Theorem 3.1.

REGULARITY CONDITIONS.

(a) O is an interval which may be finite or infinite.

(b) The set M = {(x, 0) € 227 x O: Dlog p,(x) exists} € (% x <) and on M,
D log py(x) is (% x <& )-measurable.

(¢) 0 < Var, Dlogpy(X) < oo for a.a. 6.

(d) § po(x) dp(x) is differentiable with respect to ¢ under the integral sign for
a.a. 0.

(e) m(0) = § #(x)py(x) dp(x) is differentiable under the integral sign for a.a. ¢
and the statistic #(x) is not equal to some constant for a.a. x.

THEOREM 3.1. Let the regularity conditions (a) to (e) be satisfied. The variance
of H(X) attains the C-R lower bound for a.a. 0 if and only if, for 0 ¢ ©, and x ¢ K
where K is a null set of 7,

Po(x) = c(0)h(x) exp{q(0)1(x)} exp{S(F, x)}
in which h(x) > 0 and for a.a. 0, c¢(0) > 0, c’(0) and q'(0) exist and are finite and
q'(0) = 0, and further for each x ¢ K, DS(0, x) = 0 for a.a. 0.

ProoF. Let L be the union of the null sets of ©® on which the regularity con-
ditions (c) to (e) or the attainment of the C-R lower bound fail to hold. Lisa
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(possibly empty) null set of @. The joint measurability of D log p,(x) in x and 6
on the set M in condition (b) implies that the set M, = {(x, f) € 27 x 0, D log p,(x)
is finite} € % x <&. Let M, be the complement of M,. For each 6 ¢ L, the 0-
section of M° has zero p-measure by condition (c). Hence M,° is (# x v)-null.
Define on .27 x © a (% x <#')-measurable, finite function v(f, x) by v(x, §) =
Dlog py(x) if (x,0)e M, and v(x,0) =0 if (x,0)e M, . For each f¢lL,
D log p,(x) coincides with v(x, 0) outside a p-null set of 2. Also for each 6 ¢ L,
Var, D log p,(X) > 0 and the C-R bound is attained which implies that m’(¢) = 0.
Hence there exist 6,, 0, ¢ L, such that m(6,) = m(6,). Using this result the whole
of the argument in [4] up to equation (8) remains applicable to our case for
6 ¢ L. The argument is not repeated here. Borrowing the result derived in
equation (8) of [4],
(1) D log p,(x) = a(@)t(x) + b(0) , x¢K, 0¢N",
where K and N” are respectively null sets of 2~ and O, for a.a. 6 a(f) and 5(0)
are measurable and finite functions of ¢, and a(¢) = 0, for ¢ ¢ L. Note that the
null set L of © defined in the beginning of this proof gets absorbed in the set N*
in (1).

Applying Lusin’s theorem ([3], Theorem 2.3, page 217), there exist functions
q(0) and f(#) such that

@) ¢(0) = a®) and  f(6) = b@) fora.a. 6.

(By Lusin’s theorem, ¢(f) and f{f) could be restricted to be continuous func-
tions. But no purpose is served by imposing this restriction as it does not survive

in the end.)
Now set for x¢ K, 6 ¢ 9,
(3-1) log py(x) = q(0)1(x) + f(0) + T(0, x)
(3-ii) T(6, x) = T(0, x) + S(0, x)
where 0, is an arbitrary fixed point of ©,
(3-iii) log h(x) = T(8,, x),
(3-iv) log ¢(0) = f(9),
so that for x¢ K and 8 ¢ 0O,
4) Po(x) = c(0)h(x) exp {g(0)(x)} exp{S(F, x)} .

In (4) ¢(f) and A(x) > 0 by (3-iii) and (3-iv) and for each x¢ K, DS(f, x) = 0
fora.a. ¢ by (1) and (2) combined with (3-i) and (3-ii). Further, since for each
x ¢ K, D log p,(x) is finite for a.a. 6, ¢'(f) and c¢’(f) exist for a.a. . Lastly since
a(0) + 0 for a.a. 0, it follows from (2) that ¢’(f) =+ O for a.a. §. This completes
the proof of Theorem 3.1.

Note 3.1. For any fixed x ¢ K, since DS(6, x) = 0 for a.a. 6, if S(¢, x) does not
vanish for all ¢ then S(@, x) is either a singular function of ¢ or is of unbounded
variation in §. This follows from Theorem 7.8(2°), page 121 in [3].
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The class of density functions (4) reduces to the exponential class if the func-
tion S(f, x) is eliminated. This is secured in the following corollary by intro-
ducing a restriction regarding the absolute continuity of log p,(x) on 8.

CoRrOLLARY 3.1. Ifin Theorem 3.1 the function log p,(x) satisfies the restriction
that for each x ¢ H where H is a null set of 27, log p,(x) is an absolutely continuous
function of 6 on ©, then

) Po(x) = c(O)h(x) exp{g,(O)1(x)};  x¢K,, 0€O,

where K, is a null set of 27, ¢,(0) and h(x) > 0 for 0 € ©, x ¢ K,, log ¢,(0) and ¢,()
are absolutely continuous in 0 and for a.a. 0, ¢,(0) and q,(0) are differentiable with
respect to 0 and q,'(6) + 0.

Proor. Let K, = H U K where K is the null set of in (4). Select arbitrarily
X15 X9 X5, X, & K, such that 1(x,) # #(x;). Set x = {x,, x,, x;, x,} and

F(x, 0) = [#(x;) — t(x)[{[log po(xs) — T(0o, X,)] — [10g py(x:) — T(00, x;)]}
— [1(x) — t(x)]{[10g po(x2) — (00, x,)]
(6 — [log py(x;) — T(60, x))1}
= [1(xs) — 1x)][SE, x)) — S(0, xy)]
— [t(x) = Hx)][S, x,) — S(0, x,)]
by (4). Because of the assumed absolute continuity of log p,(x), for each fixed
set of x;, x,, x;, X, ¢ K, F(x, ) is absolutely continuous on ©. Also for each
x¢ K,, DS(0, x) = 0 for a.a. §. Hence DF(x, 0) = O for a.a. . It follows that
for fixed x, F(x, f) has a constant value on the interval ©. But by (3-ii) for
x¢ K, S(0,, x) = 0. Hence F(x, 6,) = 0 so that F(x, 6) vanishes identically for
all € O, and any x,, x,, x;, x, ¢ K.
Next in (6) keep x,, x,, x, fixed. Writting x for x, and recalling that (x,) +
t(x,) we obtain from (6)

7 S0, x) = S0, x;) + [#(x) — Hxg)[[#(x5) — #(x,)]7H{S(O, x,) — S0, x,)}
= u(@)t(x) + v(0), x¢ K,
since x,, x,, X, are constants.

Since #(x) is not constant a.e. on 2”and for each x ¢ K, DS(¢, x) = 0 for a.a.
6, the functions u(¢) and v(#) in (7) satisfy
(8) Du(0) = Dv(b) =0 fora.a. 0.
Substituting in (4) for S(4, x) by (7) and putting ¢,(f) = ¢(0) + u(8), c,(6) =
c(0) exp{v(6)} we obtain (5). The restrictions on ¢,(#), h(x) and ¢,(#) follow from

the restrictions in (4) and from (8) and the assumed absolute continuity in 6 of
log py(x). This completes the proof of Corollary 3.1.

NoTe 3.2. The restrictions of absolute continuity in # of logc,(f) and ¢,(6)
in Corollary 3.1 can be removed if instead of assuming the absolute continuity
in # of log p,(x) the weaker assumption is made that for any quadruple of points
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X, X,y X3, X, & K, the function F(x, #) in (6) is for fixed x absolutely continuous
in . This is obvious from the proof of the corollary.

4. Comparison with Wijsman’s theorem. The result proved by Wijsman is
similar to that in Corollary 3.1. The difference between the two is that under
Wijsman’s theorem (i) the derivatives ¢,'(6), ¢,'(#) exists for all § ¢ ® and ¢,(0)
is strictly monotonic, and (ii) ¢,'(f) and ¢,'(¢) are continuous functions of 6.

The item (i) arises because the regularity conditions (c), (d), (¢) and the at-
tainment of the C-R lower bound hold only for a.a. ¢ instead of for all § as in
Wijsman’s theorem.

The item (ii) is more important and arises because Wijsman requires Dp,(x)
to be continuous in ¢ for every x. This continuity condition is imposed to
secure the joint-measurability in x and 6 of Dp,(x). But as the argument of
Theorem 3.1 shows, this restriction is not necessary for securing the joint-
measurability of Dp,(x).

Suppose that (as in Wijsman’s theorem) regularity conditions (c) to (e) hold
for all & € ©® and the C-R lower bound is attained for all §. Then in Corollary
3.1 since the C-R lower bound is defined for all 4, it follows from (5) that for
x ¢ K, ¢//(0) and ¢,(0) exist for all #, and ¢,'(f) # O for any . Hence by Rolle’s
theorem ¢,(#) is strictly monotonic in (¢). Thus the difference (i) between Co-
rollary 3.1 and Wijsman’s theorem disappears entirely. But the difference (ii)
would still remain as the functions ¢,'(¢) and ¢,’(¢) need not be continuous in 6.
There exist functions which are monotonic and everywhere differentiable but for
which the differential coefficient is not continuous as for instance the following:

0=(—1,1), ql(ﬁ):4ﬁ+62sin% if 60, g(0)=0.

Then ¢, exists and is positive but not continuous at § = 0.
Thus in a material respect the result proved in Corollary 3.1 is more general
than Wijsman’s theorem.
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