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CONDITIONS FOR THE EQUIVALENCE OF
OPTIMALITY CRITERIA IN DYNAMIC
PROGRAMMING

By JaMEs FLYNN
University of Chicago

This paper examines the relationships between optimality criteria
which are commonly used for undiscounted, discrete-time, countable state
Markovian decision models. One approach, due to Blackwell, is to maxi-
mize the expected discounted total return as the discount factor approaches
1. Another, due to Veinott, is to maximize the Cesaro means of the finite
horizon expected returns as the horizon tends to infinity. Derman’s is to
maximize the long-run average gain. Denardo, Miller and Lippman show-
ed that Blackwell’s and Veinott’s approaches are equivalent for finite state
and action spaces. Asshown here, that equivalence breaks down when the
state space is countable. Also, policies optimal according to Blackwell’s
or Veinott’s approach need not be optimal according to Derman’s. On the
positive side, fairly weak conditions are given under which Blackwell’s and
Veinott’s criteria imply Derman’s, and somewhat stronger conditions under
which Blackwell’s and Veinott’s criteria are equivalent.

1. Introduction. Our formulation of the Markovian decision model follows
Blackwell’s (1965). Consider a system with a countable szate space S and a finite
action space A. Each day the current state s € S is observed and an actiona ¢ 4
is selected. This results in (1) an immediate income i(s, a) and (2) a transition to
a new state s’ with probability ¢(s’|s, a). The incomes are assumed bounded.
The problem is to control the system in the most effective manner over an infi-
nite future. A rule or policy = for controlling the system specifies for each n > 1
what act to choose on the nth day as a function of the system’s current history
h = (s a,, - -, s,) or, more generally, 7 specifies for each # a probability distri-
bution on 4. A (nonrandomized) stationary policy is a policy which is specified
by a single function f mapping S into 4: under it, you select act f{s) whenever
the system is in state s. Given an initial state s and a policy , let r,(s, =) denote
the expected return on the jthday (j = 1,2, - - .); then the expected N-stage return
is V¥(s, m) = 2Y_,r;(s, ), the average gain in the first N periods is V7¥(s, z)/N,
and the expected discounted total return is V(s, 7) = Y,5., B97'r(s, 7) where
0 < B < 1 is the discount factor.

For the discounted problem, there is only one reasonable criterion: a policy
r, is said to be B-optimal if

)] Vi(s, my) = Vi*(s) = sup, V(s, 1), ses.
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Blackwell (1965) and Maitra (1965) established the existence of a 8-optimal sta-
tionary policy for each 0 < g < 1.

There are, however, a number of competing criteria for the undiscounted
problem. Derman (1964), (1966), and Ross (1968) used criteria which depend
on the average gain:

DEFINITION 1. A policy =, is lim sup average optimal if
2) lim sup, V*(s, n,)/n = lim sup, V"(s, 7)/n, seS
for every policy «; it is lim inf average optimal if
3) lim inf, V*(s, 7,)/n = lim inf, V"(s, 7)/n , ses
for every =; and it is average optimal if
@) lim inf, (V"(s, @) — V"(s, @))/n = 0, seS
for every =. Given any ¢ > 0, the policy =, is e-average optimal if
(&) lim inf, (V"(s, m,) — V*(s, m))/n = —e¢, seS

for every =.

Unfortunately, those criteria are underselective since they depend only on
the tail of the returns and not on the returns during the first millenium. One
can, of course, get around this with the criterion of selecting a =, such that
lim inf, (V¥(s, ) — V¥(s, 7)) = O for all se S and all z. However, the latter
is overselective since even when S is finite, there need not exist any policy satis-
fying it (see Denardo and Miller (1968)). One can circumvent both problems
by using the following criterion, which is due to Veinott (1966):

DEFINITION 2. A policy =, is average overtaking optimal if
(6) lim inf, >4 (V*(s, my) — V*(s, m))/N= O, seS

for every policy .

Another way of approaching the undiscounted problem is to study the dis-
counted problem for the case of small interest rates (i.e., values of g close to 1).
The following criteria are due to Blackwell (1962) (see Remark 2 at the end of
this section).

DEFINITION 3. A policy =, is optimal if there eXists a 8, € (0, 1) such that
(7) Va(s, me) = Vi(s, 7) seS, e (B l)
for every policy =.

DEFINITION 4. A policy =, is l-optimal if
®) liminf, .- (Vy(s, m,) — Vy(s, 7)) =0, sesS

for every policy =.
Optimality certainly implies 1-optimality. Using an Abelian argument (see
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Hobson (1926)), one can establish the following general result:

©) optimality N {

-optimality.
average overtaking optimality 7 P Y
It is also clear that

 lim sup average optimality

10 average optimalit
(10) verage optimality lim inf average optimality.

One is tempted to link (9) and (10) by the statement: ‘l-optimality implies
average optimality.” Surprisingly, this is not the case. In Flynn (1974), we
give an example where an optimal policy is not lim inf average optimal. (We
also show that this “pathology” cannot occur when S is finite.) Here we give
examples of policies which are both optimal and average overtaking optimal
but are not lim inf average optimal and lim sup average optimal, respectively
(see Section 5, Examples 3 and 4). We also investigate:

QuEsTION 1. When does
(11) 1-optimality — average optimality ?
Denardo and Miller (1968) and Lippman (1969) established the following:

THEOREM 1. If S is finite, then average overtaking optimality and 1-optimality
are equivalent.

This paper contains an example which shows that optimality need not imply
average overtaking optimality (see Section 5, Example 1). Hence, Theorem 1
does not extend to countable S. Also, Blackwell (1962) gave an example (with
S finite) which indicates that neither 1-optimality nor average overtaking opti-
mality imply optimality. It follows that (9) cannot be strengthened without
imposing some conditions.

QUESTION 2. When is it true that
(12) average overtaking optimality < 1-optimality ?

The following related—but different (see Ross (1971))—questions are of
interest:

QuesTIoN 1. When does 1-optimality among stationary policies imply aver-
age optimality among stationary policies ?

QuesTioN 2. When is average overtaking optimality among stationary poli-
cies equivalent to 1-optimality among stationary policies ?

To give this second group of questions proper meaning, we require:

DErINITION 5. Let Q be a class of policies and let ¢ > 0 be a real number.
A policy =, is average overtaking optimal, optimal, 1-optimal, c-average optimal,
or average optimal among = in Q if (6), (7), (8), (5) or (4), respectively, holds for



EQUIVALENCE OF OPTIMALITY CRITERIA 939

all 7€ Q. When Q denotes the class of stationary policies, replace the phrase
“among & in Q” by “among stationary policies.”

REMARK 1. One can easily show (9) holds if we replace each type of optimality
by the corresponding type of optimality “among 7 e ” where Q is arbitrary.
Also, Theorem 1 remains valid if we replace each type by the corresponding
type “among stationary policies.”

REMARK 2. Our definition of “l-optimality” (see Definition 4) is equivalent
to Veinott’s (1969) definition of “0-discount optimality” but differs slightly from
his definition of “1-optimality.” Veinott (1966) calls =, “1-optimal” if it satisfies
(13) lim, ;- (Vy(s, 74) — V,*(5)) = 0, seS.
(This is the same as Blackwell’s (1962) definition of “nearly optimal.”) Our
definitions are equivalent when S is finite since there always exists an optimal
policy in that case (see Blackwell (1962)). However, for general S, average
overtaking optimality would not imply 1-optimality if 1-optimality were defined
via (13) (see Section 5, Example 7).

2. Outline and discussion. Our results on Questions 1 and 1’ appear in Sec-
tion 3, while those on Questions 2 and 2’ appear in Section 4. All of our ex-
amples are in Section 5. The proofs of some of our technical results are relegated
to Section 6. In this section, we focus on some of our more striking results.

Our answer to Question 1 is fairly complete. In Corollary 2 we show that
the following condition is sufficient for (11): For every ¢ > 0, there exists a
policy which is ¢-average optimal. (This result is fairly useful: see Remark 3
below.) Surprisingly, the analogous result does not hold for Question 2. In
Example 2, we construct a model in which there exists an average overtaking
optimal policy and a 1-optimal policy which is not average overtaking optimal.
Apparently, the relationship between 1-optimality and average overtaking opti-
mality is not all that strong. It would be interesting to answer:

QuesTIoN 3. Is the existence of an average overtaking optimal policy suffi-
cient for optimality to imply average overtaking optimality ?

REeMARrk 3. By Corollary 2, the existence of an average optimal policy suffices
for 1-optimality to imply average optimality. Now, many authors (e.g., Derman
(1964), (1966), Derman and Veinott (1967), and Ross (1968), (1971)) have in-
vestigated the question of the existence of a stationary lim inf average optimal
policy; for the most part, their results apply directly to the problem of the
existence of an average optimal policy (see Theorem 2 below). That condition
(iv) of Theorem 2 would be enough to eliminate the “pathology” described in
Flynn (1974) was originally conjectured by Bennett Fox.

THEOREM 2. There exists a stationary policy which is average optimal in each of
the following cases:
(1) S is finite.
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(ii) There exists a bounded set of numbers {g, f(s)}, s € S, satisfying
(14) 9 + f(s) = min ., {i(a, ) + Zwesq(s' |5, A)f(s")} ses.

In this case, any stationary policy w, which, for each s, selects the action which mini-
mizes the RHS of (14) is average optimal.

(iii) V,*(s") — V,*(s") is bounded uniformly in B, s’ and s".

(iv) There exists a family {nf, 0 < 8 < 1} of B-optimal stationary policies and
a state s, with the property: under the Markov chain associated with any ©*, the
system eventually reaches s, with probability 1; moreover, the mean recurrence time
from se S to s, under r, is bounded uniformly in 8 and s.

Proor. The sufficiency of (i) follows from Theorem 4.2 of Brown (1965);
that of (ii) follows from Remark 1 of Ross (1968), who also showed that both
(iii) and (iv) imply (ii).

In our investigation of Questions 1’ and 2’, we determine conditions under
which the following are true (see Remark 4 below):

STATEMENT 1. Any stationary policy x, which is 1-optimal among stationary
policies is average optimal among stationary policies.

STATEMENT 2. Any stationary policy =, which is 1-optimal among stationary
policies is average overtaking optimal among stationary policies.

In Theorem 4, we show that the following condition implies Statement 1:
(EPR) Under the Markov chain associated with each stationary policy the system
eventually reaches a positive recurrent state with probability 1. Note that (EPR)
holds when S is finite (Chung (1967)).

In Theorem 5, we find conditions which imply Statement 2. In order to give
an example where these conditions apply, we introduce the notion of uniform
recurrence. Let C be an indecomposable class of states in a Markov chain with
n-step transition matrix P = (P{»), (i,j,n = 1,2, -..). We say that C is uni-
formly recurrent if C is closed and if for some je C there exists a ¢ > 0 and a
positive integer n such that };2_, P{¥ > ¢ for all ie C. One can show that a
uniformly recurrent class of states consists of a nonempty set of positive recur-
rent states and a (possibly empty) set of transient states. The expected time
spent in the transient states is bounded. (Uniform recurrence is equivalent to
the notion of uniform ¢-recurrence which appears in Orey (1971) when ¢ is
the measure which assigns unit mass to j and zero mass to every other state.)
Theorem 6 states that the following condition implies Statement 2: (UR) Under
the Markov chain associated with each stationary policy, the state space can be ex-
pressed as a union of uniformly recurrent classes. (Observe that the classes need
not be disjoint.) Note that (UR) does not include the case where S is finite.
(Statement 1 is, of course, always true in that case: see Remark 1.).

REMARK 4. If a (possibly nonstationary) policy =, is optimal among station-
ary policies, then under (EPR) it is average optimal among stationary policies
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while under (UR) it is average overtaking optimal among stationary policies
(see Corollaries 3 and 4). It would be interesting to answer:

QuesTioN 4. Under (EPR), need a (possibly nonstationary) 1-optimal policy
be average optimal among stationary policies?

Note that the answer to the analogous question for average overtaking optimal
policies is “no” (see Example 8).

REMARK 5. None of the positive results in Sections 3 and 4 require that A4
be finite; however, some of them fail if we relax the condition that income be
bounded (see Examples 5 and 6).

3. Questions 1 and 1’. This section deals with the relationship between 1-
optimality and average optimality. Corollary 2 summarizes our main result on
Question 1, while Theorem 4 and Corollary 3 summarize our main results on
Question 1. The next result is our key.

THEOREM 3. Let Q be any class of policies such that for each positive ¢, Q con-
tains a policy which is e-average optimal among = in Q. Then any n, € Q which is
l-optimal among © in Q must also be average optimal among = in Q.

The following corollaries are immediate consequences of Theorem 3.

CoroLLARY 1. Iflim, V*(s, w)/n exists for all s€ S and m € Q, then any =, € Q
which is 1-optimal among « in Q must also be average optimal among = in Q.

COROLLARY 2. If for every ¢ > O there exists a policy which is e-average optimal,
then 1-optimality implies average optimality.

REMARK 6. By Corollary 1, the following convergence condition implies
Statement 1: (C) lim, V*(s, 7)/n exists for all s€ S and all stationary =. Note
that (C) does not imply the existence of stationary e-average optimal policies
(see Ross (1971)). In Lemma 2 below we show that (EPR) implies (C), hence
the following:

THEOREM 4. Condition (EPR) implies Statement 1.
We shall show that Theorem 4 implies:

CoRrOLLARY 3. Under (EPR), if &, is optimal among stationary policies, then it
is average optimal among stationary policies.

We do not know whether the analogue of Corollary 3 holds for 1-optimal «,,
(see Remark 4 above). Note that both Theorem 4 and Corollary 3 fail if we
relax the boundedness condition on i(., ) (see Example 5).

Theorem 3 requires the following lemma, the proof of which is relegated to
Section 6.

LemMA 1. For every M > 0 and ¢ > 0, there exists a 6 > 0 such that
(15) lim inf, - (1 — B) X5 Bita; — liminf, 337 ,a;/n < ¢
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for any sequence {a;}7_, satisfying

(16) o)l < M, J=12,
and
Y] limsup, 317 ,a;/n — liminf, ,,_ (1 — B) 335,87 %a; < 0.

Proor oF THEOREM 3. We can assume that there exists a policy =, which is
1-optimal among = in Q. By hypothesis, there exist policies 7,, 7,, - - - satisfying
(18) lim inf, 37_, [r;(s, 7)) — r;(s, ©)]/n = — 1]k
for every 7€ Q, (k = 1,2, --.). In particular,

(19) lim sup,, 317, [r;(s, my) — ri(s, m,)]/n < 1]k, k=1,2,...
The fact that =, is 1-optimal among = in Q implies
(20) liminf, - (1 — B) 235, B7(r;(s, my) — ri(s, @) = 0

for every 7 € Q. By (19) and (20), the fact that i(., +) is bounded, and Lemma
1, there exists a subsequence {mm, Ji=1 of policies satisfying

21 lim inf, 337_, (r;(s, m,) — r;(s, nmk))/n > —1/k, k=1,2,....
Thus, (18) and (21) imply that
lim inf, 33%_; (7;(s, 74) — r;(s, ))/n = liminf, Y37_, (r;(s, 7,) — r;(s, T, )/
+ lim inf, >37_, (r;(s, nmk) — ri(s, m))/n
= —1/k — 1/m,
for every policy 7€ Q, (k= 1,2, --.). Since k is arbitrary, (4) holds. The

theorem follows.
Theorem 4 requires the following lemma (see Remark 6).

LemMmaA 2. Condition (EPR) implies condition (C).

ProoF. Let the random variables X, X,, - .. represent the Markov chain as-
sociated with a given stationary policy = and initial state s, S. Define the
function f on S by f(s) = i(s, 7(s)), (s € S). Observe that f is bounded. This and
condition (EPR) imply that (f(X,) + --- + f(X,))/n converges almost every-
where to a bounded random variable R (see Chung (1967): 1.15, Theorem 2). By
the bounded convergence theorem, (Ef(X;) + - -- + Ef(X,))/n converges to ER.
To finish the proof of the lemma, note that Ef(X,) = r,(s,7), (n = 1,2, .. .).

ProOF oF COROLLARY 3. Let 7, be optimal among stationary policies. Since
there exist S-optimal stationary policies for 0 < g < 1 (see Blackwell (1965)),
7, must be optimal. Using this together with the arguments in the proof of
Theorem 8.3 of Strauch (1966), one can show there exists an optimal stationary
policy 7,,; moreover,

(22) (S, Ty) =2 7,(S, Tus) seS;n=1,2,....
Corollary 3 follows easily from (22) and Theorem 4.
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4. Question 2 and 2’. This section deals with the relationship between 1-op-
timality and average overtaking optimality. Our positive results on Questions
2 and 2’ are less impressive than those on Questions 1 and 1’; in particular, the
analogues of Theorem 3 and Corollary 2 are false: the existence of an average
overtaking optimal policy does not imply any equivalence between 1-optimality
and average overtaking optimality (see Example 2). However, we do have the
following analogue of Corollary 1.

THEOREM 5. Let Q be a class of policies such that g(s, ©) = lim, V*(s, w)/n and
b(s, ) = lim 34, (Vi(s, ©) — jg(s, w))/N exist and are finite for all se S and all
reQ. Ifn,eQ and n, is 1-optimal among mwe Q, then ©, is average overtaking
optimal among © € Q.

ReMARK 7. In Section 3, we showed that (C) implies Statement 1 (see Re-
mark 6). Unfortunately, (C) does not imply Statement 2 (see Example 1). By
Theorem 5, Statement 2 holds under the following convergence condition which
is stronger: (CS) g(s, ) = lim, V*(s, 7)/n and b(s, 7) = lim, > 3_, (Vi(s, ©) —
Jjg(s, ©))/N exist and are finite for all se S and all stationary =. This condition
holds when S is finite (see Doob (1953)). Note that (EPR) does not imply (CS)
(counterexamples are easy to construct). In Lemma 3 below, we show that (UR)
implies (CS), hence the following:

THEOREM 6. Condition (UR) implies Statement 2.
Arguing as in the proof of Corollary 3, one can establish:

CoROLLARY 4. Under (UR), if n, is optimal among stationary policies, then it
is average overtaking optimal among stationary policies.

The analogue of Corollary 4 does not hold for 1-optimal =,: under (UR), a
nonstationary policy can be 1-optimal without being average overtaking optimal
(see Example 8). Note that both Theorem 6 and Corollary 4 fail if we relax the
boundedness condition on i(+, «) (see Example 6).

ProoF oF THEOREM 5. Let 7, € Q be 1-optimal among policies in Q and let =
be an arbitrary policy in Q. Fix se S. By Corollary 1, g(s, 7,) = g(s, 7). One
can easily show that g(s, 7,.) > g(s, ) implies lim, > ¥_, (V"(s, 7, ) — V"(s, ®)) = oo,
which is stronger than (6). Thus we need only: consider the case g(s, 7,.) = g(s, 7).
In this case, liminf, ;- (V,(s, 74) — Vy(s, 7)) = liminf, - {35, B (r;i(s, my) —
9(s, wy)) — 215, BN (r;(s, ) — g(s, w))}. By condition (CS) and an Abelian ar-
gument (see Hobson (1926)), the RHS equals

limN 271:;1 Z?=1 (rj(s’ ”*) - g(s’ ”*))/N - limN ﬁ=1 ?=1 (rj(s7 7[) - g(s, ”))/N

Since g(s, w,) = g(s, ), the latter equals lim, > 4_, > *_, (r;(s, @) — r;(s, @))/N.
This and the 1-optimality of =, give us (6).
Theorem 6 requires only the following lemma (see Remark 7).

LemMma 3. Condition (UR) implies condition (CS).



944 JAMES FLYNN

PrOOF. Let 7 be a stationary policy. Fix seS. Since (UR) implies (EPR),
the existence of lim, V*(s, z)/n follows from Lemma 2. Using Theorem 7.1 of
Orey (1971) and the interpretation of uniform ¢-recurrence given in Section 2,
one can show that lim, »¥_, (Vi(s, #) — jlim, V"(s, w)/n)/N exists and is finite.
We are done.

5. Counterexamples. This section contains all of our counterexamples. In
Example 1, there exists a stationary optimal policy which is not average over-
taking optimal. In the second example, there exists a stationary average over-
taking optimal policy, and a stationary l-optimal policy which is not average
overtaking optimal. (Hence, the existence of an average overtaking optimal
policy is not sufficient for (12).) In the third and fourth, there exist stationary
policies which are both optimal and average overtaking optimal but are not
lim inf average optimal and lim sup average optimal, respectively. The fifth
example shows that Theorem 4 and Corollary 3 require the boundedness con-
dition on i(+, +), while the sixth shows that the same is true for Theorem 6 and
Corollary 4. Example 7 shows that (9) fails if we define 1-optimality differently
(see Remark 2). Finally, Example 8 shows that even under (UR), a nonsta-
tionary l-optimal policy need not be average overtaking among stationary
policies (see Remark 4).

The first two examples depend on Lemma 5 (see below), which establishes the
existence of a bounded sequence of real numbers {a,}7_, satisfying

(23) lim infy B3, D1, a/N = —1,
lim, - 3} pi~'a; = limsupy X170, 217.,a;/N=0.

ExaMmPLE 1. Let the state space consist of 0, 1, 2, - .., co. To each state there
correspond two actions, 0 and 1. The functions of ¢(+ |+, +) and i(., .) satisfy:

G+ UL =g+ 1L =1,  j=12.,
9(110, 1) =1, ¢(0]0,0) = ¢(0[0,0) = 3,
g(c0 | 00, 0) = g(oo] 0, 1) = 1;
i(j, 0) = i(j, 1) = a4, J=12 -,
i0, 1) = a,, i(0,0) = —%, i(00, 0) = i(c0, 1) = 0.
Let 7, denote the policy which always selects action j (j = 0, 1). One can easily
show that =, is optimal. That x, is not average overtaking optimal follows from

lim inf, 332, »*_, (V4(0, m,) — V¥(0, m,))/N = liminf, (33_, 217.,a;)/N + %
and (23).

ExXAMPLE 2. Let the state space consist of 0, 1, 2, ---. To each state, there
correspond two actions, 0 and 1. The functions ¢(+ |+, «) and i(+, +) satisfy:
9(110,1) = 9(010,0) = ¢(j + 11/, 0) =¢(G + 1|/, =1, j=12 ...,

i(0, 1) = a,, i(0,0)=0, i(j,0)=i(j,)=a;,,, j=1,2,---.
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Define 7; (j = 0, 1) as in Example 1. Using (23), one can show that r, is both
1-optimal and average overtaking optimal while z, is 1-optimal but not average
overtaking optimal.

Our next two examples depend on the following lemma, the proof of which
appears in Section 6.

LEMMA 4. There exists a bounded sequence of real numbers {v;}5_, which satisfy
(24) limy, 37, >, v;/N = oo, liminf, >3%_,v;/n < 0.

ExaMPLE 3. Let the state and action spaces be as in Example 2. Transitions
are deterministic:

9(010,0) = ¢(110, 1) = ¢(j + 1], 0) = q(j + L[/, ) = 1,
j=1,2,.--.
The immediate income depends only on the state:
i(0,0) =i0,1) =0, i(j, 0) =i(j, 1) = v;, j=12,....
Define 7, (j = 0, 1) as in Example 1. Clearly =, is average overtaking optimal
but is not lim inf average optimal. That x, is optimal follows from the fact (see
Hobson (1926)) that for any policy = and any se S,
(25) lim inf, 34, V*(s, #)/N < lim inf, ;- Vy(s, 7) < lim sup, ;- V(s, 7)
< lim supy 20, V*(s, m)/N .
ExAMPLE 4. Let the state space, action space and law of transition be as in
Example 3. The only difference is that we define i(+, +) by i(0, 0) = i(1,0) = 0

and i(j,0) = i(j, 1) = w;, = —v,; for j= 1,2, .... Define n; (j =0, 1) as in
Example 1. Clearly, r, is average overtaking optimal, but is not lim sup average
optimal, since by (24) we have lim, »}7_, >1%_, w;/N = — oo and limsup 3}7_, w;/

n > 0. That r, is optimal follows from (25).

ExaMpPLE 5. Let the state and action space be as in Example 1. Transitions
are described as follows:

g(o0 |00, 0) = g(co| o0, 1) = ¢(0]0,0) =1,  ¢(1]0,1) = § = g(= |0, 1),
q9(j + 11/,0) = q(j + 1]/, 1) = g(oo | j, 1) = g(c0 |}, 0) = &,
' =12, ...
The immediate income depends only on the state:
i(0, 0) = i(0, 1) = 0 = i(c0, 0) = i(o0, 1), i(j, 0) = i(j, 1) = 2w,

where w; is defined as in Example 4 for j = 1,2, .... Define z; (j = 0, 1) as
in Example 1. Observe that under any stationary policy, the system eventually
reaches an absorbing state with probability 1 (condition (EPR)). However, using
the arguments of Example 4, one can show that =, is optimal but not lim sup
average optimal.

ExAMPLE 6. Let the state and action space be as in Example 1. Transitions
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are described as follows:

g(00[00,0) = g(oo oo, 1) =1,  ¢(1]0,1) = g(c0]0, 1) = §,
9(010,0) = ¢(c0 |0, 0) = },
90 + 11/,0) = 9(j + 1), 1) = q(e0| j, 0) = q(co] /s 1) = 4,
j:l,z,...

The immediate income depends only on the state:

- i(j, 0) = i(j, 1) = 29*a,,, , j=12 .,
i(0, 1) = 2a,, i(0,0) = —1, i(00,0) = i(c0, 1) =0,
where a;, (j =1, 2, - . .), satisfies (23). Define =, (j = 0, 1) as in Example 1.
Using the arguments of Example 1, one can show that =, is optimal, but not

average overtaking optimal. Condition (UR) follows from the fact that the
probability of moving to state co in any transition is always > 1.

ExAMPLE 7. Let the S consist of 0, 1, 2, ... together with (k, 1), (k,2), -,
(k, 2k) for k = 1,2, --.. To each state, there correspond two actions, 0 and 1.
Transitions are deterministic. When in state k (k = 1, 2, -..), we can either
(Act 0) move to k + 1 or (Act 1) move to (k, 1). Once we reach state (k, 1), we
proceed along the path connecting (k, j) to (k, j + 1) until we hit (k, 2k); then
we move directly to state 0. State 0 is an absorbing state. Formally,

9(010,7) = 1 = q(0|(k, 2k), i) = g((k, j + 1) | (k. ) i) »
gk 4 1]k, 0) = 1 = g((k, 1) |k, 1),
i=0,Lj=1,--,2k—1k=12,....

The immediate income depends only on the state:

i(k,iy=0, i=0,1;k=0,1,2, ...,
and
i(k,j), ) =1, l<j<k,
= -2, k<jg£2, i=0,1;k=1,2,....

Let =, denote the policy which always chooses action 0. Also, for N =1,
2, ..., let , be the stationary policy which selects action 1 in state N and ac-
tion 0 in all other states. One can easily show that lim,_,- max, V,(1, zy) > 0.
Since V(1, =) = O for all 3, we have lim inf,_,- V(1, z,) — V,*(1) < 0. Thus
7, is not l-optimal if 1-optimality is defined by (13), yet =, satisfies (6).

The next example depends on Lemma 5 below, the proof of which appears in
Section 6.

LEMMA 5. (a) There exists a sequence of integers N, = 0, N,, N,, - - - satisfying
(26) 0< N2+ 4N, < N2, k=1,2, ...,
@7) NBHL — B)(1 — B S 2%, 0<B<Lk=1,2,...,
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and
(28) (1 — @GP <4, k=12,
where I, denotes the largest integer < (N> — Ni_, — 4N,_, — 1)/(k — 1).

(b) Given N, =0, N,, N,, - - - satisfying (26) and (27), define {a;}7_, by

a; =0 if Ni_,+4N,_,<j< N2,
(29) =—1 if NJ<j< N2+ N, or N2+ 3N,<j< N2+ 4N,,
=1 if NN+ N, <j< N2+ 3N, for k=0,1, ...

Then {a;}7., satisfies (23).

ExAMPLE 8. Let Ny, N, N,, --- and a,, a,, - - - satisfy the conditions of Lemma
5, and let a;, a3, - - - satisfy
(30) iz}, 0<a<l, k=1,2--.

Let the state space comsist of 1,2, ... together with (k, 1), .-, (k, 4N,) for
(k=1,2,...). To each state, there correspond four actions: 0, 1, 2 and 3.
When in state k, we can either (Act0) move directly to state (k, 1), (Act 1)
move directly to state 1, (Act 2) move to states k 4+ 1 and 1 with probability 1
each by tossing a fair coin, or (Act 3) remain in state k with probability a, and
move to state 1 with probability 1 — a, by tossing a biased coin. Specifically,

W DIk 0 =1 =gk 1),  glk+ 1]k 2) =4 = g(1]k 2),
q(klk’3):ak:1_q(1|k’3)’ k:1929"'-

Once we reach state (k, 1), we proceed along the path connecting (k, j) to
(k, j + 1) until we hit (k, 4N,); then we move directly to state 1, i.e.,
9((k,J + D[k ))s i) = q(1| (k, 4N,), 1) = 1,
i=0,---,3j=1,---, 4N, — L3 k=1,2, ...

All coin tosses are assumed independent. The immediate income depends only
on the state:

i(k,i)=0, i=0,1,2,k=1,2, ...,
i((k,j), i) = —1, I<j< N, or 3N, <j<4N,
=1, N, < j< 3N, i=0,1L;k=1,2,....

One can show that given any (nonrandomized) stationary policy, the state
space of the associated Markov chain can be expressed as a union of uniformly
recurrent classes (see Section 2). These classes are, of course, not disjoint. In
fact, for each such class, the set of positive recurrent states consists of the states
accessible from state 1. The role played by j in the definition of uniform recur-
rence (see Section 2) is assumed by state 1. Hence condition (UR) holds.

Let 7, denote the policy which always selects action 1. One can easily show
that 7, is both optimal and average overtaking optimal. We shall construct a



948 JAMES FLYNN

nonstationary policy =, satisfying

(31) ZiaBiTe; = B pr(l ) =0, 0<8<I1,
(32) L) £ (3) S (Siae),  N=1,2--,
and

(33) ri(s, ) = ri(s, my), s#=1Lj=1,2,.-..
Now, (23), (31) and (32) imply

(34) liminf, >¥_ V(1,7 )N —% and

lim, ,- 7., 877'ry(1, 74) = 0.
Using (33), (34), and the fact that =, is both optimal and average overtaking
optimal, one can show that any such =, is 1-optimal but not average overtaking
optimal. We leave the details to the reader.
Now we construct =,. Given any initial state s == 1, always choose act 1.
(Clearly, (33) holds.) For the case in which the initial state is 1, follow the
program:

I. Select act 3 from time 1 until time N*. Select act O from time N, until time
N3 4 4N, + 1. Then set K = 1.

II. Select act 2 from time Ni* + 4N, + 1 until time Ny, or the first time that
the system reaches state K + 1, whichever occurs first.

III. If the system reaches state K + 1 before time N _,, then choose act 3 from
the time the system reaches K + 1 until time N3 ,.

IV. If the system occupies state K + 1 at time N}_,, then choose act 0 from time
Ni., until time N}, + 4Ny,, + 1; otherwise, choose act 1 from time N, until
time N}, + 4Ny, + L.

V. Set K=K + 1. Then go to II.

We need only establish (31) and (32). Assume =, is used and the initial state
is1. Foranyk (k= 1,2, --.), one can easily show that if the system occupies
state k at time N2 then the income for period j will equal a; for values of
Jje[Ni_y + 4N, + 1, N, 4+ 4N,]; while if the system does not occupy state k
at time N2, then the income will be zero for all such values of j. Using this
and (29), one can establish (31). As the reader can verify, (32) will also follow
once we establish

(35) P[system occupies state k at time N} = %, k=1,2,....
To prove (35), we need
(36) P[system reaches state k by time NS =1, k=1,2,....

Toward establishing (36), observe that each time act 2 is chosen a fair coin is
tossed. Call a toss “favorable” if it does not direct the system to state 1. Now,
one can show that the system will always be in state 1 at time N;_; + 4N,_, + 1,
(k=1,2, --.). Hence one way.in which the system can reach state k by time
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N, is for one of the first J, groups of successive coin tosses to constitute a favor-
able run of length k — 1 (/, is defined in Lemma 5(a)). The probability of none
of those runs being favorable equals (1 — (4)*~*)’* by the independence of coin
tosses. Applying (28), we get (36). Now, given that the system reaches state k
at time ¢ < N2, the system remains in state k between time = and time N,* with
probability a,¥¥*~* > a, ¥, which is > § by (28). This and (36) give us (35).

6. Proofs. The only things left are the proofs of Lemmas 1, 4 and 5.

Proor oF LEMMA 1. Let {a,;}7., be any sequence satisfying (16). It is con-
venient to work with the sequence {x;}7_, defined by

37 x; = a; — liminf, ,- (1 — B) X7, " "a,, j=1,2,---.
Clearly,
(38) liminf, ;- (1 — 8) X7 87'x; =0, |x;] <2M, j=1,2,....
By (37) and (38), (15) is equivalent to
(39) liminf }37_, x;/n > —e,
while (17) is equivalent to
(40) limsup 37, x;/n < 0.
These equivalences allow us to establish the lemma by showing that
(41) liminf, 37, x;/n £ —e¢,
lim sup, 2 17_, x;/n < d(e, M) = ¢(1 — e~*/*¥)/6e

is impossible, since it will then follow that 6 = d(¢, M) meets the required con-
ditions. (The reader should verify this.)

Assume (41). Let S, = >"_,x;, (n=1,2,...) and let p = limsup S,/n.
Clearly, there exists an integer N such that

(42) S, < 2pn, n=N.
By (41), there exist integers N, N,, - - - satisfying
(43) N<N; < Nyyys limy Ny =o0, Sy, = —(§)eN;,

J=1,2, ...

Now, (43) and the fact that the x,’s ar¢ bounded in absolute value by 2M (see
(38)) imply that

(44) S, £ —(3)eN;, L,<n< Uy,
where L; is the smallest integer = N;(1 — ¢/6M) and U, is the largest integer
< Ny(1 + ¢/6M), (j = 1,2, --.). Itis easy to show that

(I =B ZaB7x = (1 = B) X5 B77°S5
Clearly, the RHS equals

(1= B(Z5ma 877885 + Zikwan B85 + k041 87708 + 5oy, 8775
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which according to (38), (42) and (44) is bounded above by
2(1 — pYPN'M + (1 — B)* B5e B77(20)) — (1 — B) Ly, 10 B7H(R)eN,
fork=1,2,.... Consequently,
(45) (I = B) T B7x; < 2(1 — BYN*M + 2p
— (B)eN(1 — BB H(1 — BV M),
fork=1,2,.... Let8, =1—1/N,, (k=1,2,-..). Evidently, N(1 — 8,) = 1
and lim, 8,"+ = e~. Now, one can easily show that
lim, Ny(1 — B,)B," (1 — B,Ur=1x)
— limk ‘BkLk _ ,Bkv" — e—(1=¢/8M) __ o—(1+¢/6M) > (1 _ e—e/w)/e .

Thus, the fact that lim, (1 — 8,))N*M = 0, and (45) imply

lim sup, (1 — B4) 257 (B)''x; < 20 — (1 — e¥/3")/3e .
Consequently, liminf, - (1 — 8) 317, B7'x; < 0 whenever p < (¢, M) (see
(41)), contradicting (38). Lemma 1 follows.

Proor oF LEMMA 4. Our proof is constructive. For each k k=0,1,...),
define r; by

r,=1, 22F — 1)< j <22k — 1) + 2%
=—1, 22— 1)42* < j< 202k — 1).
Let v;(0) = r; — 6 for all real . Clearly, lim inf, 3;%_, v,(6)/n = —4. Hence,
all we need is a 6 > 0 satisfying
(46) liminf, 317, 31*_, v,(0)/N = o .
We will show that 9 = 2= works. LetS, = 3 %_,r;(n= 1,2, --.)and m(k) =
2(2F — 1), (k:O I, ...). Foranyd > 0,
(47) =1 (S5 — JO)IN = T3 S;/m(k + 1) — 7™ jo[m(k)
m(k) < N < m(k + 1).
Now, the RHS of (47) equals
(2523 S5/m(k))(m(k)[m(k + 1)) — 7% jo[m(k) L4+ jI L7 J) -

Using the well-known formula for the sum of consecutive positive integers, one
gets Z,‘;”";’j =2 —-DE2* —1),(k=1,2,3,...). Also,2¥1 < 2F — 1, (k =
1,2,-..). Hence, 3;7&+v j/>m j < 8 and m(k)/m(k + =4 k=12,.-.).
This 1mp11es that the RHS of (47) is = (1) ;% (S; — 32j0)/m(k), (k = 1,2,--.).
Consequently, if 6 > 0 satisfies
(48) lim, 379 (S; — jo)/m(k) = oo,
then 27°9 satisfies (46). We will show that 6 = 2-° satisfies (48).

As the reader can easily verify,

Smiiren = P s if h=1,...,27,
=2t _ p, if h=2741,...,204,
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(j=0,1, --.). This gives us
) e S = 227D k=1,2,....
Using the fact that }jm% j < 2%+ we have
(49) TR (S — jo) 2 247 — 24
whenever § > 0. Observe that for § = 2-°%, the RHS of (49) = 2*-%. Conse-
quently, for 6 = 27¢,
lim inf, ;™% (S; — jo)/m(k) = lim inf, (2°*=%)27%"! = oo .
Lemma 5 requires the following result:

LEMMA 6. For any ¢ > 0, there exists a positive integer N, such that N = N,
implies
N2p¥(1 — BY(1 — By < e, 0<p<l.
ProoF. Let p = —In 8. We need only show that
Fo, x) = x%e=0™(1 — e=r)(1 — e~*%)

converges to 0 uniformly in p, (0 < p < o), as x approaches co. We will do
this by proving that the existence of a 6 > 0 and sequences {x,}7_, and {o,}7,
satisfying

(50) lim; x; = oo, x; < Xjp1s F(x;, 0;,) = 0, j=12,...

leads to a contradiction. To begin with, whenever {x;}s_, and {p,}7, satisfy
(50), we have

(51) lim; p,x; =0, lim;p,=0.

Otherwise there exist a 2 > 0 and subsequences {x, }7_, and {p, };_, such that
Xy 00; 2 4 (j=1,2, --+). But then F(on;s X, )< xy ety (j=1,2, -0,
which is 1mpossible by (50). Now (51) and the fact that 1 — e~ < ze* for all
positive z imply that for j sufficiently large,

Fpjs x;) < (50;%;) « (0 X037 .
But the second factor in the RHS is bounded while the first converges to 0 by
(51). This contradicts (50), finishing the proof.

Proor oF LEMMA 5. First, part (a). Evidently there exist integers /(1),
1(2), - - - such that

(52) (- @<§,  ITzIk), k=23,

By Lemma 6, there exist integers N,, N,, - - - satisfying (27). Lemma 6 also al-
lows us to choose this sequence so that N,* > (k — 1)I(k) + N:_, + 4N,_, + 1
fork =1,2, ..., where I(k) satisfies (52) and N, = 0. One can easily show
that any such sequence must satisfy (26) and (28). Part (a) follows.
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For part (b), let Ny =0, N, N, --- satisfy (26) and (27), and let J, =
JIN+1<j<N?+ 4N} fork =1,2,.... Define 5, = iq,a;and T, =
s, =12, Evidently, if i € J, for some k, then s, satisfies

Swan; = —J if 0<j<N,
(53) =—@2N,—j) if N,<j<3N,
— 4N, — if 3N, <j<4N,;

while if i ¢ |, J,, then s, = 0. Using (53) and the well-known formula for the
sums of consecutive positive integers, one can show that Ty 242y, = —N,* and
—NZT; £0,(jedy), fork=1,2,.... Also, T,=0, j¢ U, .- Onecan

easily show that these facts imply limsup, 7,,/N = 0 and lim inf, Ty/N =

lim, (Ty 240w, )/(V* + 2N,) = —1. The only thing left to establish is

(54) lim, ,- N7, 8, = 0.

We will make use of the identity

(33) (I = B L5 87T = X5 piay, 0<s<I.
Since T; =z — N,*for je J,, we have 3,., Bi'T; = — N2B¥(3 4"k g-1). Hence,
(56) (I = B) Zjes, BT, Z —N2BYH(1 — B)(1 — B*V) .

Let 6 > 0 be arbitrary. Condition (54) will follow if we can select a 8, < 1 so
that

(7) BTy =z =0, BosB<I.

Select k, and 8, < 1 so that itk 27* < 6/2 and (1 — BN (1 — ,BN?:O) <92
for 8, < B < 1. The identity (55) implies that

. 2 . .
(58)  Dfaba;= (1= B DA, + (1= B Nt 0 67T,
By (56), the fact that T; = 0 for j¢ |J, J,, and tl;e fact that t; > — N2 for jeJ,
(k=1,2,...), the RHS of (58) is > (1 — g)? Z;V:?N,ioﬁi—l — Diekgr1 N2BYH(1 —
B)(1 — p*¥k). But the latter is > — (1 — BN, (1 — Bk) — 6/2 by (27) and our
choice of k,. This and our method of selecting 3, give us (57). We are done.

Acknowledgments. We wish to thank Ben Fox for his helpful comments.

REFERENCES

BLACKWELL, D. (1962). Discrete dynamic programming. Ann. Math. Statist. 33 719-726.

BLACKWELL, D. (1965). Discounted dynamic programming. Ann. Math. Statist. 36 226-235.

BrowN, B. (1965). On the iterative method of dynamic programming on a finite space discrete
time Markov process. Ann. Math. Statist. 36 1279-1285.

CHUNG, K. L. (1967). Markov Chains with Stationary Transition Probabilities. Springer-Verlag,
Berlin.

DeNARDO, E. and MILLER, B. (1968). An optimality condition for discrete dynamic program-
ming with no discounting. Ann. Math. Statist. 39 1220-1227,

DerMAN, C. (1964). On sequential control processes. Ann. Math. Statist. 35 341-349.



EQUIVALENCE OF OPTIMALITY CRITERIA 953

DEerRMAN, C. (1966). Denumerable state Markovian decision processes—average cost criterion.
Ann. Math. Statist. 37 1545-1553.

DEerMAN, C. and VEINOTT, A. (1967). A solution to a countable system of equations arising in
Markovian decision processes. Ann. Math. Statist. 38 582-585.

Doos, J. (1953). Stochastic Processes. Wiley, New York.

FLYNN, J. (1974). Averaging versus discounting in dynamic programming: a counterexample.
Ann. Statist. 2 411-413.

HossoN, E. (1926). The Theory of Functions of a Real Variable and the Theory of Fourier’s Series.
Cambridge Univ. Press.

LiGGeTT, T. and LippMaAN, S. (1969). Stochastic games with perfect information and time aver-
age payoff. SIAM Rev. 11 604-607.

LipPMAN, S. (1969). Criterion equivalence in discrete dynamic programming. Operations Res.
17 920-923.

MAITA, A. (1965). Dynamic programming for countable state systems. Sankhyd Ser. A 27 259-
266.

OREY, S. (1971). Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand,
Princeton.

Ross, S. (1968). Non-discounted denumerable Markovian decision models. Ann. Math. Statist.
39 412-423.

Ross, S. (1971). On the nonexistence of c-optimal randomized stationary policies in average cost
Markov decision models. Ann. Math. Statist. 42 1567-1568.

STRAUCH, R. (1966). Negative dynamic programming. Ann. Math. Statist. 37 871-890.

VEINOTT, A. (1966). On finding optimal policies in discrete dynamic programming with no
discounting. Ann. Math. Statist. 37 1284-1294.

VEINOTT, A. (1969). Discrete dynamic programming with sensitive discount optimality criteria.
Ann. Math. Statist. 40 1635-1660.

ScHoOL OF BUSINESS ADMINISTRATION
WAYNE STATE UNIVERSITY
DETROIT, MICHIGAN 48202



