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ADMISSIBILITY OF CONDITIONAL
CONFIDENCE PROCEDURES

By J. KIEFER!
Cornell University
A formal structure for conditional confidence (cc) procedures is investi-
gated. Underlying principles are a (conditional) frequentist interpretation
of the cc coefficient I', and highly variable I'. The latter allows the stated
measure of conclusiveness to reflect how intuitively clear-cut the outcome
of the experiment is. The methodology may thus answer some criticisms
of the Neyman-Pearson-Wald approach, but is in the spirit of the latter
and includes it. Example: X hasone of k densities f,, wrt v. A nonempty
set of decisions D, C D is ‘“‘correct” for state . A nonrandomized cc pro-
cedure consists of a pair (9, Z) where J is a nonrandomized decision func-
tion and Z is a conditioning rv. The cc coefficient is I'y, = P,{0-1(Dy)| Z}.
If X = xo, we make decision d(xp) with “‘cc T',(x0) of being correct if o is
true’’; it is unnecessary, but often a practical convenience (as for un-cc
intervals), to have I‘“, 1ndependent of w. Possible notions of “goodness”
are discussed; e.g., (5 Z) at least as good as (3, Z) if P,{3(X) e D,and Ty, >
t) = P{06(X)eD, and Ty >t} V1, o, and P, I‘w~0}<P{ O}Va)
It is proved that cc procedure (d, Z) is admissible if the non-cc & is admis-
sible. For 2-hypothesis problems the converse is true; otherwise, “‘star-
shaped” partitions of the likelihood ratio space are needed. Other loss
structures are also treated.

0. Introduction. Although there is a large literature of conditioning in
statistical inference, there has been no methodical presentation of a frequentist
non-Bayesian framework that considers possible criteria of goodness of such
procedures, and methods for constructing them, in general statistical settings.
The present paper is devoted to decision-theoretic admissibility considerations,
in such a framework.

Various illustrations of this approach are contained in [4] and [2]. Its relation-
ship with other work on conditioning, and some discussion of foundations, will
be found in [2]. Still, it may be appropriate here to indicate that the present
approach was motivated by the observation that many critics of the Neyman-
Pearson-Wald (NPW) approach to statistics seem disturbed at the prospect of
making a decision that is not accompanied by some data-dependent measure of
“conclusiveness” of the experimental outcome. For example, in deciding
whether a normal rv X with unit variance has mean —1 or 41, where the
standard symmetric NP test makes a decision accompanied only by the assess-
ment of error probabilities ®(—1), some statisticians may be disturbed by an
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intuitive feeling that they are much surer of the conclusion when X = 10 than
when X = .5. The authors of various axiomatic studies of statistical foundations
(Bayesian, likelihood, fiducial, evidential, etc.) have criticized other aspects of
the NP approach as well; but this notion of wanting a measure of conclusiveness
that depends on the experimental outcome has appealed also to many practi-
tioners, as is evidenced by the old and continued usage of the methodology that
states the level at which a singificance test would “just reject” a null hypothesis
(and which is historically a starting point for an extensive theory constructed
by Bahadur).

A principle adopted in our developing of a methodology that may satisfy the
objection mentioned in the previous paragraph, is that our measure of conclu-
siveness should have a frequentist (law of large numbers) meaning similar to
that emphasized by Neyman for classical NP tests and confidence intervals. As
discussed in [2], this implies that, except in rare cases of symmetry, our ap-
proach and form of conclusion cannot agree with those of the critics mentioned
above.

The methodology we propose is a procedure consisting of a decision rule and
a conditioning random variable. The frequentist properties of such a procedure
are studied in terms of the conditional probability of a correct decision given
the conditioning random variable. This quantity is called the “conditional con-
fidence,” extending the usage of “confidence” from its traditional meaning in
unconditional interval estimation to the present setting, where it has an analo-
gous frequentist interpretation.

In conformity with our motivating comments, this conditional confidence
coefficient should in practice be highly variable as a function of the conditioning
random variable; otherwise, we may as well use an unconditional NPW pro-
cedure. There is a brief discussion of such variability near the end of Section
2. The basic notions are introduced in Section 1; the ideas are illustrated in
examples in Section 1.3. In Section 2 some possible admissibility criteria are
defined. The simplest of these regards a procedure as inadmissible if there is ano-
ther procedure with smaller probability of yielding a zero conditional confidence
coefficient, and with stochastically larger coefficient on the set where a correct
decision is made.

In Section 3, sufficient conditions for admissibility are obtained. It turns out,
perhaps surprisingly, that if a NPW unconditional procedure is admissible in a
classical sense, then every conditioning used in conjunction with it yields a pro-
cedure admissible in the ordering considered here. Just as in classical decision
theory, additional criteria are needed to choose among these; some such criteria
are discussed in Section 2 and, more extensively, in [2].

Section 5 contains complete class theorems for the k-hypothesis problem. The
result is especially simple when k = 2, where the minimal complete class coin-
cides with that obtained in Section 3; for larger k, additional procedures are
included. In leading up to these results, Section 4 studies special “canonical”
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procedures in terms of which closure results are proved. Section 6 discusses
some other possible definitions of admissibility.

1. Notation, definitions, examples.

1.1, Basic ideas and notation. It is convenient to assume the underlying meas-
ure space of possible outcomes of the experiment, (27, <, v), to be of countable
type with compactly generated o-finite v with respect to which the possible states
of nature Q = {w} have densities f,. This implies existence of regular conditional
probabilities in the sequel. (See, e.g., [6], pages 193-194.) We write X for the
rv representing the experiment with outcome in .2°, By I, we denote the charac-
teristic function of the subset 4 of the domain of this function; in particular, it
may be the indicator of the event A.

In the decision space D, we assume that for each w there is specified a non-
empty subset D, of decisions that are “correct” when w is true. We write
Q; = {w:deD,}. The confidence “flavor” is best exhibited in terms of the
simple loss function implied by consideration in these terms; other possible
treatments will be described in Section 6.

A (nonrandomized) decision rule § : 22”7 — D is required to have 6-%(D,) ¢ <&
for each w. (This may easily be translated in terms of a structure on D.) The
apparent neglect of randomization is intended to aid in clarity of exposition.
It is not a genuine neglect, since, as will be discussed presently, .2° will be
regarded as the product of a more primitive sample space .2°’ and a randomi-
zation space.

Any subfield ), of & may be called a conditioning subfield. It is convenient
to consider only those subfields generated by statistics on (2, &&). If Z is such
a statistic, with Z(#") = B,

Py =1{S: S H, S = Z-(4) for some A4 c B}.

The relationship between <%, and the partition of 2~ induced by Z is discussed
in [1]. We denote the resulting (conditioning) partition of 22 by {C?, b B}.
We also write, for a given ¢ and <7,

C)l =C"né'(d),
(1.1) C,=07%(D,) = {x: d(x) is correct when w is true},
K=¢C'nc(C,.
The K’ are not necessarily disjoint, but the C,* (b€ B, d e D) are, and constitute
the partition C of 7. Note that subscripts always index D or Q; superscripts
index B; symbols such as overbars or left superscripts distinguish different parti-
tions and their operating characteristics.
A conditional confidence procedure is a pair (9, ) or (9, Z) or, equivalently,

the corresponding partition C. Its associated conditional confidence function is the
set I' = {I',, w € Q} of conditional probabilities

(1.2) T, = P,{C,| &)}, weQ.
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For each w, this ZZ)-measurable function on 22~ can be regarded as a function
of Z, and we write T',* for its value on the set Z = b. A conditional confidence
statement associated with (0, &%) is the pair (4, T'). It is used as follows: if
X = x,, and Z(x,) = z,, we state that “for each w, we have confidence I, (x,) =
T,% of being correct if w is true.” We make decision 6(x,).

Such statements have a conditional frequentist interpretation analogous to
that of the NPW setting <&, = {2, @}, where T, is simply the probability of a
correct decision when w is true. In a sequence of n independent experiments,
if w, is true and X, is observed in the ith experiment, then the proportion of
correct decisions made will be close to n~* 33* I, (X,) with probability near one
when n is large. This is true even if different (6, <%,)’s are used in the experi-
ments, but the frequentist meaning is of most intuitive value in cases where the
dependence of I', on w can be removed, just as in the usual NP treatment of confi-
dence intervals or composite hypotheses with specified minimum power. Thus, if
there is a function ¢ on 227 such that T',(x) = ¢(x) for all w and all x, we may make
the more succinct statement that “we have conditional confidence at least ¢(x,)
that d(x,) is a correct decision,” if X = x,. The frequentist interpretation in terms
of the law of large numbers is thereby simplified, and its practical meaning is
made clearer if we look only at those experiments in which I'(X,) = .9 (for
example): a correct decision is very likely made in about 909, or more of such
experiments, if their number is large. Whenever there is a Z%),-measurable set
A of positive v measure on which I',?*® can be chosen not to depend on w, we
write I'* in place of T',* for b in Z(4).

The class of all conditional confidence procedures C is denoted by . Addi-
tional notation will be introduced as required.

1.2. More about conditioning partitions. In Section 2 we shall discuss goodness
criteria for partitions. One element of those considerations is the set

(1.3) Q, = {x: Ty(x) = 0} .

This is a (f,) maximal <Z,-measurable set on which we never make a confidence
statement correct for w. A procedure is called nondegenerate if P, {Q,} = 0
V o, and the class of all nondegenerate procedures is denoted by & +. The in-
tuitive appeal of using a nondegenerate procedure can be seen in the NP setting
of testing between two simple hypotheses whose densities are positive throughout
£ it amounts there to prohibiting use of the trivial critical regions, -2”and @.

We denote by & %o all partitions with B = B,, and write 2" = &2 n & .
For positive integral L we denote by B the finite label set {1,2, ..., L} and
abbreviate 22" by Z’2. We have found it convenient not to demand essential
minimality of B for a given partition, but instead to permit a procedure in &~
to have »(C*) = 0 for some b; thus, &"“~* can be regarded as essentially a subset
of €*. However, the nondegenerate partitions €** are disjoint. Between &~
and &’*" are the proper partitions of &%, those for which each C® has positive
probability for some w.
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Thus, & is the classical NPW case, the Wald framework of unconditional
statistical decision theory. It is a useful reference mark against which to com-
pare the various notions we use.

For finite (or denumerably infinite) B, we interpret (1.2) through the simple
conditional probability formula: if P,{C*} > 0,

1.4) T}= w{Kw"}/Pw{C”} y
and Q, is the union of all C*’s where P,{K,’} = 0. We shall see that other B’s
are also of interest, for example, B = a real interval.

1.3. Examples. We now illustrate the notions introduced above in terms of
a simple 2-hypothesis setting, where Q = D = {1, 2} and D, = {i}. To avoid ques-
tions of randomization, suppose v is Lebesgue measure on a real interval 2”and
that v({x: f(x)/fi(x) = c}) = O for every c. Then Corollary 5.4, together with
the comments of Section 4 on elimination of randomization, assert that every
admissible procedure (in a sense described in Section 2) is obtained essentially
by subdividing the {C,, C,} of a NP < '-partition into arbitrary C,>. For an
example of computational simplicity, suppose f; is normal with mean 2i and
variance 1. The symmetric NP & partition C, = (— 0, 3), C, = [3, co) has
I' = ®(1) = .84. Using the same C, with C*' = {x: |x — 3| < 1.5} = 2 — C?,
we obtain a symmetric < partition with ' = [©O(1) — ©®(—.5)]/[D(2.5) —
®(—.5)] = .78 and with I'"* = O(—.5)/[D(—.5) + O(—2.5)] = .98. Out of the
probability .84 of making a correct decision, a portion .31 is associated with
the “more conclusive” C? statement for which the conditional confidence co-
efficient is .98. Asymmetric examples of f;’s and examples in which it is deemed
more important to make correct statements under f; than f;, will be given in [2].

For a further 2-hypothesis illustration, suppose 2”~ = real line and that
[ (0)/fi(x) is nondécreasing, positive and finite. The finest conditioning (con-
tinuum B) that makes I', = I', w.p. 1 under both f; can be shown to be deter-
mined by letting {%., [ fi(x)fy(x)]* dx = {2 [ fi(x)fe(x)]* dx and C, = (—o0, cy);
and by making ¢(x) < ¢, satisfy, for x > ¢,, the relation {22 [ £()fy()]t dt =
([ (O] dr. Then B = [c,, o) and, except for the exceptional value b = ¢,,
we set C* = {c¢(b), b}. This construction is illustrated and discussed in [2].

It will often be a practical convenience in examples like the above, where T',*
is independent of w, to relabel B in such a way that ' = b.

1.4. Randomization. We now discuss the representation of randomization and
its role in the theory. A standard device in & developments is the representa-
tion of the randomization device as Lebesgue measure p' on the Borel sets <~
of the unit interval /. (We denote Lebesgue measure on /* by p*.) A randomized
procedure for a problem with underlying measure space (2”’, &', v') can then
be regarded as a nonrandomized procedure on (7, &, v) = (2 x I, #' x £,
v x p*), which can be thought of as the background of our model. In particular,
the underlying v is then atomless, and certain sets of operating characteristics
considered later are convex. As will be discussed in Section 4, if the original
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v’ was atomless, results of Dvoretzky, Wald and Wolfowitz (1951) imply that
such an introduction of randomization is unnecessary to achieve these operating
characteristics, under assumptions that include & * procedures for the k-hypothe-
sis problem treated herein.

In practical terms, the use of randomized procedures is subject to all the cri-
ticisms present in & developments, but such criticism is perhaps even more
pointed for conditional procedures, where one may find it unappealing to con-
dition on the value of Z(X) but not on the outcome of the randomization scheme.
In many discrete case settings, the practitioner will do what he does in <™ con-
siderations, and sacrifice exact fulfillment of some stated probabilistic objectives
in favor of using a nonrandomized procedure. As in the case of &, we consider
the randomization enlargement from 2’ to 22”7 in order to achieve the convexity
of some set of operating characteristics.

We also note that, although the set of operating characteristics of procedures
in & or €* turns out to be convex (Theorem 4.3), that of procedures in &*
(or €*") does not. This can be seen from the fact that a 50-50 random choice
between two procedures in &% can be viewed in 27’ x I as a &~ partition of
2" % [0, 1) together with another partition of 27’ x [4, 1], and is thus in &7**
rather than in &~.

On the other hand, & and & are “closed” in a natural sense, while &+ and
&L are not (Sections 4 and 5).

Further discussion of randomization, and an illustrative example of what is
lost by not randomizing in a discrete case, is found in [2].

It has seemed best for the purpose of trying to make the ideas of this paper
understandable, not to use the most general notation throughout. Thus, in the
previous exposition and in development of the simple sufficient conditions for
admissibility of Section 3, we can use nonrandomized (d, Z), understood to be
based on 27 = 27" x I as described above, and thus to be equivalent to use of
randomized procedures on Z2”’. Such randomized procedures » are defined in
general terms in Section 4, where also the notion of a “canonical procedure” is
introduced in order to prove convergence and compactness properties of Z.
Section 5, where necessary conditions for admissibility are obtained, can then
be read without detailed reading of Section 4. Section 5 and the end of Section
3 are written in a special form convenient for the k-hypothesis problem, in terms
of the sufficient statistic {f;/Y; f;, 1 < i < k} that takes on values in the (k — 1)-
simplex .&%_;. (The role of sufficiency is the same as in &* theory and will not
be discussed further.) Accordingly, a procedure can be regarded either as a ran-
domized procedure on .5, or as a nonrandomized partition of .97, = & _, x I,
and we try to use the two points of view in such a manner as to aid under-
standing: the former when proofs require it, the latter when it gives a simple
geometric picture of a procedure, especially when the partition is “almost” a
cartesian product of / with a partition of .5/, _,. In using .77, we denote parti-
tions by C.
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The classes &, €+, €7 are to be viewed as consisting of all randomized 7
on 27, or equivalently of all partitions of 2" x I that have the appropriate
- properties, possibly with .&,_, for 2.

2. Goodness criteria. A natural beginning for optimality considerations is
the intuitive notion that, if w is true, we prefer a procedure that states this truth
in a form that reflects strong conclusiveness, to one that asserts it only as a
weakly felt conclusion. This comparison is meaningful if the first procedure
has at least as much probability of making its assertion as the second; otherwise,
a direction of preference is not so clearly natural. We are led, then, to consider
the tail probability law

(2.1 G,(1) = P{T, > t; 5(X) e D,)

for 0 < < 1. This function is right continuous. It is also defined at r = 0—,
and we now verify its behavior at 0, for future reference.

LemMA 2.1. We have G,(0—) = G,(0), and consequently
(2.2) G,(0)=7Pf(X)eD,}=1—-"PJL0,}.

Proor. We use the fact that T, is <,-measurable to compute that the “jump”
in question is

Plé(X)eD, T, =0} = Ew{Ew{IWX)eDm,I‘Fw:O,|§Zo}}
(2-3) = m{I{Fm=0)Em{I(6(X)eDw) I%}}
= w{I(P,,FO) r,)=0. U

A possible notion of admissibility, that quantifies the intuitive notion that led
to consideration of (2.1), is to regard C as better than C if
(2.4) G() =G () VYo,t,
with strict inequality somewhere.

In Section 6 we discuss some of the possible modifications of this criterion.
While (2.4), with the adjunction of (2.6) or (2.8) as described hereafter, seems
to the author the simplest criterion that conforms with the earlier motivating
comments, it is not the aim of this paper to insist on the use of any one such
criterion. Rather, these first considerations are intended to typify the formu-
lation and study of reasonable conditional admissibility criteria. Many of the
comments of Section 2 apply qualitatively to other criteria of similar character.
Some criteria lead to further complications or simplifications. For example,
the use of E,I', = P,{C,} in place of (2.1) reduces the admissibility question to
a known one of <7 decision theory, but (Section 6(B)) this criterion may not
reflect the aims that motivated use of conditional confidence procedures.

For a procedure in =™, the function G,(r) has only a single jump,att =T, =
P{0(X) e D,}, of magnitude I',. Hence, (2.4) is the usual notion of domination
in terms of the risk function for zero-one loss function. However, for a pro-
cedure outside &, (2.4) alone is not satisfactory. To see this, consider the
k-hypothesis problem, where Q = {1,2,...,k} =D and D, = {i}, so that
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C.' = K;*. Let us fix the C,’s and consider only partitions {C,’} with those C,’s.
Every such procedure has G,(0) = P,{C,}, but essentially only the partition C
with € = C, has G(1—) = P{C}}, and thus it is essentially the only partition
with the given C, that is admissible in the sense of (2.4).

This partition € is highly unappealing intuitively. It always asserts I, = 1
when decision d, is reached, but does so in the form of a trivial conditioning,
“when o is true, the conditional probability of asserting it is true, given that it
is asserted to be true, is one.” It does not come close to achieving an aim that
seems essential to the usefulness of conditional confidence procedures: that, for
each b, the T',* be of comparable magnitude (and perhaps even equal). This
property is important for two reasons. Firstly, it is useful to be able to regard
different values of Z as indexing different levels of conclusiveness; thus, in &
we might like to regard decisions made when X € C* as being “weakly conclu-
sive” and those made when X € C? as being “strongly conclusive.” Secondly,
from a practical point of view, it is useful (just as it is in the case of & con-
fidence intervals) to be able to state a (conditional) confidence coefficient or
useful lower bound, that is independent of w—the I'* or ¢(x) of Section 1.

There are two fairly obvious possible modifications to using (2.4) alone. One
of these is to impose on the class of procedures being considered a restriction
that eliminates procedures like C. The restriction to procedures in &+ achieves
this, since C is degenerate. Because of the simplicity of this restriction, it is use-
ful theoretically in admissibility developments. However, in using it one should
keep in mind that the difficulty presented by comparison of procedures with C
is not completely eliminated by restriction to €’*. This is because, in this k-
hypothesis setting, it is easy to modify C very slightly to obtain a procedure c
for which PJ{C,} is positive but small for i + j; this Cis in &+, and the Lévy
distance between G, and G, is small. A procedure C in &+ with the same C,’s
as 5‘, and with almost equal T',*’s for each fixed b, will then not be strictly worse
than C in the sense (2.4), by Corollary 3.2; but C is close to being “very much
worse” than C, in that its G, is much worse than G, which is close to 5“,; thus,
we have a “subadmissibility” phenomenon. Having found the admissible pro-
cedures in <+, then, further considerations in the form of the next paragraph,
or in achieving reasonable closeness of the I',*’s for each fixed & (which rules
out C), are necessary in choosing satisfactory procedures.

A second possible alteration of (2.4), ‘even without imposing the restriction to
&+, involves examination of incorrect assertions: if o is true, and if we state
that it is not true (by making a decision outside D,), it is better not to sound so
sure about that untruth. This leads to consideration of laws associated with T
and variants of it, under each possible true w. Such possibilities will be dis-
cussed in Section 6 (B), near the end of which the difficulty of using one of the
most natural possibilities is discussed. For now, we mention only the simple

(2.5) Hy(t) = P{3(X) ¢ D,, 1 — T, > 1},
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motivated by the fact that 1 — T', is the condi}ional probability, under w, of
making an incorrect decision. We then define C as better than C in the sense
(2.4) A (2.6) if (2.4) is satisfied and also

(2.6) HH<H®G Yto,

with strict inequality somewhere in either (2.4) or (2.6). The procedures C and
¢ perform as poorly in terms of (2.6) as they did well in terms of (2.4), so the
anomaly obtained from using (2.4) alone is thereby eliminated. It is somewhat
simpler to consider only the value t = 1— in (2.6), yielding

2.7 PX)¢D,T,=0<P{iX)e¢D, T,=0  foral o,
which (by Lemma 2.1) is equivalent to
(2.8) P{0,} < P{0,} forall .

This leads to another notion of admissibility, obtained by defining C to be better
than C if (2.4) and (2.8) hold with strict inequality somewhere. The simplicity
of this definition makes it, too, a useful theoretical notion. Although it elimi-
nates the domination of C, it cannot eliminate the subadmissibility of 5‘, since
all procedures C in &+ trivially satisfy (2.8) for all C. Nevertheless, it has
proved useful to delimit admissible procedures in the sense of (2.4) A (2.8) and
then to consider functions such as those of (2.5) as parts of a supplementary
operating characteristic to be studied further along with those of (2.1) in select-
ing a procedure. As far as admissibility is concerned, adjoining something like
(2.6) to (2.4) and (2.8) cannot decrease the class of admissible procedures.
Since a subset of that class will be seen in Section 3 already to be quite large
without adjoining (2.6), and since examples studied thus far do not reveal any
severe shortcoming of restricting selection of a procedure to those procedures
proved in Section 3 to be admissible in the sense of (2.4) A (2.8) (or even to the
smaller class of & * procedures admissible in the sense ot (2.4)), we shall not
pursue such weaker admissibility notions further here. If other notions of “loss”
are appropriate, this limitation to admissibility in the sense of (2.4) A (2.8) may
prove unwise. In Section 5 we characterize (2.4) A (2.6)-admissible procedures
partly because of the difficulty of using (2.8) directly as part of the admissibility
criterion in a complete class proof that proceeds by maximizing certain linear
functionals. ‘

Choosing a conditional confidence procedure from the admissible ones is per-
haps more difficult here than in <™ decision theory, because of the additional
properties of interest. Some considerations additional to performance in terms
of (1.3), (2.1), (2.5) as described above are: (1) In many problems the T',® for
each fixed & should be equal or close, for reasons mentioned earlier (although,
as in the &7 NP 2-hypothesis setting, this is not always desirable). (2) The I',?
should have a large variation in b (possibly reflected through some specific meas-
ure of dispersion of G,); otherwise, a simpler procedure, with smaller B—perhaps
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even a &' procedure—could as well be used. (3) Usually it is unattractive to
a practitioner to use a procedure in which any I',’ is too small; this may, how-
ever, motivate enlargement of D to include decisions reflecting indifference for
borderline data.

Other aspects enter when the simple loss structure does not accurately re-
present all the experimenter’s potential rewards and penalties. For example, in
interval estimation or problems with complex D (see (3) above), some measure
of “size” associated with the decision may be relevant. (See Section 6 (C).) The
computational complexity of large B might be another concern. Also, since
there are so many admissible procedures in & **, the imposition of some simpli-
fying structure on the form of the procedure may help computationally in the
construction and comparison of partitions; for example, in the 2-hypothesis
problem one might, in &£, restrict consideration to procedures with monotone
interval structure, those in which, if S, is the convex closure of the range of
fi(x)/fi(x) for x in C;?, any two S,*’s have at most one point in common, and
S,* is to the left of S,* if and only if S,® is to the right of S,*’. (According to
Theorem 3.1, some of the intuitively less appealing procedures that violate this
form are also admissible.) The operating characteristics of partitions of such a
restricted form may not constitute so large a set as those of all %" procedures.
On the other hand, at least in simple cases (Q, D finite), there are typically in-
finitely many procedures with a given operating characteristic (functions of
(1.3), (2.1), (2.5)), and it is desirable computationally to be able to achieve any
such operating characteristic, at least approximately, with a procedure of simple
form.

These aspects of computing and choosing among conditional confidence pro-
cedures (in particular, of justifying the restriction of the previous paragraph)
are clearly quite involved and will not be treated further here. Illustrations
and further discussion will be contained in [2]. Here we remark only that &~
procedures are more robust for small L.

In the succeeding sections, where various admissibility concepts are used,
“admissibility in the sense of (4)” or *“(A4)-admissibility” will be used to refer
to the criterion obtained from the “at least as good as” inequalities (4). We
write G = {G,, e Q}and H = {H,, v ¢ Q}.

3. Sufficient condition for admissibility. For any partition C = {C,*} in &,
there is an associated & partition |C| = {|C,|} defined by |Cy| = U, C,* =
{x: d(x) = d}. Wecall [C| the decision partition or underlying & partition of C.
For procedures ', admissibility in the sense of (2.4) A (2.8) (or (2.4) alone)
is the standard decision-theoretic admissibility for risk function P, {3(X) ¢ D,}.
In this section we shall prove

Tueorem 3.1. If |C| is admissible among &' procedures, then C is admissible
in & in the sense of (2.4) A (2.8) (and hence in the sense of (2.4) A (2.6)).

Since all &+ procedures have P,{Q,} = 0, we have
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CoROLLARY 3.2. If Ce &t and |C| is admissible in €, then C is admissible
in €* in the sense of (2.4).

By restricting competitors in the proof of Theorem 3.1, we obtain

THEOREM 3.3. If &, &+ are replaced by &*, Z*" for any fixed B, the state-
ments of Theorem 3.1 and Corollary 3.2 remain true.

Since (Section 1.4) 27 can be thought of as containing a randomization
component I, the admissibility asserted above and in Corollary 3.4 allows also
for competitors that randomize among conditionings on the original 2.

Note that it has not been necessary in the above statements to make regularity
assumptions on D and Q (in particular, on their finiteness, so the conclusions
apply to such settings as interval estimation), because we do not touch on the
detailed characterization of < *-admissible procedures; under various assump-
tions there are well-known results in terms of Bayes procedures and finer struc-
ture (e.g., [7]). In contrast, in Section 5 we treat the k-hypothesis problem in
order to obtain explicit necessary conditions for admissibility. The results of the
present section would be even more obvious if the operating characteristic for
admissibility were {P {C,’}}; it is not that, but the proof in terms of (2.1) is not
much more complicated. The results here establish the unfortunately large
collection of admissible procedures mentioned in Section 2. Section 5 indicates
that there are in general even more admissible procedures than those characterized
in the present section. However, the admittedly limited calculation of examples
to date indicates no great practical advantage to be found in using procedures
outside those characterized above.

Proor oF THEOREM 3.1. We begin with a simple computation (3.2) that holds
for arbitrary partitions C. Let B, be the o-field induced on 2 by I',. Define
the measures K,* and G, * on (2, £,) by
(3.1 K, *(A) = P,{A4}, G, *(4) = P,{A4;0(X)eD,},
and let K,* and G,* be corresponding Borel measures on [0, 1] induced by T',;
that is G ¥L) = G, *(I',~*(L)), and similarly for K, A straightforward condi-
tional expectation calculation shows that dG, /dK * = T, a.e. (K, *) and (since
—{,dG,(t) = G}(L)) consequently that (dG,}/dK })(t) = ta.e. (K,¥). Moreover,
K« G on (0, 1], where (dK, }/dG *)(f) = t~'. Thus,

(3.2) — b, 171dG (1) = (5, t7'G ¥(dt)
= Ji KAdr) = 1 — P,{Q,}.
We also recall that, if F and F are two df’s on (0, o), then

(3.3) F(ty= F(f) VYt
implies, for every strictly increasing function # integrable under both £ and F,
(34) i () dF(1) < i A(t) dF (),

and strict inequality for some ¢ in (3.3) implies strict inequality in (3.4).
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Now suppose Cisa partition whose underlying & partition is Z*-admissible,
but which is not itself admissible in the sense (2.4) A (2.8); let C be better.
Thus, (2.4) and (2.8) hold, with strict inequality somewhere. At t =0, (2.4)
becomes (by Lemma 2.1) P,{8(X) € D,} = P,{6(X) e D,} ¥ w, and equality must
hold because the underlying & partition of C is #*-admissible. Thus, G,(0) =
Ew(O) VY w. For each o for which G,(0) > 0 (and it is easily seen that we need
consider only such w), we consequently have from (3.1) that -

(3'5) Fw(t) =1- Gw(t)/éw(o) ’
F, (=1 — G,(1)/G,(0)

are both df’s on (0, 1]. By (2.4) we have (3.3) and thus (3.4) for these df’s. For
h(f) = —1t7, we obtain from (3.2)

(3.6) P{0,)<Pf0) Yo,

and since this 4 is strictly increasing we conclude that strict inequality in (2.4)
for any o (for some ) implies strict inequality in (3.6). Since we cannot have
both (3.6) and (2.8) with a strict inequality somewhere, this contradicts existence
of the assumed C. []

Before turning to preliminaries used in establishing necessary conditions for
admissibility, we describe some of the above results in other terms that will be
useful later. For that purpose, we need only treat the case where Q and D are
finite, say Q = {1, 2, ..., k} and D = {1, 2, ..., r}. In terms of the discussion
of Section 1, we think of procedures as partitions of 2" = 2" x I. A familiar
description of Z*-Bayes procedures is given in terms of the probability k-vectors,
whose range is the (k — 1)-simplex &, _, = {(s;, -+, 8,): ks, = 1,5, = 0 Vi}.
In order to work in terms of nonrandomized procedures (as discussed in Section
1), we replace #,_, by 77, = &, x I. Write f* = (f#, - ., f,’) for the map-
ping of 27’ into ., _, defined (a.e. Y ¥ f; dv) by f,}(x) = f.(x)/ 2% fi(x), and let

3.7 (A) = §p-104y 2% fi(0)u(dx) .

The sufficient statistic § = f*(X) then has density fi(s) = §5,0n.%,_, with respect
to 0, when i is true. It does not matter that this reduction from 2 to &,_,
may introduce atoms, since we still have p' on I (the last component of .77) to
represent ‘“‘randomization,” as described in Section 1. In place of partitions of
£ we then consider partitions € of .77,. Every (nonrandomized) Z*-Bayes
procedure on .7, in these terms is equivalent to a partition || of .77, which,
for some probability vector p = {p,}, satisfies

(3.8) é_; C{(s, 4): Xlieq; Pisi = MaX, Jieq, PiSi} VJ.

An important feature is the well-known convexity of the sets on the right side
of (3.8). The #*-Bayes procedures may include some inadmissible procedures,
but that cannot occur if all f; have the same support; and Bayes procedures
relative to strictly positive p are admissible in any case. Characterization of
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admissible Z* Bayes procedures in general can be found in [7]. To shorten
further discussion, we paraphrase Corollary 3.2 and Theorem 3.3 in the simplest
case, in terms of partitions of .77,. We hereafter denote by cl 4, int A4, and cc A4,
the closure, interior, and convex closure of a subset A of .&,_, or .7, in the
relative Euclidean topology of either of these. By s we denote the ith vertex
of &1, where 5,9 = 1. The border of &,_, is the subset {s: some s, = 0}.

CoROLLARY 3.4. For the k-hypothesis problem where all f, have the same domain
of positivity, a partition Cof 7, in €+ is admissible in &~ in the sense of (2.4),
if for some strictly positive p the decision partition |C| satisfies

(3.9) (i) foreach i, intC, contains sV xI;
(i) ccCnccl; (s, u): pis,=p;s;},  for i#j.
The conclusion holds if €* is replaced by Z®* for fixed B.

We hereafter say a partition € of .77, has structure W if its |€| satisfies (3.9).
Under the assumptions of Corollary 3.4, the only procedures admissible in &+
for the k-sample problem that are covered in Corollary 3.2 are those of structure
W. The procedures € with structure W have |€| in Z**, but of course require
further conditions on the subpartition of C‘j into the C’jb, in order that € be in
&,

When the f; do not have common domain of positivity, it is possible to extend
Corollary 3.4 to include some procedures that do not satisfy (3.9)(i), if v > 0
on the border of &, _,, e.g., if v(s) > 0 for some i.

4, Canonical procedures, randomization and topology of & Throughout this
section  and D are finite, although Lemma 4.1 will be seen at once to hold
more generally and the other results can be proved under compactness assump-
tions on D and (except for the result taken from [3]) on Q. We begin by treating
a difficulty related to but beyond the phenomena that motivate the notion of
regular convergence of &”* decision functions. In the latter, in such a simple
setting as the two (simple)-hypothesis problem with v = x! on 2 = [0, 1), a
sequence of nonrandomized decision functions need not converge a.e. to a non-
randomized decision function (or anything else). For example, define the meas-
ure £, on 27" = [0, 1) by its density

(4.1)  dé,(x))dx=1 if 2ijn < x < (2 + 1)/n for any integer i,

=0 otherwise.

Then, if " is the <™ decision function whose probability of making d, when
X = x is "j(d,| x) = d§,(x)/dx, so that "5 is nonrandomized, the sequence of "j
converges almost nowhere pointwise, but converges “regularly” to 7*(d, | x) = 4.
(Formal definitions will be given below.) Now, with B = 27’ and Z(x) = x,
consider the nonrandomized conditional confidence procedure "5 for which the
probability of making decision d; and conditioning with label b = Z(x) when
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X = x is given by
(4.2) "D(dy Z(x) | x) = 1 — "p(dy, Z(x) | x) = dE,(x)/dx .

("n(d;, Z(x)| x) is simply the characteristic function of "Ci{®. The degeneracy
of these "C’s is inessential and only for the purpose of simplifying the illustra-
tion; Z°* examples are easily given.) It might seem natural to consider these
"7 to converge “regularly,” if at all, to »*(d;, Z(x)|x) = { Vi. Butiffi(x) =1,
the use of a fair coin to choose between d, and d, for each x would make
P{make d;| X = x} = 4 V x whereas "I'\(x) = P{"d(x) = d,|X = x} is only 0 or
1. We would thus not have the desired convergence of "G,. The difficulty of
course stems from the fact that &, — &* weakly does not imply d¢, /dx — dé* [dx
anywhere, and this last, of no consequence in & theory, matters here because
of our use of *I'; and "G as measures of conditional confidence performance.
A way out of the difficulty (which is more obvious in the case of finite B) is
directed by the comments in Section 1 alluding to conditioning on the outcome
of a randomization. If we let B* = [0, 1) x M where M = {1, 2}, and replace
Z' by Z7* = 2 x M with v replaced by v* = v x p with p(1) = p(2) = }
(the randomization), we obtain *I', = 0 or 1 with the desired probabilities.
Here we replaced B by two copies of it in a manner that might not be so obvious
to imitate in general. We now introduce a structure that makes such a con-
struction mechanical (and which yields a different but simpler solution to the
difficulty in the above example).

For fixed B with o-field <%, let J/ = D x B with o-field 7 = 22 x =%,. It
may help motivative the definition that follows to note that a nonrandomized
(0, Z) can be thought of as a mapping from .27 to J; in this interpretation,
I, =P, Z)e (D, x B)| 2, x <&/} where &, is the trivial o-field on D. A
conditional confidence procedure, expressed in terms that allow for randomi-
zation, is a function 7 on _# x 2" such that »(4’|x) is a probability measure
() in A’ for each x and is measurable (<#) for each A’. If 5 is used and
X = x, and if the randomization according to (- | x) produces outcome (d, b),
we make decision d and regard the conditioning label as . Define P, {A'} =
Eyn(A'| X). The conditional probability P, {D, x B|<Z, x <5/} is well defined
and essentially unique (P, ,, V w). We define

(4'3) To = w.:y{Da) X Blgo X %]’} ’

so that 7, is a &, x <%,/-measurable function on D x B, which we can thus view
as a &Z/-measurable function on B. We denote its value at b by r,’. If one
begins with a nonrandomized ¢ with its T',, the 7, of the corresponding 7 is seen
to satisfy ' (x) = 7,%®.

A canonical conditional confidence procedure is one that satisfies (with labels
distinguished by *)

(4.4) BY = I = (%) = {(8,*, by*, -+, 0,),

7, = b* w.p.1 under v, Vo,
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with &Z*’ the Borel sets. (This formalizes the practically convenient relabeling
mentioned after the examples of Section 1, in which we regard B as the set of
attainable conditional confidence values; but now we relabel whether or not I ?
is independent of w.)

Note that, for a canonical 7*, the conditional probability y, is measurable
relative to the cylinder sets over Borel sets in the wth coordinate.

The set of operating characteristics G of all * is easily seen to be convex.

We now prove

LEMMA 4.1. For every v, there is a canonical n* with the same operating charac-
teristic G.

Proor. For an arbitrary 7, define g, : B — L* by g,(b) = ("1,%, - -+, 7,%). Let
n* be the (canonical) procedure given by

(4.5) 7*(A x A[x) = 7(A x g,7(A) | x)

for A ¢ D and 4 e <Z* in I*, and then extended from such cylinder sets A x A.
To see that p* is a canonical procedure, we note that, for 4 € 8,*’, from 4.5),

$406,%P (D x db*}
(4.6) = {0,100 Pul D % B| 2, x 0, (F*)}P,{D x db)
=P, D, x g,/ (A)} = P, D, x A}
= Y4 Pp{D, x B|Z, x Z*}P,. {D x db*},

so that the first integrand is indeed a version of the last. Note that the possible
lumping of several 4’s with the same vector {7,’, w € Q} into a single 9,(b) is
exhibited in the second integrand of (4.6), where g,"(<Z,*") C 7<) .

Since 77, = 7'y, and P, (D, x g7}(A)} = P, D, x A} by construction,
putting 4 = {b*: b,* > 1} we obtain 7G, = "G,V w. []

We call the n* of Lemma 4.1 a canonical procedure coresponding to 7.

In any convergence or compactness proofs concerning {G,} we may hereafter
limit consideration to canonical procedures.

On the space of operating characteristics G we use the usual notion of weak
convergence of a sequence *G to G, as meaning (!¢ d "G, — {3cdG, for each w
and continuous c. This is equivalent to convergence in the sense of the Lévy met-
ric of weak convergence; noting that G, is nonincreasing, we define |G, — G|
here to be the maximum distance along the lines of slope 1 between the graphs
(including vertical segments at jumps) of G, and G,, and the Lévy metric is
IIG — G|| = X¥||G, — G,||. It will suffice to consider sequences in studying
compactness. On the space of canonical procedures n*, we adopt Wald’s <™
notion of regular convergence of {"1*} to 7*, defining it in the present context (by
substituting J for the usual D) to mean

4.7) Vo9 {5, e()) Yn*(dj| )}(dx) — § . g(HS, e(j)7*(df | x)}(dx)
for every continuous real function ¢ on J and every g in £ (2, B, v). Itis
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well known ([7] or [5]) that the set of procedures {7} is sequentially compact in
this topology.
The purpose of reduction to canonical procedures is given in the following:

LEMMA 4.2. If a sequence “n* of canonical procedures converges regularly to a
procedure 1), then ) is canonical.

Proor. By definition, 7* is canonical if and only if b, = P,{D, x B| Z, x %,'};
that is,

(4-8)  §o Vs L(O)b7(df| ¥)fu(x)(dx) = § o n*(Dy x A|x)f,(x)(dx)
= V2§ Do ()L4(0)7*(d] | %) (x)(dx)

for each w and every 4 in &Z*'. Since <%,*' is the Borel field on B* = I, (4.8)
is equivalent to the equation obtained from the two extreme members of (4.8)
if 1, is replaced there by an arbitrary continuous function ¢ on B*. Since both
¢(b)b, and I, (d)c(b) represent continuous functions on J, the equation with
these two functions as integrands is preserved under weak convergence of a se-
quence of 7*’s to a limiting #*, so the latter is canonical. []

From Lemma 4.2 and the previously stated compactness of the set of all 3 in
the sense of regular convergence, we conclude that the set {5*} of canonical
procedures is compact in that sense. We now prove the rest of

THEOREM 4.3. The set of all canonical n* is compact in the sense of regular con-
vergence. The set of operating characteristics "G of the family of all procedures 7,
or of all canonical n*, is convex and is compact in the sense of weak convergence.
These results, except for convexity, remain valid if y and y* are restricted to Z*.

ProoF. We observe that, for all continuous ¢ on I,

(4.9) §oc(t) d7Gu(1) = § o Ny I, (d)e(bu)7*(d] | X)fo(x)p(dx) .

Since I, (d)c(b,) represents a continuous function on J, we infer the continuity
of the map n* — 7"G from the set of canonical procedures in the topology of
regular convergence to the set of operating characteristics in the topology of
weak convergence. By compactness of the sub-df’s on [0, 1], for any sequence
{"G} corresponding to canonical {¥7*} there is a subsequence for which ¥’y — 7*
regularly, with 7* canonical, and by the previous sentence, ¥'G — 7'G weakly.
Finally, regular convergence of a sequence of canonical procedures in &~ to a
limit clearly implies that the limit is in &%, ]

We now enlarge the operating characteristic. Consideration of a sequence of
procedures ¥y like the C of Section 2, converging regularly to C there, shows
that P,{"Q,} does not converge to P,{°Q,}. However, everything we have de-
veloped for G, can be carried out for H,, now defined by
(4.10) H(f) = E,([D — D] x {b: 1 — 7,0 > 1}| X),

with ||A, — H,|| being obtained as the maximum distance along a line of slope
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—1. Lemma 4.2 requires no change, and the straightforward changes in the
remainder of our development yield

THEOREM 4.4. The statements of Lemma 4.1 and Theorem 4.3 remain valid with
G replaced by (G, H).

Theorem 5.1 implies such results as completeness of the admissible procedures
(in the sense of (2.4) A (2.6)).

Another decision-theoretic consideration (not used in the sequel) is that of
“elimination of randomization.” The development of pages 5-8 of Dvoretzky,
Wald and Wolfowitz (1951) shows that, for our compact metric D x B (= their
D), since Q is finite, if v is atomless every randomized » can be replaced by a
nonrandomized *» with the same G, H. It is only necessary to interpret their
0! as an !y in our scheme, so that the displays on page 7 give P;, {d x '8} =
P, {d x '8} for each set '8 in an increasingly fine net of partitions of B. The
weak convergence of {'7} to a nonrandomized *7 and the remainder of their
proof yield P., {d x A} = P, {d x A} for all d and 4 e &, as desired.

The remaining result we need in the next section is one of approximating &~
by <% in the sense of G and H. Recall that any » may be regarded as a parti-
tion of 27" x I.

LEMMA 4.5.  For every ¢ > O there is a finite L(¢) such that, for every n in &,
there is an 7) in =" with |'G — "G|| 4+ |"H — "H|| < e.

Proor. Partition /* into a finite number of Borel sets {U™; r = 1, 2, - . -, L(¢)},
each with max {|b,* — b,|: b*, b* e U, w € Q) < ¢/6k. Given 7, let p* be the
correponding canonical procedure. Define 7 (in &*©) by i(d x r|x) = n*(d x
Ur|x). Let b*" be any pointin U,. On U, we have b,*" — ¢/6k < "'y, < b,*" +
¢/6k w.p. 1. Integrating over U, with respect to P, {D x db*}, we obtain

(4.11) (b,*" — ¢/6k)P . (D x U} < P. D, x U]}
< (b, + ¢[6k)P. (D x U,}.
By construction of 7, (4.11) is the same as

(4.12)  (b,*" — ¢[6k)P, (D x 1} < P, {D, x r} < (b,*" + ¢/6k)P, {D x r},

7w

so that |7y,” — b,*"| < ¢/6k. The range of values of the rv "'y, on the set U, is
thus entirely within ¢/3k of the value of 7, at r, and these sets of values, coupled
with any d, have the same probability P {d x U} = P, {d x r}. It follows
that ||”"G, — "G, || < ¢/2k and ||"H, — "H || < ¢/2k. []

5. Necessary condition for admissibility in the k-hypothesis problem. Unfor-
tunately, there seems to be many more admissible partitions than the simple
ones obtained in Section 3. Equally unfortunately, the essentially complete
class obtained in the present section appears to be far from minimal, except in
the case k = 2 (Corollary 5.3). This will be discussed at the end of the section.
Our aim is to characterize admissibility in terms of underlying Z™-partitions.
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Since the results thus far obtained seem far from definitive, we shall give them
here only for the k-sample problem. A corresponding statement for general D
can be obtained by the same methods, but is even less satisfactory; some par-
ticular multidecision problems are treated in [4].

For the sake of easy comparison with the results of Section 3, we state our
results in language of Corollary 3.4. In the k-hypothesis problem, the decision
partition |C| of a partition € of .77, will be said to be star-shaped if

(i) s»x1Iel, foreach i;
(5.1) (i) for each i and line L = {s: Y, c,(s; — s5;¥) = 0} through
s, thereisaclosed segment L’ of Lsuch that (intL') x
Ic(Lxhnécl xI,

where int L’ refers to the topology of R'. The partition will be called polyhedral
if each int C, is the interior of a finite union of closed nondegenerate (irregular)
k-simplices. Thus, each star-shaped decision partition of 77, is obtained by taking
the cartesian product with 7 of a star-shaped partition of &,_, (defined by re-
moving I everywhere in (5.1)), possibly modifying it by introducing randomiza-
tion on common boundaries of the ;. A decision partition satisfying (5.1) and
also (3.9)(i) will be termed positive star-shaped. This last property is possessed
by structure W partitions, but the projections on &, _, of the cl C,ofa positive
star-shaped partition are not even necessarily convex. The possibility of re-
placing star-shapedness by a more special structure will be discussed at the end
of this section.

(1)

s

(3)

FiG. 1. A positive polyhedral almost star-shaped partition, shown on &, when
k = 3. Solid lines border stars; dashed lines are portions of lines L of the defini-
tion. C is the vertex of star-point BCD of the star around s 2. The exceptions
to star-sharpedness, of Theorem 5.4, can occur on segments such as AB and EF.

S
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In discussing phenomena that can occur for polyhedral star-shaped regions,
we shall find it convenient to call the projection of cl ¢, onto .&,_, the star
around 5. Of course, this may even be convex. However, in cases where this
star contains long narrow protrusions into the remainder of & _, (a very quali-
tative notion), it will be useful to call these star-points. We will be more precise
when k& = 3: a triangular star-point of the star about 5 is any triangle of that
star two sides of which are on the boundary of the star. The angle between
them is at the vertex ot the star point. Some of these definitions are illustrated
in Figure 1.

We also require a slight extension of these notions. The motivation is that,
if a sequence of procedures with polyhedral star-shaped (positive or not) decision
partitions, with bounded number of sides on the polyhedra, converges regularly
to a limiting procedure, that limit clearly has the following property A: it is
equivalent (¢ x p') to a procedure whose decision partition differs from (5.1)
on at most a finite number of sets of the form H x I where each Hisa (k — 2)-
dimensional hyperplane through some 5. We call any decision partition of .77,
(positive or not, polyhedral or not) almost star-shaped if it has property 4. In the
motivating polyhedral case, that part H’ of such an H on which (5.1) is violated
typically arises as the limit of a union of sharp star-points of a star around a
given s“, which union is in a narrowing dihedral angle (about s) approaching
H. If p is absolutely continuous with respect to #*~! on .&,_,, every almost star-
shaped region is equivalent (9 x (') to a star-shaped region.

It is to be noted that the theorems and corollaries of this section characterize
essentially complete classes in terms of decision partitions. The class is obtained
by superimposing arbitrary conditioning partitions {C®} (subject to restriction
to &+ or &~ if appropriate) on the decision partitions |C| with the stated prop-
erty of star-shapedness.

We shall sometimes save space by writing “star-shaped €” for “C with star-
shaped |€],” etc.

For &**, our parallel to Corollary 3.4 is

THEOREM 5.2. For the k-sample problem where all f, have the same domain of
positivity, an essentially complete class in Z*" in the sense of (2.4) consists of all
procedures C in Z“* with positive almost polyhedral star-shaped decision partitions
|| of T '

As in Corollary 3.4, almost star-shaped decision partitions || are in Z** but
require further conditions to insure Cin &+. The reason for asserting ‘“‘essential
completeness” rather than “completeness” is that the reduction from 2" to 7%
may eliminate some procedures equivalent in the sense of (2.4).

If the f; do not have the same support, an admissible partition in ZLt can
have C‘i = 59 x I for some i, and thus not satisfy (3.9)(i); Theorem 5.2 can be
restated for this case. For <+ (general B) we are unable, even when all f; have
the same support, to verify (3.9) (i) for admissible € with the present proof, and
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can only improve slightly on the result for . We now state the latter (without
the assumption of Theorem 5.2):

THEOREM 5.1. For the k-sample problem, an essentially complete class in < in
the sense of (2.4) A (2.6), and hence in the sense of (2.4) A (2.8), consists of the
procedures C for which |C| is in the regular closure of the polyhedral positive star-
shaped partitions of .7 ,.

The shortcoming of this result over that of Theorem 5.2 will be discussed in
Remark 1 at the end of this section: more extensive randomization may be
required in some of the procedures of the Theorem 5.1 essentially complete
class, than in star-shaped procedures.

In the 2-hypothesis problem, the star-shapedness of (5.1), as well as almost
star-shapedness, reduces to division of .& into two intervals with randomization
on the boundary of the two intervals, but never any randomization at an s if
that is the boundary. These are exactly the Z-admissible partitions for ||,
and Theorem 5.1 combined with the results of Section 3 thus yields the first
sentence of the following:

COROLLARY 5.3. For the 2-hypothesis problem, an essentially complete class of
admissible procedures in & in the sense (2.4) A (2.6) or (2.4) A (2.8) consists of all
partitionsin & whose underlying & *-partitions have the interval structure (5.1). This
conclusion remains true if & is replaced everywhere by 't or by &+ or ** with
(2.4) A (2.8) replaced by (2.4).

The last sentence of this corollary is obvious for &+, and an examination of
that part of the proof of Theorem 5.1 that pertains to &% shows the validity
of the remainder when k£ = 2.

When k = 3, we cannot argue for the analogue of Corollary 5.3, but we can
somewhat sharpen Theorem 5.1:

COROLLARY 5.4. For the 3-hypothesis problem, an essentially complete class in &
in the sense of (2.4) A (2.6), and hence in the sense of (2.4) A (2.8), consists of all
procedures C for which |C| is an almost star-shaped partition of .7, and for which
the exceptions to star-shapedness lie on at most the three lines {s;, = 0} and one ad-
ditional line through a single s*', part of which borders the stars of the other two 59,

This will be proved below.

PrROOF OF THEOREM 5.1. We shall work entirely in terms of partitions of .7,
(which are equivalent to 7’s on &, _, as discussed earlier), and therefore simplify
notation by dropping carats. Let C be a given partition of .77,. Our steps in
finding a C that is at least as good as C in the sense of (2.4) A (2.6), and that
satisfies (5.1), are these: (a) For each integer n > 0, there is by Lemma 4.5 a
finite L, and a procedure "C in &*» such that ||G, — "G,|| and ||A, — "H,||
are < n~! for all w, where the norm is that of Section 4. (b) For each fixed n,
there is a partition "C in &%~ that is at least as good as "C in the sense of
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(2.4) A (2.6), and that is a regular limit, as m — oo, of a sequence {""™C} of
procedures with positive polyhedral star-shaped decision partitions. (c) We
may assume the ™™ C are canonical, since that is merely a relabeling (with pos-
sible lumping) of B and yields the same operating characteristics. For each fixed
n, a subsequence """ C converges regularly and its operating characteristics G, H
converge weakly by Theorem 4.4. A diagonalization of (n, m’) produces a sub-
sequence {"C} of the " ™"C’s that, by Theorem 4.4, converges regularly to a
partition C of .77, with ¥G, YH converging weakly to G, H. The conclusion
of Theorem 5.1 follows from this last together with (a) and (b), and it remains
to prove the latter.

For fixed L, we shall show that the admissible procedures in % are regular
limits of procedures with positive polyhedral star-shaped decision partitions.
Since the operating characteristics of procedures in <" are compact (Theorem
4.4), this yields (b). Suppose that, for two partitions € and C of .77, in «”*
we have

P{C' — Cy < P{C* —C}}) Vb,i.

Then, whenever P,{C '} is positive, so is P{C}). Since 1 — (T'})™' = P{C* —

C.'}/P{C,*}, (5.2) implies that T';> > [',*. Hence, C® contributes at least as large
an atom of probability as does C? to the sub-df G,(1 — 7), and that atom corre-
sponds to at least as large a value of I',. Thus, (5.2) implies G()= G(n) Vi, 1,
and similarly H,(r) < H,(r) V i, t. Moreover, strict inequality holds somewhere
in one of these last two sets of inequalities if it holds somewhere in (5.2). We
conclude that (2.4) A (2.6)-admissibility in <* implies (5.2)-admissibility in
&t, and it remains to show that (5.2)-admissible partitions in <”* have the
structure stated at the outset of this paragraph.

For C a & *-partition of .77, let r, be the point in R** with coordinates
P{C}), —PC* — C}} for ieQ, be B,. These points can be analyzed using
standard decision theoretic results. The set of all such r,’s is convex and com-
pact, and ([7], Theorem 3.19) the set of (5.2)-admissible elements is contained
in the closure of the set of all “anti-Bayes” elements with respect to strictly
positive prior vectors; such an anti-Bayes element with respect to a 2k L-vector
{a,, @} of positive coordinates is a partition in =% that maximizes

(5.3) Y. [atPfCl} — aP{C" — C}1}].

The representation of the partition C of >, as a randomized procedure 7 on
Sy 18

(5.4 (i, b|s)y = 51 (s, u) du

as the (randomization) probability, given S = s, that (3, Z) = (i, b); of course
i 0o, b s) = 1. Write

(5.9) Hrs) = als; — 3,40, .
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We can then rewrite (5.3) as

(5:6) X S, [aln(, b]s) — @ 5,000 b1 9)]fi(5)9(ds)
= Nis Sorp, HE)(i, b 5)5(ds) .

From (5.5) we see that, for fixed (i, b)) and i # i, the hyperplane {s: H'o(s) =
H,'(s)} divides .>,_, into two regions with 5% and s'” in their interiors. Hence,
the set

(5.7) Mo = {s: Hio(s) = H;'(s) for all (i, b) with i+ i}

is convex, polyhedral, and contains s in its interior. We conclude that M, =
U, M}, is the i-star of a positive polyhedral star-shaped partition of .&4,_,, and
upon replacing the weak inequality by strict inequality in (5.7) one obtains sets
whose union over b, is int M, . A standard argument on (5.6) shows that, a.e.
D, every maximizer of (5.3) satisfies, for each i,

(5.8) n(ip, BL|5) = 1 it seintM, ,
=0 if se¢ ]Wi0 .

Thus, every such 5 is equivalent to a positive polyhedral star-shaped partition
of 7. [

Proor oF THEOREM 5.2. Although the set {r,: Ce <™*"} is not closed, a
trivial geometric observation shows that, for each C in <", there is an anti-
Bayes partition C in ©7+* (relative to {a,’, @,’} of nonnegative components, some
but not all of which may now be zero) that is at least as good as C in the sense
of (5.2) and hence (2.4). Moreover, the development of the previous paragraphs
shows that these C are all limits of sequences procedures with positive poly-
hedral star-shaped decision partitions having a bounded number of faces, and
hence they have decision partitions that are almost polyhedral star-shaped. It
remains to show that these anti-Bayes partitions C in &% have |C| positive star-
shaped; we must verify (3.9)(i) for them.

Fix i,. There are three cases to consider. (i) If there isa b, for which a0 > 0,
then clearly s € int M}’OO. (ii) If there isa &’ for which d{’g’ > 0, then for every
b and i # i, the set M," excludes {s: H,'(s) < H(s)}, and the latter clearly con-
tains a neighourhood of s". (iii) If no afs or ajy’ is positive, then (since some
a’ or a' is positive) one computes easily that M, contains no points of {s:
5; >0 Vi} =% (say). But 5(~,_, — &%) = 0if all £, have the same sup-
port, so (M, ) = 0 in this last case. Thus, either there is an /, for which (iii)
holds, in which case the resulting anti-Bayes partition is not in &Lt or else
for each i, (1 =< i, < k) either (i) or (ii) holds, in which case the resulting anti-
Bayes partition is in « ", (]

Proor oF CoroLLARY 5.4. Fix ¢ > 0. Let C have a |C| that is a positive
star-shaped partition of ./, and let V' be any triangular star-point of the star
about s, with vertex P. Suppose cl V' is surrounded by C,, in a neighborhood
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of P. The angle 6 of cl V facing s at P, because of (5.1) with i = 1, has the
property that it contains part of the segment s¥P near P; but it is also such that
its side closest to s, when extended beyond P away from s®, intersects the
segment sVs®, because of (5.1) withi = 2. If Pe N, = {s: all 5, = ¢}, elemen-
tary trigonometry shows that § > 2 tan~' (2¢/3%) = ¢,¢, where ¢, > 0. It follows
(essentially from compactness of graphs satisfying the same Lipschitz condition)
that, for each sequence "C of procedures with positive polyhedral star-shaped
decision partitions of .5 and each ¢ > 0, there is a subsequence that converges
regularly on N, to a procedure with star-shaped decision partition on N,, except
for at most a single exceptional H in the definition of “almost star-shaped”: for
each n, it is easy to see that at most one "C; can have a star-point ¥ each of
whose two sides is bordered near the vertex by a different one of the other two
C,. Thissingle V" alone can be in N, and have an angle < c,¢, and in the limit
a subsequence of such ¥’s can collapse toward an H. A subsequence ¢, — 0
and diagonalization completes the proof, in view of Theorem 5.1. []

Remarks on the necessary conditions for admissibility.

1. For k = 2 or 3, elementary geometry has shown (Corollaries 5.3 and 5.4)
that taking the regular closure in Theorem 5.1 does not introduce much ran-
domization over that present in Theorem 5.2 for €. We have been unable
to verify the corresponding fact for k = 4, although it is natural to conjecture
that such randomization should not be necessary. The difficulty is that, viewing
the boundary of a polyhedral star C‘io as the graph of distance from s% (as a
function of angular position), we might have a sequence of such graphs with
increasing number of increasingly frequent oscillations (sharp star-points) whose
magnitudes stay bounded away from zero. Such a sequence "C could converge
regularly to a procedure *C for which |*C| randomizes (i.e., for which 0 <
7(i x B|s) < 1 on a set of positive y¢*~! measure in &, _,, similar to what occurs
in &7 decision theory for sequences like (4.1)). When k = 3, the star-shaped-
ness for i + i, limited the existence of such sharp points, for positive polyhedral
procedures, and =€ could only differ from star-shapedness on one line segment
H (in the definition of almost star- shapedness) Moreover, that H was associated
with the limit of a sequence of points of ”C that had each of the other two
»C.’s on one of its sides. When k = 4 the fallure of this last property seems to
make possible the existence of a large number of sharp points of nonvanishing
magnitude in "C To see what can happen, we now give an example, when
k=4, of a *C, that has a smgle large sharp point a large portion of which is
completely surrounded by "C,. It is not clear at this writing that one cannot
have such an increasing number of points that C has the undesirable extent of
randomization noted above. If so, we still do not know whether such an even-
tuality must be part of a complete class for general B, or whether the difficulty
lies in the reduction to using (5.2) as discussed in Remark 2 below, so that such
=C could be eliminated by a different admissibility proot.
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For this example, suppose L = 3. The star about s will be our concern. It
will be convenient notationally to label the elements of Bas {1, 3, 4}. To simplify
the arithmetic, we make most of the 24 coefficients zero; adding a small positive
value to all of them does not change the substance of the example. We now
construct "C for r large. Let ¢ be small; for definiteness, take re = . Let

allza,“:a23= 1,

dll — d4 — 523 — r2,

at=a=r} — e,

at=alt=r,
and let all other ¢,* and @,* be zero. A simple geometric picture may be obtained
as follows: Define, in &, the lines

L'={s:s + s, =1},

L' ={s: 5+ 5, = 1},

L={s:s=s,35=s},

L* = {s: 5, = 5,, 5, — § = 2res,},

the planes

I' ={s:5 = s},
I = {s: H(s) = H}9)} = {s: (s — ) =[G + )8 — (G —¢)s.]}
I = {s: Hi(s5) = H(5)} = {s: (ss — 8) = r[(} — )8 — (} + )sl}»

and the points

rF=%1%00,
P'=1(0,0,%,4),
PFP=Guo01,
Ps=1(0,0,3—¢e % +¢),
P=1(0,0,34¢4—¢.

Take L' to be vertical with s at its top. L’ is bisected by II', which contains
L and L”, with L n L' = p’ and LnL"” = p”. The points p, and p, are very
close to p”, and hence the lines II* n II' ahd II* n II' are close to L. On the
other hand, the line L* = II* n II® is not everywhere close to L; e.g., the point
on L* above p* is ((1 — re)/4, (1 + re)/4, L, ). Hence, the region ¥ above II,
under II* and II%, and with } < 5, 4+ 5, < 4, is a very thin wedge of length }
and thickness < 2¢, whose height is re/4 = 1 at p*.

The coefficients a,® and a,> have been chosen so that int ¥ — "C, but so that
the region just on the other side of II* and II* is in "C,, with the part bordering
I’ in "C,*. To see this, one computes that H,' — H,’ has the right behavior at
II* (for b = 4, 3), and that Hy}(s) — Hj(s) = 0 =5, = 5,. All that remains is
then to verify that H, — H,> > 0 on a neighbourhood of ¥V for all (i, ) other
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than (2, 3) and (2, 4). This is the case because the dominating term in H,' — H,’,
of order r%, is @,'s; in the case & = 1 and a,%s, otherwise.

This completes the example.

2. Even in the restricted context of Theorem 5.2, except when k = 2 it is
generally false that the star-shaped partitions are all admissible, even if they are
positive and polyhedral. The main cause of this is the use of (5.2), in terms of
which it is more difficult for a given C to be improved upon by a € than in the
original sense of (2.4) A (2.6), because the improvement must be on each C°.
In terms of G, or H,, we can have domination without it occuring for each b.
For example, one can imagine L = 2 and G, with jumps of .3, .3 at .5, .7 while
G, has jumps of .2, .4 at .6, .8; then G, < G,, but (5.2) cannot be satisfied for
any labeling of C,*’s. (It is easily seen that inadmissibility of C in the sense of
(5.2) does permit any relabeling of o) by permutation of B while fixing the labels
for C.) The difficulty is also reflected in the fact that the operating characteris-
tics (G, H) of &% partitions are not a convex set, unlike the set of vectors r.

3. We now mention briefly some possible improvements on the necessary
conditions of this section. There are special cases where small support of © can
yield superficially better descriptions of admissible € that cannot hold in general.
More interesting improvements may be sought in the characterization of |C| or
in the breakup into {C?}. For example, the development of (5.3)—(5.7) for &*
yields C,* with convex interiors provided that the a,* and @,” are so different that
H}'(s) = H}'(s) only on a hyperplane of .>_,. This is always the case if the
star around s has L star-points. If, instead, @ = a!"and a;" = a;" for j + i,
then any measurable breakup of M} — U, M} can be used for C?/, C?';
they need not be convex. Such a degeneracy in the 4, and a} is reflected in
M;, being a union of fewer than L convex sets. When C, has fewer than L
star-points (or analogous points on the boundary of .5, ), our development
yields little about the breakup into {C? } outside of a neighborhood of the bound-
ary of C;. In shorAt, the greatest possible departures from convexity (mcist points
on stars) of the C; can occur only with a breakup into the simplest C,° (those
with convex closure).

4. It is unclear to what extent the star-shapedness can be reduced in Theorem
5.2 (aiming toward less departure from convexity), but simple examples when
k =3 and L = 2 show that it cannot be eliminated for the sense (5.2). (For
example, if @' = a;? = 4,' = 4,' = 1 and all other coefficients are ¢, small and
positive, then C, differs little from the set {s: s, > min (s, 5;)}.) A different
proof, taking account of Remark 2, would apparently be needed for significant
reduction. One possibility that the author has not been able to implement is
the maximization of ], { A,(f)d[ —G(?)] (together with a linear combination
reflecting (2.6) or (2.8)) for increasing functions other than the #4,(f) = —c; ¢
used in the sufficient condition of Section 3. For another possibility, we refer
the reader to an “exchange” argument in the case k = 2 that appears in [2], and
in which points of a C;* can be exchanged with those of larger s, in a C,’"’ to
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improve both G; this argument fails to yield convexity for k > 2, and thus far
has yielded only minor information bounding the slope of the boundary of the
stars as a function of position in .&,_,.

The use of (2.6) rather than (2.8) alone in the proof, even when (2.4) A (2.8)
is the criterion of admissibility, reflects the difficulty of treating the P,{Q,} as
part of a vector like r,.

5. One can introduce a more detailed operating characteristic, and accom-
panying notion of admissibility, relative to which the star-shaped anti-Bayes
procedures of the present section become admissible except for modifications
on the border of &, analogous to those of [8] (so that, for example, one must
have C, n {(s, u): 5, = 0} = @). Such a more detailed operating characteristic
for &* is given by the equivalence class r,* of all vectors obtained from r, by
permutations (relabeling) of B*; the partition Cis at least as good as C in this sense
if there is a permutation ¢ for which

(5.9 P{CH=PIC and  PC* — C < PC* — CrY) Vb,i.

Equivalently, one can adjoin to (5.9) the condition I';) > 1:‘;’” V b, i, since the
latter follows from (5.9). Then the star-shaped partitions that are anti-Bayes re-
lative to strictly positive vectors (as in our development (5.3)—(5.8)) are admis-
sible; and so are the star-shaped partitions obtained as limits of these, except
for the indicated restrictions on the border of .4, ;. Remark 1 is however still
relevant.

This criterion seems intuitively too “fine,” and yields too many admissible
procedures to be taken as justification for blindly using an arbitrary (positive)
anti-Bayes procedure. The G, obtained by “lumping” of {I'}?, P{C.}, be B}
reflect the notion of goodness in a preferred degree of detail, and represent the
conditional confidence aim better than does r,*.

6. Since the results for kK > 4 are more informative for &~ than for &, the
use of finite approximations of general partitions ((a) of proof of Theorem 5.1)
was expeditious. However, anti-Bayes procedures for general B can also be
computed directly, the role of r, being induced by the probability measures on
B x D determined by rectangles, i.e., by P{Zc 4,6 = d} for Ae <#,and de D.
As in the case of <%, this yields a weaker notion of admissibility than (2.4) A
(2.6). Thus far we have not been able to reduce the huge complete class for &
through this approach. '

7. The remarks of Section 4 on elimination of randomization can be used to
simplify the results of Theorem 5.2 and Corollaries 5.3 and 5.4. However,
when applied to Theorem 5.1 they yield nonrandomized partitions whose struc-
ture is quite unclear.

6. Other loss and risk structures. We mention briefly here only four of the
many possible modifications to using (2.4) A (2.6) with the implied 0-1 loss
structure from decisions in D, and its complement when o is true.

(A) In Section 3, if we replace the conditional probability I’ by a conditional
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gain W = 3,5 Wy P{K,"} where the given numbers w,; are positive for je D,,
we see that the proofs of that section are easily modified, provided w,; is inde-
pendent of j in D,. In the k-hypothesis setting of Section 5, consideration of w,,I",®
in place of I',* does not alter the conclusions. If performance is measured instead
in terms of conditional expected loss 2iien, Mij P{C,*} where m,; > 0 for j¢ D,,
the conclusion of Section 3 remains valid if the m,; are equal for j¢ D,;; the
development of Section 5 proceeds with replacement of r, by the 2kL-vector
{34 my; P{C;*}, —P{C"}}, and the changes thereafter are obvious.

(B) For brevity, the next modification will be described only for the k-
hypothesis problem and in terms of the original 0-1 losses. A more detailed
picture of conditional probabilities of incorrect decisions than is present in the
H, of (2.5) can be given for j == i, in terms of the functions

(6.1) Hy(f) = P06 =d;;Ty; > 1},
where
(6.2) I, =P{C;| 5} .

The T';; have an obvious frequentist interpretation, and in practice if Z(X) = b,
and d(x) = d; the vector {1"?20, i # Jo} of confidences associated with the states i
for which afj0 is incorrect, could be stated in addition to 1"’;0. Also define, in
analogy with (1.3),

(6.3) 0, = {x: Ty(x) = 0} .
Intuitively, we prefer the P,{Q,;} to be large rather than small. Thus we are led

to the possibility of defining C to be at least as good as C if, for all unequal i
and j,

(6.4) Hy() < Hy() Vi
and
(6.5) PO} = P{O,}

(It is unnecessary to adjoin (2.4) A (2.8), but the conclusion below will be the
same with that addition.)

In the development of Section 3, we now replace classical = '-admissibility
of |C| by admissibility in the sense of the classical vector risk {P,{C;}, i # j}, in
terms of which C is at least as good as C if Pl{a} < P{C,;} for all unequal i, j.
(Alternatively, this sense of admissibility may be replaced by one that implies
it, that there is some set of losses m,; > 0 for which |C| is admissible for the risk
function r(i) = },,, m,;P,{C;}.) In analogy with (3.1)—(3.2), we obtain P {C;
I'); =0} = 0and — ¢, 7'd[—G,;()] = P{Q,;} — 1. Parallel to the development
of the paragraph following (3.4), we have (6.4) at t = 0 yielding Pi{Ej} < P{C;}
for all i = j; if |C] is classically vector-admissible, these must be equalities. The
remainder of the proof parallels (3.5) and (3.6), leading to the conclusion that
|C| vector-admissible implies C admissible in the sense induced by (6.4) A (6.5).
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The sense (6.4) A (6.5) seems somewhat less ad hoc than that of the r * of
Section 5 (Remark 5), but it would be more natural still to work with the law
of I'; under state i/  j, in place of that of I';;. A useful admissibility result has
not been obtained for the resulting criterion because of the failure thus far to
find a substitute for (3.2).

The development of Section 5 for the criterion (6.4) is straightforward.

(C) Another consideration is a measure of ‘“size” of a decision, analogous to
length of a confidence interval. For example, the making of a decision d for
which Q, contains many elements should intuitively be penalized in terms of
some measure of the size of Q,. Let ¢; > 0 be the “size” penalty incurred when
d; is made. The question of whether conditional or unconditional expectation
of e is more suitable to consider, with illustrations, will be discussed in [2], [4].
For the moment, we treat unconditional expectation, and define C to be at least
as good as C if (2.4), (2.8), and

(6.6) Y,ePf0=d}< T;¢,P[0=d} Vo

hold. The corresponding < notion for |C| is (6.6) together with PN{B: eD,} =
P{6e D)V w. If |C| is @ -admissible but C is better than C in the sense of
(2.4) A (2.8) A (6.6), either (i) G,, P,{Q,} are the same for both procedures V o,
in which case the Z"'-admissibility of |C| is contradicted by the strict inequality
holding somewhere in (6.6); or else (ii) equality holds in (6.6), in which case
the proof of Section 3 again leads to a contradiction. Thus, Theorems 3.1 and
3.3 and Corollary 3.2 remain valid for this notion of admissibility.

In Theorem 3.4, a somewhat larger class is now obtained than would have
been obtained in Section 3 for the general (not necessarily k-hypothesis) decision
problem. The (2.4) A (2.8)-admissible procedures are still admissible, but we
also obtain the “anti-Bayes” partitions which, for any set of positive values
{a,, 4,}, maximize

(67) Zw ame{5 € Dw} - Za-,j &wa{di}eJ' .
The standard argument then yields d(x) to be a value j maximizing (a.e. v)
(6'8) Zweﬂj amfw(x) —€; Zmdmfm(x) ’

which is easily translated into the language of Theorem 3.4. The interior of
each region 07(d;) is convex and polyhedral, but is of a more complex form
than that obtained for (2.4) A (2.8), where all @, = 0 in (6.8).

The developments analogous to those of Section 5 proceed in a similar manner
for (2.4) A (2.6) A (6.6) to those for (2.4) A (2.6).

A similar analysis applies for admissibility in terms of such operating charac-
teristics as (analogous to G,) the law of T (x) — e,,, on 67'(D,) and of —e,,,
on the complement of -*(D,), when  is true.

Illustrations of these approaches for ranking and selection problems are con-
tained in [4].
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It would be interesting to treat losses that are general functions of the I',. As
indicated in Remark 4 of Section 5, we do not know how to do this.

(D) It has been suggested by Larry Brown that our admissibility in terms of
the measure G, of performance of I', on d-}(D,) is no more natural than that in
terms of the df II, of I', on all of 2%, The present paper’s considerations are
motivated by the possible attractiveness to the practitioner of knowing that T,
has a tendency to be large on the set where a correct decision is made, in con-
trast with the questionable appeal of its being large on the complementary set
where the decision is incorrect. This can be thought of as a rudimentary loss
consideration that attempts to have the same “shape” as that of a loss function
L on Q x D x I9 that reflects the combined effect of decision and conditional
confidence on loss, to yield a traditional unconditional risk computed as E, L(w,
0(X), I'(X)) (which, as remarked in (c) above, we are unable to handle). On
the other hand, Brown cites possible practical goals of meeting specified confi-
dence coefficient standards, that could lead to his formulation. In any event,
the author does not have very strong preference for any particular admissibility
scheme to the exclusion of others that seem reasonable and lead to the identifi-
cation of sensible conditional confidence procedures.

Brown’s admissibility considerations are related to ours by G(f) = §., v dIl (z)
and H,(t) = (., (1 — ) dII(r). These relations imply that admissibility as
defined by replacing G by —1I in (2.4) (T, stochastically larger than T',) implies
(2.4)—(2.6)-admissibility, but there are additional admissible procedures in
Brown’s sense. His considerations relate to increasing convex functions ¢ to be
integrated with respect to II,,, the counterpart of our increasing functions inte-
grated with respect to G,. He treats such problems as finding, for a given Z,
the ¢ that maximizes a function of the quantities E,c(min, I',), motivated by
the idea that min, I', is all one can claim as guaranteed confidence for all w.
(This formalizes the spirit of the remarks in the paragraph below (1.2).) He
obtains results on procedures with monotone structure, described near the end
of Section 2. These results will appear in a paper by Brown.

Acknowledgment. The author is grateful to Larry Brown, both for the ma-
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writing this paper.
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