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ON UNEQUALLY SPACED TIME POINTS IN TIME SERIES

By WiILLIAM CLINGER! AND JOHN W. VAN NEss?
The University of Texas at Dallas

This article discusses the sampling of stationary discrete-time stochastic
processes at fixed but unequally spaced time points. The pattern of the
sampling times is periodic with a cycle of p time units. One of the major
problems is to determine given p the minimum number of sampling points
required per cycle in order to estimate the covariances at all lags. The
second problem is to find a pattern of distribution for the sampling points
within the cycle which will allow the estimation of all covariances. A dis-
cussion of the references which describe the statistical properties of the
estimates of covariances and spectra in this sampling situation is given.

1. Introduction. One of the authors (Van Ness) was approached by ocea-
nographers who wanted to study the spectra of certain time-varying features of
the ocean (salinity, temperature, etc.). They wished to measure these features
at several different depths and for a length of time of the order of magnitude
of the cruise time. However, they had only one sensing device on board and
could not keep the ship out long enough to hold the device at each depth for a
suitable length of time. They proposed, therefore, to lower and raise the sensor
in a cyclic fashion keeping its velocity magnitude constant, thus giving a depth
versus time plot as shown in Figure 1.

At a fixed depth, one has a time series {X(1,), X(1,), - - -} observed at unequally
spaced time points. If #, — ¢, and ¢, — 1, are both integral multiples of some
number, the problem involves observations at unequally but cyclically spaced
time points of a discrete time series.

We generalize this problem as follows. Given an integer p > 2, to be called
the sampling period, let the sampling pattern, S = {s;, - - -, 5}, be a subset of
the integers from 0 to p — 1. Sample {X(#)} only at those values of ¢ for which
0 <t < Tandt(mod p)e S. For example, if {Z()} is the underlying continuous
time process in the example of Figure 1 and ¢, — ¢ is an integral multiple of
t, — t,, one could define X(¢) = Z(t(t; — t,) + t,), p = (t;, — 1)/(t; — t;) and S =
{0, (t, — 1,)/(t; — t,)}. General sampling patterns are treated in this paper.

Jones (1962 and 1971) and Parzen (1963) discuss special cases of this problem.
The latter gives other examples where such problems arise. Loynes (1970) re-
views the state of the literature on random processes observed at unequally
spaced time points. As Loynes (1969) points out, very little additional work
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F1G. 1. Oceanographer’s suggested sampling plan.

has been done on the case of missing observations at fixed (nonrandom) time
points.

The major concern in this paper is to find the minimum number of observa-
tions per cycle which will allow estimation of the complete covariance sequence
and spectrum in the discrete time case.

2. Cyclic sampling. Let{X,,t = 0, 1, +2, - - -} be a stationary process with
mean zero and finite second-order moments. Let pand S = {s,, - - -, 5} be as
defined above, only for convenience assume S is ordered so that 0 < 5 <
5, < --- <5, < p— 1. Denote the covariance of lag v by R(v) = EX(8)X(t + v);
v,t=0, +1, +£2, ...

Assume {X(7)} has been sampled according to S over a time period [0, T]
giving observations {X,: r(mod p) e S,0 < r < T}. It is convenient to use the
following picture: divide a circle into p equal segments and number the division
points from 0 to p — 1. Put a dot at those points whose numbers are in S, e.g.
if p=28and S = {0, 1, 4}, we have Figure 2.

Define Q to be a “translation operator” on S such that

O(S) = O(51, S35+ ++5 Sk)
= (s; + 1 (mod p), 5, + 1 (mod p), .-+, 5, + 1 (mod p)) .

FiG. 2. Graphical representation of §.
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Q shifts the dots in our picture one unit clockwise. Define Q*S) = Q(Q(S)).
It will also be convenient to use the notation of Parzen (1963). Let
(2.1) 9(r)y=0 if X(#) is not observed
=1 if X(r) is observed
i.e. g(r) = 1 if and only if ¢ (mod p) € S. Define
(2.2 Y(1) = 9(nX() ,
then {Y(?)} is a particular amplitude modulated version of {X(¢)}. Note that if
9(?) = 1 then g(¢ + jp) = 1 for all integers j.

3. Estimation of covariances. The natural estimates R*(v) of the covariances
R(£wv), v = 0 are

*(p) — R* _ = 1 T—v
(3.1) RH(0) = RN(=0) = oo TI5 YOY( +0)
= Sy TH 00X O0( + DX+ )

when M,(v) = 275" 9()g(t + v) > 0. If M,(v) = 0 for all T we cannot use
(3.1), no matter how large the sample.

First we determine those v for which M,(v) > 0 for some 7. Due to symmetry
we need henceforth only consider v = 0. First note that M,(v) > 0 for some
T if and only if Q*(S) N S + @.

A simple way of determining which R*(v) exist can be given using the pictures
corresponding to Figure 2. Let card 4 denote the number of points in the set 4.
Then k = card S is the number of observations per p time units. Take the circle
with p segment division points and K dots distributed as described in Section 2.
Draw lines connecting each dot to each other dot. With each of these (¢) lines
associate two numbers giving the number of segments between its two dots
counting in the two possible directions. Define V' to be the set containing 0 and
all the different numbers so obtained. Then one can form R*(v) if and only if
|v| (mod p) e V. Note that card V' < 2(%) + 1 = k* — k + 1.

Secondly we would like to know the size of M,(v). Let [+] denote the greatest
integer function.

PROPOSITION 1.

([AT - v ]) card (Q*(S) N ) < M,(v) < ([ d > "’] + 1) card (Q*(S) N ) .

COROLLARY 2.
lim,_.. M,(v)/T = L card (Q*(S) n S) = m(v) .
P

Following Parzen (1963) we define
1
(3.2) Ry(v) = Ry(—v) =

ey T YOV 4 ),
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when m(v) > 0, which is a simple estimate useful in spectral estimation (see
Section 7).

4. Number theory results. In number theory, if {0,1,2,..--,p—1}C V
then S is called a difference cover for p. We wish to find how few observations
we can get away with and still estimate all covariances using (3.1) or (3.2).
Thus we are interested in the minimum cardinality that a difference cover for p
can have. Call this number f(p). As we have shown, p < f*(p) — f(p) + 1.

If equality holds in the previous equation then every integer 0,1, ---,p — 1
is uniquely expressible as a difference. Such difference coverings are called
simple difference coverings. The existence of known simple difference cover-
ings is given by

THEOREM 3 (Singer (1938)). A sufficient condition for the existence of k + 1
integers vy, - -+, V,.,, having the property that their k* 4 k differences v; — v;;
i#jii,j=1,.--,k 4+ 1, are congruent, modulo p = k* + k 4+ 1, to 1,2, ---,
k* + k in some order is that k be a power of a prime.

It-has been conjectured that no simple difference set exists for p = m? + m + 1
when m is not a prime power. This conjecture has been verified for the 1321
cases in which m < 1600, but has not been proved for all m (Mann (1965),
page 86). A number of criteria for the existence of simple difference sets have
been established however (see Mann (1965) or Ryser (1963) for discussion and
bibliography).

A trivial covering gives the following result.

ProposITION 4. If p < 2m(n + 1) + 1 when m, n positive integers, n = 2, then
flp) =m+n.
CoRrOLLARY 5. 1 < fXp)/p £ 2 for p = 12.

Proor. Suppose f*(p) < p, then f*(p) < fX(p) — f(p) + 1, giving f(p) = 1
which yields p = 1. Thus f*p) > p.

Let x be the least integer such that x > (2p + 1)} — 1. Then 2p < x* 4 2x.
If x is even, p < $x* 4+ x = 2(3x)(3x + 1) so by Proposition 4 f(p) < ix +
tx=x. If x is odd, so is x*+4 2x, so 2p < x* 4 2x — 1, from which
p= (= 1)/2 4+ x < 2((x + 1)/2)((x — 1)/2 + 1), and again by Proposition
4, f(p) < (x + 1)/2 + (x — 1)/2 = x provided (x — 1)/2 = 2, which is the case
for odd x corresponding to p > 12. Therefore, f(p) < (2p + 1)}. Suppose
f¥(p) > 2p. Then2p < f*(p) < 2p + 1, which is impossible; hence f*(p) < 2p,
for p = 12. (By inspection of cases, f*(p) < 2p holds for all p except p = 4.) [

An asymptotic upper bound for f*(p)/p follows from the work of Redei and
Rényi (1949) on difference bases. A difference basis with respect to # is a set
of integers a,, - - -, a, such that every positive integer 0 < v < n can be written
in the form v = a; — a, for some i == j. Let k(n) denote the minimum of k for
given n. Redei and Rényi showed that lim,,_., k*(n)/n exists, and gave numerical
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bounds which were later improved by Leech (1956) and then Golay (1972).
Since a difference basis for » is immediately a difference cover for p < 2n 4 1,
it follows that

lim,, ., SUP,5,, L 2(1’) <3 m_"f’(l”_) < 1.3286 .

Actual calculation of f{(p) appears very difficult. The congruence conditions
stated in the next theorem are often useful, especially for p having small di-
visors, but no reasonable algorithm has been developed for arbitrary p values.
The following corollaries will be used later to get some further practical partial
results about f.

THEOREM 6. Let n be a divisor of p. Let vy, -- -, v, be a difference cover for p
and let x; be the number of elements in the cover congruent to i modulo n. Then
Do x;=b;

?;olxz‘(xi_l);';—l;

-1 ] —
Zz xxrem(i-l—j)modn;_g” ]—1,--~,n—1,

where rem (i) mod n denotes the reduced residue representative congruent to i modulo n.

Proor. Consider the integers 1, ---, p — 1. p/n — 1 of them are congruent
to Omod n, and p/n are congruent to jmodn for j=1,...,n — 1. The in-
equalities merely state that sufficient differences v; — v, are congruent to
0,1, ---,n — 1 so that p may be covered by the difference cover. []

COROLLARY 7. Let the conditions of Theorem 6 hold. Then 7} x? < b* —
((n = 1)/m)p.

Proor.

= (D% x)*
= 2150 x4+ 2551 2850 XiXrem (14 mod n
= N x’ + Z"_l -+ 0

Furthermore, equality holds if b=m + landp=b6*'—b+ 1 =m*+ m + 1.
COROLLARY 8. Let the conditions of Theorem 6 hold with b = m + 1 and p =
m?* 4+ m 4+ 1, then

Zn1x2 (m+l)2—n

1(mz—;-m—l—1)=_r1l.[m2—}-(n—|—1)m—|—1].

COROLLARY 9. Suppose f*p)/p— 1. Let n=2. For each p=kn, k =

1,2,3, .-+, let Vi, = {v,, - - -, ¥y} be a difference cover for p, and let x,; be the
number of elements of V, congruent to i modulon,i =0, ---,n — 1. Then
‘ 1

lim, a axl,=1.
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Proor. For each k=1,2, ..., flkn) = X712} x;,. By a well-known iso-
perimetric inequality, then,

L zz_o Xl 2 % [ Sikn) ]

Lzl 1.

Let ¢ > 0. Let p, be such that p > p,implies f*(p)/p < 1 4 ¢/n. Let k, be such
that k,n > p,. For k > k,, then,

1
1 X
< k Z ki

(£ 2=ty

IA

n

<<1+—;——~.n_1>n. 0

n

The next few corollaries apply the congruence conditions modulo 2.

COROLLARY 10. Let m and k be integers withm = 1, k = 0. If mis odd (even)
and f(m* 4+ m — 2k) = m + 1, then there exists an even (odd) integer y such that

m—(2k+1)SpP<m+ (2k+1).

Proor. Given a difference cover of m + 1 elements for p = m® + m — 2k,
let x be the number of elements congruent to 0 mod 2; then (m + 1) — x ele-
ments are congruent to 1 mod 2. We may assume x < (m + 1)/2 (for if that is
not so, adding 1 to each element of the cover produces a new cover in which
it is true). Since m® 4+ m — 2k is even, Theorem 6 gives

x(x—1)+(m+ 1 — x)(m — )_m—_ik_ 1

2
and
2x(m+1—x)gw.
Thus
xsm+1—(m—(2k+l))*
- 2
and
m+ 1 — (m+ 2k + 1)} < x< m+ 1+ (m+ 2k + 1)}
2 = = 2
giving

m— 2k +1) S [(m+ 1) — 2" < m 4 (2K + 1)
andsety = (m + 1) — 2x. []
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CoROLLARY 11. For every positive integer k, there exists an integer m such that
fim* +m — 2k) > m + 1 for k=0,1,---,k,—1.
Proor. Given k,, let m = (k, + 1)2. Then
m— 2k + 1) = ki + 2k, — 2k >k
and
m 4 2k + 1) = kg + 2k, + 2k + 2
< k) A 2k + 2k < (ko + 2)2, k=0,1,...,k,— 1,
so by the preceding corollary f(m*+ m —2k) >m + 1 for k=0,1, ...,
ky— 1. [0
The congruence conditions for p divisible by three are a little more complicated.

CoROLLARY 12. Let p = 0 modulo 3. Consider a difference cover for p of b
elements and let x, (i = 0, 1, 2) denote the number of elements in the cover congruent
to i modulo 3. If A; = —3x;* 4 2bx; + b* — 4p[3, and B; = —3x;* + 2bx; —
b + 2b — 2 4 2p/3, then

) xg+x +x,=5

2) (=20 —pH3<x, < (b+2(0*—pH/3,i=0,1,2"

3) b —x; —AN2=Ex, < (b—x; + A2, i £ ]

4) x;, < (b—x; — B})[20r x, > (b — x; + B;¥)[2, i + j, if B; > 0.

Proor. From Theorem 6 (sums are from 0 to 2):

Z: X, = b s

Z&W—ng—h

XoXy + Xy X; + X3 X = —g— .

Thus
X, =b — xy— x,,

x,,(.xo—1)+x1(x1—1)+(b—x0_x1)(b_x,,_xl_1)2% -1,

XoXy + x(b — Xo — x;) + (b — xp — xl)xog—g"

or
(4.1)  2x2 — 2bx, + 2x. — 2bx, + 2x,x, + b2 — b + 1 _ggo,
4.2) — X — x,? — Xxox; + bxy + bx; — % =0.

A4, < 0 gives no solution to (4.2), so

b—2F —pf _ b+ —p}
3 - T 3
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Then, from (4.2)

(b—xl)—A1*<x < (b—x)+ 4}
_——2—_—-= 0=—_—-—2—-_.

From (4.1), if B, > 0, then

< (b _ xl) — Blir

— 3
X < or X, w_ .

2 ’ 2

[\

The symmetry of the congruence conditions permits interchanging the sub-
scripts 0, 1, 2. ]

COROLLARY 13. Let m = 1 modulo 3. Set p = m*+ m + 1 and let x,, x, and
x, be defined as in the preceding corollary. If b =m + 1

1) (m+1—2mb)[3 < xp xp, X, < (m + 1 + 2m?)[3; and

2) if D= —3x2 + 2(m + 1)x, — §(m — 1), then x, = (m 4+ 1 — x, + D*¥)/2
and'x, = (m + 1 — x, F D*)/2; and

3) two of the x; are congruent to 1 modulo 3, and the other is congruent to
0 modulo 3.

Proor. Part 1 is just the preceding corollary. In the preceding corollary,
A, = B, = D and this together with the fact that x, + x; 4 x, = m 4 1, gives
part 2.

D = x,mod 3. From part 2, D = (2x, + x, — m — 1)* modulo 3, from which
X, = 0 or x, = 1 mod 3 since 2 is a quadratic nonresidue mod 3. If x, = 0, then
2x,=m + 1 gives x, = 1. If x, =1, then 2x, = 2 or 2x, = 0, giving x, = 0
or x, = 1; since x, + x, + x, = m + 1 = 2, one of x,, x,, is congruent to 0 and
the other to 1 mod 3. [J

5. Results. The previous corollaries provide partial information about f{p).
For example, Corollary 10 shows that f{20) > 6 and f(42) > 8 while Corollary
12 shows that £(30) = 7 and Corollary 13 shows f(111) = 12.

Using these corollaries, published results and calculations of difference covers
in special cases we can construct Table 1. Obviously f(p) is still difficult to
compute.

6. Convergence. In view of Corollary 5 and the result on difference bases,
it is natural to ask if the ratio f*(p)/p converges. If it does, then by Singer’s
theorem-it must converge to 1. As of now it is not even known that fcan take
on a value as much as two above the bound given by p < f*(p) — f(p) + 1.

An interesting necessary condition for convergence is given by Corollary 9.
If n divides p, then a smallest difference cover must be fairly evenly distributed
among the residues mod 7 in order to satisfy Theorem 6, but Corollary 9 states
that, if f*(p)/p — 1, then a smallest difference cover for large multiples of n
must be almost perfectly distributed.

7. Conclusions. While we have made progress in determining optimal sampling
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TABLE 1

f(p) for small p
p fip) a difference cover
1 1 0
2 2 01
3 2 01
4 3 01 2
5 3 01 4
6 3 o1 3
7 3 01 3
8 4 01 3 7
9 4 o1 3 7 .
10 4 01 3 6
11 4 01 4 6
12 4 01 4 6
13 4 01 3 9
14 5 o1 3 7 9
15 5 01 3 710
16 5 01 3 71
17 5 01 3 7 12
18 5 01 3 10 15
19 5 01 3 915
20 6 01 3 9 13 15
21 5 01 4 14 16
22 6 01 4 9 11 15
23 6 01 4 11 13 19
24 6 o1 3 7 12 17
25 6 o1 3 7 1215
26 6 01 4 14 19 21
27 6 01 4 10 12 17
28 6 01 4 15 20 22
29 ?
30 7 01 2 6 10 13 16
31 6 01 3 8 12 18
32 7 01 4 9 11 17 23
33 7 01 2 3 8 13 17
34 7 01 2 3 8 13 17
35 7 01 2 3 8 13 17
36 7 01 11 16 19 23 25
37 7 01 6 10 17 23 35
38-41 ?
42 8 01 6 10 19 26 37 40
43 8 0 8 18 19 22 24 31 39
44 8 0 8 18 19 22 24 31 39
45 8 0 8 18 19 22 24 31 39
46 8 0 8 18 19 22 24 31 39
47 8 0 8 18 19 22 24 31 39
48 8 0 8 18 19 22 24 31 39
49 8 0 8 18 19 22 24 31 39
50-55 <
56 9 0 1 10 19 21 37 43 49 52
57 8 01 3 13 32 36 43 52

(Recall Mann (1965) has results for p = m* + m + 1, m < 1600.)
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patterns, the general answer seems extremely difficult. If one has a sample which
does allow the estimation of all covariances, questions concerning the estimates
and their properties are discussed in Parzen (1963).

Note the strange behavior of f{p) shown by Table 1. For example, 6 points
per cycle are required for p = 20 but only 5 for p = 21. This disturbance in the
order of f(p) tends to occur around the pointsp = m* + m + 1,m = 4,5,6, - - -.

Interesting open questions besides the complete determination of f{p) remain.
One, mentioned above, is whether f{(p) is ever more than one above the bound
given by p < f*(p) — f(p) + 1. A second is how many different difference covers
for p exist. Of course, one could try to add information to Table 1. We have,
for example, written an APL program which conducts a trial and error search
for difference covers. It was this program that found the smallest difference covers
for p = 36, 37, 42, 56 and found difference covers of size 9 for p = 50, .- ., 55.

8. Acknowledgment. The authors would like to thank Dr. Richard Duke for
his helpful discussions on this problem.
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