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THE STOCHASTIC PROCESSES OF BOREL GAMBLING
AND DYNAMIC PROGRAMMING®

By DAvID BLACKWELL
University of California, London

Associated with any Borel gambling model G or dynamic programming
model D is a corresponding class of stochastic processes M(G) or M(D). Say
that G(D) is regular if there is a D(G) with M(D) = M(G). Necessary and
sufficient conditions for regularity are given, and it is shown how to modify
any model slightly to achieve regularity.

1. Introduction and summary. Bellman’s (1957) dynamic progamming and
Dubins and Savage’s (1965) gambling are close relatives, as noted in Dubins
and Savage (1965) and in Blackwell (1965). We here explore one aspect of the
relationship: the classes of stochastic processes associated with the two theories.
Our formulation is in a Borel, countably additive setting: the sets and functions
defining the models are assumed Borel, and the probability measures in the
models are countably additive.

A dynamic programming model is a triple D = (X, 4, q), where X and 4 are
nonempty Borel sets (i.e., Borel subsets of polish spaces) and ¢ is a Borel map
from X X A to the set P(X) of probability distribution on (the Borel subsets of)
X. The points of X are called states and the points of 4 are called acts. The
interpretation is that if you are in state x and choose act @, you move to state
x" selected according to ¢(x, a).

A gambling model is a pair G = (X, B), where X is a nonempty Borel set and
B is a Borel subset of X x P(X) such that, for each x ¢ X, the x-section B, of
B, i.e., the set of all m ¢ P(X) for which (x, m) e B, is nonempty. The points
of X are called fortunes and the points of B, are called gambles available at x.
The interpretation is that if you have fortune x and choose gamble m € B,, you
move to fortune x’ selected according to m.

Associated with each D or G is a class of stochastic processes, as follows. An
initial state or fortune x, is selected according to some specified distribution, and
shown to you. You then choose an act g, or available gamble m, and move to
X,. You observe x,, choose a, or m, (your choice may depend on x, as well as
x,), move to x;, etc. More formally, denote by Q the space of infinite sequences
of points of X and by x,, n = 1, the nth coordinate function on Q. For any
p € P(Q), denote by d, = d,(p) a version of the conditional distribution of x,,,
given x,, - - -, x, with respect to p, so that d, is a Borel, (x,, - - -, x,)-measurable

Received November 1974; revised June 1975.

! This research was prepared with the support of National Science Foundation Grant No.
GP-43085.

AMS 1970 subject classifications. Primafy 49C15; Secondary 28A05.

Key words and phrases. Borel, gambling, dynamic programming.

370

@/:]

b

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ 2
The Annals of Statistics. RIN®RY

.V v,

WWW.jstor.oPg



GAMBLING AND DYNAMIC PROGRAMMING 371

function from Q into P(X). We shall say that p is producible in D if there is a
sequence {f,, n = 1}, where f, is a Borel, (x,, - - -, x,)-measurable function from
Q into A, such that, with p-probability 1 for each n,

d, = q(xn fa) -
We shall say that p is producible in G if for each n, with p-probability 1,

(x,,d,)eB.

Denote by M(D) and M(G) the class of all p that are producible in D and G
respectively.

Call a model of either type regular if there is a model of the other type with
the same M class: D is regular if there is a G with M(G) = M(D); G is regular
if there is a D with M(D) = M(G).

THeOREM 1. (a) D is regular if and only if the range R(D) of the function (x, q)
from X X Ainto X X P(X) is Borel, where & denotes projection onto X: n(x, a) =
x. If R(D) is Borel, then, with G = (X, R(D)), we have M(G) = M(D).

(b) G is regular if and only if B contains a Borel graph, i.e., there is a Borel f
from X into P(X) whose graph is a subset of B. If there is such an f, then, with
D = (X, P(X), q), we have M(D) = M(G), where

q(x,a) = a if (x,a)eB
= f(x) if (x,a)¢B.

Theorem 1 describes how to go from a regular model of one type to an
equivalent (necessarily regular) model of the other type. The next two theorems
describe how to go from a general model of either type to a regular model of
the same type.

First, if we are givena D = (X, A, q), it is a small conceptual change to regard
yesterday’s act as a part of today’s state. If we do this, we obtain the derived
model D' = (A X X, 4, q'), where ¢’ describes the joint distribution of today’s
a and tomorrow’s x as a function of yesterday’s a, today’s x, and today’s a:

7 (@ x), @) = 6(a) X g(x, @),
where d(a’) denotes the probability measure concentrated at a’.

THEOREM 2. For any D, the derived D’ is regular.

Next, if we are givena G = (X, B), it is a small conceptual change to introduce
a single new fortune x*, to which we can always move, and from which we cannot
escape. If we do this, we obtain the derived model G’ = (X U {x*}, B*), where
B* = B U {(x, 0(x*)): xe X U {x*}}.

THEOREM 3. For any G, the derived G’ is regular.

Theorems 1, 2, and 3, in giving a general method for going from either type
to (a regular) one of the other are a partial explanation of the fact that writers
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find it largely a matter of taste which model to use, for either developing general
theory or studying particular problems. The rest of the explanation presumably
lies in relating the kinds of utility or reward functions used, which is outside
the scope of this paper.

Finally we give a result whose content can be described, by straining the mean-
ing of words a bit, as follows: (a) in a D-model, you may not be able to determine
whether a given process can be produced but you can always, for each initial
state, find a producible process with that initial state, while (b) in a G-model,
you can always determine whether a given process is producible, but you may
not be able, for each initial state, to find a producible process with that initial
state.

THEOREM 4. (a) There is a D for which M(D) is not Borel. For any D there is
a Borel f from X into P(Q) such that, for each x, f(x) € M(D) and assigns probability
1 to{x, = x}.

(b) For any G, M(G) is Borel. There is a G for which there is no Borel f from
X into P(Q) such that, for each x, f(x) € M(G) and assigns probability 1 to {x, = x}.

2. Proofs and intermediate results. We shall need the following result of
Mackey (1957, Theorem 6.3).

MACKEY SELECTION THEOREM. Let X and Y be Borel sets, let m be a probability
measure on X and let B be a Borel subset of X X Y such that there is an X-set of
m-measure 1 on which B, is nonempty. Then there is a Borel g from X into Y whose
graph is in B almost everywhere with respect to m:

m{x:(x,g(x))eB}=1.

LeMMA 1. For any G, any me P(X) and any Borel g from X into P(X) whose
graph is in B almost everywhere with respect to m, there is a p € M(G) giving x, dis-
tribution m and with d, = g(x,) with p-probability 1.

Proor. Since m is the distribution of x,, p will be determined by the speci-
fication of d,, n = 1. Of course d, = ¢g(x,). Inductively, suppose d,, ---,d,
defined, and let m, be the resulting distribution of x,,,. Apply the Mackey
selection theorem to X, P(X), m,, B to obtain g,, and define d,,, = ¢,(x,,)-
The resulting p has the required properties.

~ LEmMMA 2. Forany G and any m € P(X), thereisap € M(G) giving x, distribution m.

Proor. The Mackey selection theorem applied to X, P(X), m gives a g that
satisfies the hypothesis of Lemma 1.

We remark that the Mackey selection theorem is in turn an easy consequence
of Lemma 2, or indeed of the fact that every M(G) is nonempty.

LemMMA 3. For any D and G with the same X

(a) M(D) c M(G) if and only if R(D) C B.
(b) M(D) o M(G) if and only if R(D) D B.
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PROOF. (a) Suppose R(D) C B and let pe M(D). Say d, = q(x,, f,). Then
(x.» d,) € R(D), so (x,,d,) € B and p e M(G).

Now suppose M(D) c M(G) and let (x, m) e R(D). Say m = ¢(x, a;). Let p
concentrate x; at x and have d, = ¢(x,, a,)). Then pe M(D), so pe M(B), so
with p-probability 1, (x,, d;) € B, i.e. (x, m) € B.

(b) Suppose R(D) D B and let p e M(G), so that p{(x,, d,) € B} = 1. Apply
the Mackey selection theorem to Q, 4, p, and J, = {(w, a): ¢(x,, @) = d,}, ob-
taining g, from Q into 4 with ¢(x,, g,) = d, with p-probability 1. Since the
a-sections of J, are (x,, - - -, x,)-measurable, there is a g, that is also (x, - - -, x,)-
measurable. Thus p e M(D).

Now suppose M(D) D M(G) and let (x, 1) € B. Apply Lemma 1 to obtain p e
M(G) concentrating x, at x and having d, = p. Since p e M(D), there is an q,
with ¢ = ¢g(x, ay) i.e. (x, ¢) € R(D).

COROLLARY. M(D) = M(G) if and only if R(D) = B.

Theorem 1(a) follows immediately from the corollary. To prove Theorem
1(b), suppose first that G is regular, say M(D) = M(G). Then for any a, the
graph of ¢(., a) is in B, since B = R(D). Conversely, if B contains the graph
of the Borel f, the D defined in Theorem 1(b) clearly has R(D) = B, so that
M(D) = M(G).

To prove Theorem 2 it suffices, from Theorem 1 (a), to see that R(D’) is Borel.
This is shown by the description

R(D) ={(x,m):myeld and  m=¢(m,) x q(x;, $(m,))},

where m, is the A-marginal distribution of m (the map m — m, is Borel), A is
the (Borel) subset of P(A) consisting of distributions that are concentrated at
single points, and ¢ is the (Borel) function on A that associates with each ¢ in
A the point on which it concentrates: g = 6(¢(¢)). (See Dubins and Freedman
(1968).)

To prove Theorem 3, apply Theorem 1(b) to G’, with f the constant function
with value 6(x*).

For the example of Theorem 4 (a), take any X, A4, k, where k is a Borel function
from A4 into X whose range is not Borel, and take D = (X, 4, q), where g(x, a) =
0(h(a)). The set of x for which the measure that concentrates on (x, x, x, - - )
is in M(D) is just the range of 4, which is not Borel, so M(D) is not Borel. But
for any D and any a, € 4, the function f such that f(x) concentrates x, at x and
has d, = q(x,, a,) has the property asserted in Theorem 4 (a).

Any (X, B) for which B contains no Borel graph gives an example for Theorem
4(b) since, if there is an f with the properties of 4(b), the function d,(f) is a
Borel function with graph in B.

Finally, we must show that any M(G) is Borel. According to a nice result
of Sudderth (1969, Lemma 2, page 402), for any two Borel functions # and v
on a Borel set Z, there is a Borel ¢ from P(Z) into P(P(V)), where V is the
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range space of v, such that ¢(p) is the distribution of the conditional distri-
bution of v given u with respect to p. We apply Sudderth’s result with Z = Q,
U= (X5 <+ X,), V= (X, X,,,) to obtain ¢,. The set H of measures in P(V) of

the form 6(x) X m for some (x, m) e B is Borel, and M(G) = {p: ¢,(p) € H for
all n}.
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