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TWO NECESSARY CONDITIONS ON THE REPRESENTATION
OF BIVARIATE DISTRIBUTIONS BY POLYNOMIALS!

By SHU-GWEI TYAN, HALUK DERIN, AND JOHN B. THOMAS
Princeton University

Let X and Y be two unbounded random variables. Then two necessary

conditions are proved concerning the structure of the bivariate distribution

. function of X and Y when it is expanded in the orthonormal polynomials

of its marginal distributions. The first condition concerns the shrinking

of the polynomial representation into a diagonal form, and the second is a
generalization of the Sarmanov-Bratoeva theorem.

1. Introduction. Let X and Y be two random variables and let F,(x) and
Fy(y) be their distribution functions and assume they have finite moments of
every order. Then a sequence of polynomials {P,(x)}7_,, where P,(x) is of degree
n, orthonormal with respect to F,(x) can be constructed. Here oo is to be re-
placed with N if X takes on only N + 1 values. The orthonormal polynomials
associated with Fy(y) can be constructed also and are denoted by {Q,.(y)}z_o-
Here Q,,(y) is of degree m, and o is to be replaced with M if Y takes on only
M + 1 values. Assume that Py(x) = Qy(y) = 1.

Let L*(F) be the space of the square integrable real functions with respect to
the distribution . If a sequence of polynomials is complete in both L*(F ) and
L*(Fy), and if g(x) € L*(F ;) and k(y) € L¥Fy), then for any bivariate distribution
function F, ,(x, y) having F, and F, as marginals the following is true [S]:

(1) SRz g(x)h(y) dFX,Y(x’ y) = Z:bo=0 Z::O gnpn,mhm .
Here R? is the 2-dimensional real space and

Pnm = SRZ Pn(x)Qm(y) dFX,Y(x’ y) ’
Pno = Pom = 0forn,m=1,2,3, ..., and

@) 9n = $2a GOPLX) dFx(x) , by = (20 B(y)Qn(y) dFy(p) -
The double series in (1) converges absolutely. In particular,

(3) FX,Y(X’ y) = Z::'=o Dim=o Onm Pz,n9ym

where

4 Pan = Sicmat Pa(0) dFx(1) Gy = §immyy Qm(v) dFy(v) .

The structure (3) is the subject of this paper and for related general material we
refer to Lancaster [10].
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Conversely, let ~* be the Hilbert space of square summable real sequences.
Then we have the following lemma:

LemmaA 1. Let {o,,} be a real double sequence where n,m =0, 1,2, .... As-

sume that {c, ,} satisfies the following two conditions:
(i) 0,0=0ywn=0 for n,m=1,2,3,...,
&) (1) Xvoe Dim—00nma,b, converges absolutely whenever {a,)7., and
{bp)po arein /*.

If F(x, y) is a bivariate distribution function satisfying (3) with p, ., q, ,, defined in
(4) and o, ,, replaced by o,, ., then F(x, y) has marginals F, and F,. Also F(x,y)
satisfies (1) for all g(x) and h(y) in L*(Fy) and in L*(F}), respectively.

Proor. By (5), for any {a,}7_, in ~?, the sequence {>;5_, 0, ,a,}5_, is also in

%, Since
Z:=o ‘]?),m é 1 ) llmy-.m dy0 = 1 s

andg,,=0forn=1,2,3, ..., thus for any fixed x
lim,_, F(x,y) = 00 §(_w,.1 dF x(1) .

Obviously, a,, = 1 since F(x, y) is a bivariate distribution by assumption. Thus
F(x, y) has marginals F, and F,. Furthermore (5) implies that

limyTyo F(X, y) = Z:no=0 (Z:Lo=0 an,m Px,n) S(—oo,yo) Qm(v) dFY(/v) .

Therefore, for any two bounded intervals (open, closed, or half open) A and B,

Ve La()I5(y) dF(x, y)

(6) = (uxs dF(x, y)

= 2= 2im=0 Onml§ La()Po(x) dF x(x)][§ 15(y)Qum(y) dFy(y)] -
Here 7,(x) is the characteristic function of the subset 4: I,(x) = 1, if xe 4;
1,(x) = 0, otherwise. Obviously (6) also holds when 7,(x) and /,(y) are replaced
by step functions. Since step functions are dense in both L*(F,) and L*(F;), we
can find g,(x) — g(x) in L F ) and h(y) — h(y) in L*(Fy), where g,(x) and 4,(y)
are step functions. Then

V2 9:(0)h(y) dF(x, y) ,
= =0 Zim=0On,nl§ 9:(X)Po(x) dF x(x)][§ £ (y)Qu(y) dF ()] -
First let i — oo then let j — co. It can then be shown that F(x, y) satisfies (1)
by using (5) and the fact that F(x, y) has marginals F, and F,. ]

Denote by I' the class of bivariate distribution functions which satisfy the
conditions in Lemma 1; that is, F ,(x, y) has an expansion (3) with p, ,, replac-
ing ¢, ,, and satisfying (i) and (ii) of Lemma 1. Also denote by I', ;, i and j are
nonnegative integers, the subclass of bivariate distribution functions in I' which
have a representation (3) where p,,,, = 0ifn — m > iorm — n > j; that is, the
matrix [p, ,] is zero outside a uniform strip along the main diagonal.
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In the following two sections, the role of unbounded random variables in the
structure of a bivariate distribution function belonging to I'; ; is studied.

2. A necessary condition on I'; ;. Let X and Y be two random variables with
distributions F, and F,, and let their joint distribution be F, ,(x, y). Assume
that F, and F, have finite moments of every order and that P,(x) and Q,(y) are
orthonormal polynomials as described at the beginning of Section 1.

LEMMA 2. If F, y(x, y) is in T then the conditional expectations
®) E[Qn(Y)| X] = Eiso Onm Pul(X)
are true. The series converge in quadratic mean.

Proor. From Lemma 1, for any Borel subset B,

Vi Pa()p(y) dF x5 (%, ¥) = X Oum § 1o(1)Qum(¥) dFx(y) -
BY (5) {0n,m}=0 is in #* for any fixed n, thus (7) is true; (8) is then obvious. []

The following theorem due to Derin and Thomas [6] was proved by Brown
[4] for the case I'y,.

THEOREM 1. Suppose F ,(x,y) isin I'. Then F, ,(x,y) isin I, ; if and only if
(i) E(X*|Y) = a polynomial in Y of degree less than or equal to k 4 j,

and
(ii) E(Y*|X) = a polynomial in X of degree less than or equal to k + i

fork =0,1,2, .... Here equality is in quadratic mean and hence almost surely.

Proor. The necessity is a direct result of Lemma 2. The sufficiency follows
directly from the fact that

Oam = E[Pi(X)Qn(Y)] = E{E[P(X)[Y]Qu(Y)},

which is zero if m —n > j. By analogy, p,, =0 if n —m>i Thus
Fyy(x,y)el ;. 0

The polynomial regression property expressed in (i) and (ii) of Theorem 1 is
interesting. However, very little is known about the class I'; ; except for the
special case I’y , which has a diagonal expansion (see Bochner [3], Sarmanov and
Bratoeva [11], Askey [2], Gasper [8] and [9], and Eagleson [7]). For applica-
tions of I' to nonlinear analysis, refer to Cambanis and Liu [5].

In the following it is shown that if F, ,(x, y) is in I, ; but does not belong to
'y, then at least one of the random variables X and Y is bounded.

LEmMA 3. If Y is unbounded, and if there exists a k = O such that p,, ,, = 0 for
alm —n >k, thenp, , =0ifm > n.

PROOF. Assume p; ., #+ 0 for some j; otherwise k is replaced with k — 1 and
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so on until a nonzero term is obtained. Then

and
®) E[PHX) | Y] 2 {E[PAX) | YII* = [ L35 05m Qu(Y)]* -
The L.H.S. of (9) is a polynomial of degree at most 2kj 4+ k while the R.H.S.
of (9) is a polynomial of degree at least 2k(j + k). Since Y is unbounded, the
inequality (9) holds only if

2kj + k = 2k(j + k) .
This implies that £ = 0. []

THEOREM 2. If both X and Y are unbounded and if F ,(x,y) belongs to T', ,,
then Fy ,(x, y) belongs to Ty ,.

Proor. That Fy ,(x, y) eI, ;implies thatp,, =0ifm —n > jorn —m > i.
Since Y is unbounded, it follows from Lemma 3 that p,, = 0 for all m > n.
Since X is also unbounded, thus p, ,, = 0 for all n > m. Therfore F, ,(x,y)e

Loo. O

3. Coefficients of I', ;. Sarmanov and Bratoeva [11] showed that a bivariate
density function f(x, y) can be represented as a diagonal expansion in normalized
Hermite polynomials

S, 3) = 51+ i e 0 HO)] expl— (¢ + )12}

where the series converges in the mean, if and only if the sequence {c,} is the
moment sequence of some probability distribution concentrated in the open
interval (—1, 1) and Y7, ¢’ < oo.

In this section we show that the necessity part of the Sarmanov-Bratoeva
theorem is true for general orthonormal polynomials provided the common
marginal distribution has unbounded support. The method of proof is suggested
in [11].

THEOREM 3. Let the bivariate distribution function Fy ,(x, y) of X and Y belong
to I'y, and let Fy(u) = Fy(u) = F(u). Write

(10) FX,Y(X’ y) = Z::O cnpx,'npy,n ’
where
Pa:,n = S(—w,x] Pn(u) dF(ll) :

The P,(u), n=0,1,2, ..., are the polynomials orthonormal with respect to
F(u). If the random variable X is unbounded then

¢, = Sy um dG(u)

where G(u) is a probability distribution function with ¢, = 1.
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Proor. Clearly ¢, = p,, = 1 as shown in Lemma 1. By Lemma 2
E[P(X)|Y] =c,P(Y), n=0,1,2,....
Obviously, for arbitrary real numbers z,, z,, z,, - - - and real x
T N0 Z;Z; X1 >0

Let x» = Y%_oa,,Py(x) forn =0,1,2, ... and define

, e, (x) = N0 a1 Pu(x) i=0,1,2,....
Then E(X"|Y) = e,(Y) and
(11) To D=0 ZiZie (Y) = E[ X7 X3-02:2; X9 Y] = 0

almost surely. Since the left hand side of (11) is a polynomial and hence is
continuous in y, thus

o Di0ZiZ;ei(y) 2 0
for all y in the support, denoted by S, of F. Therefore by [1], the sequence
{e.(»)}r-o is a moment sequence for all y € S, and {e,(y)y—"};-, is also a moment
sequence for any y, y #+ 0 and y € S. Thus
¢, = lim,_ e, (y)y "
is also a moment sequence. By (5), ¢, is bounded; hence
€ = Yoy u* dG(u) . U
CoroLLARY 1. If, in addition, X > a almost surely or if X < b almost surely,
where a and b are both finite real numbers, then
¢, = S0 4" dG(u) .

Proor. We consider only the case when X < a almost surely; the proof of
the other case is similar. Define

(X)) = Xizo L5=0 (N(—a)"a, ;¢,Py(x) ,
fori=0,1,2,.... Thené,(Y) = E[(X — a)*| Y] and

Diteo Di5=02:2;€,;(Y) =0, To0 207=0212;8,;(Y) = 0
almost surely. By the continuity of ¢,(y), the sequence {é,(y)}:_, satisfies the
Stieltjes moment problem [1] for all ye S. For y > 0 with y ¢ S, the sequence

{€.(y)y "}z, is also a Stieltjes moment sequence. Since the support S has no
upper bound, thus

c, =1lim__é.(y)y " = oy u"dGu) . 0
However, the converse is not true (it is true for some F’s; for example,

normal, Poisson, generalized gamma, and negative-binomial). A counterexample
is the density function
1 . 1
fo)= PG+ = =, —eo<x< oo

~ cosh (zx) ’
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Let ¢, = p", 0 < p <1, and let F'(x) = f(x). The orthonormal polynomials
P,(x) associated with F(x) are the Pollaczek polynomials of infinite interval [12].
If Fy y(x, y), constructed as in (10), is a bivariate distribution, then

O, —u) = |z etme—iny dF »(x,y)
should be a characteristic function. But

S, —u) = 1 + cosh (9) i Sin (0x) ius dx
’ sinh (9) °77 sin (nx)

where cosh (6) = (1 + p)/(1 — p) and is not a characteristic function.

COROLLARY 2. Let F be fixed. Let {c,)z_,and {d.}r>_ be two sequences such that
for each the Fy y(x, y) of (10) is a bivariate distribution (X and Y may be bounded
or not). Then {c,d }"., also generates a bivariate distribution of the structure (10).

Proor. Let

FX,Z(x’ z) = Z:;o CoPanPen >
Fy /(y,2) = Zie0@uPynPn »
and let 4, B, and C be three arbitrary Borel subsets. Then
S La()Io(2) dF y, o(x, 2) = §0 9.4(2) dF(z) = 0
where
94(2) = Lo €al§4 Pu(x) dF(x)]P,(2) ,
and where the convergence is in L*(F). Clearly g,(z) = 0 almost surely. Like-
wise, define 4,(z) by
ho(2) = Eimadul§s Pu(y) dE()IPA2)
which is also nonnegative almost surely. Thus

27=0€ada§ 4 Pou(x) dF()][§5 Po(y) dF(y)] = §2u 94(2)hs(2) dF(z) = 0.
Obviously, the function F, ,(x, y) = Y=, c,d, Pz,n Py, 18 @ bivariate distribution
function. []

Define F(x, y;u) = Y2 u"p, . p,.» where —1 < u < 1. Consider the set
T = {u: F(x, y; u) is a bivariate distribution function}. Then it is trivial to show
that T is closed. By Corollary 2, T is closed under multiplication. We give a
partial converse to Theorem 3.

COROLLARY 3. Let G(u) be a probability distribution function with its support
contained in T. Then F(x,y) = 3%_,C, Pon Py, IS5 @ bivariate distribution where
¢, = \L, u~dG(u).

PROOF. Since F(x, y; u) is continuous in # and since

Z';'::o CoPon Pyn = ST F(x’ Vs u) dG(”) ’
it follows that F(x, y) is a bivariate distribution in T,. []
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In this section, only the symmetric case, i.e. F(u) = Fy(u), is discussed; for
the asymmetric case, we refer to Tyan and Thomas [13], and Tyan [14].
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