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ESTIMATION OF THE VARIANCE OF
A BRANCHING PROCESS!

By JEAN-PIERRE DION

Université du Québec a Montréal

Assume given the (n 4 1)-first generation sizes of a supercritical
branching process. An estimator is proposed for the variance ¢* of this
process when the mean is known. It is shown to be unbiased, consistent
and asymptotically normal. From that one deduces a consistent and
asymptotically normal estimator for ¢% in the case of an unknown mean.
Finally, the maximum likelihood estimator of o2, based on a richer sample,
is found and asymptotic properties are studied.

1. Introduction. Let {Z;n=0,1,2,...} be a Galton-Watson process
(Z,=1). Let p,=PZ =k), k=0,1, ... be a completely free offspring
distribution only subject to the conditions m > 1 and 0 < ¢* < co, where m
and ¢? are repectively the mean and the variance of the offspring distribution.
The number of individuals of the nth generation is represented by Z,.

Consider a sample {Z,, Z,, - - -, Z,,,} formed by the (n 4 1) first generation
sizes of this process. The problem of point estimation for the mean has been
treated by Lotka (1939), Nagaev (1967), T. E. Harris (1948) and Heyde (1970).
The asymptotic distribution of these estimators and confidence intervals for the
mean were given by Dion (1972, 1974). Results by Jagers (1973) on the age
dependent branching process and by Keiding (1974) on the birth process, are
related to this. Unfortunately, these asymptotic results are functions of ¢* and
as such are of limited value when ¢? is also unknown.

Nice estimators for ¢* are proposed both when the mean is known and
unknown and a confidence interval for the mean is deduced when the variance
is unknown. The Nagaev estimator (1967) for the mean is used in Section 2 to
construct an unbiased, consistent and asymptotically normal estimator for ¢%
this estimator is a function of m. In Section 3, another consistent and asymp-
totically normal estimator for ¢ is given; it uses both Nagaev and Harris
estimators for the mean but does not involve the mean itself. Some of the
results of Sections 2 and 3 were also obtained independently by Heyde (1974).
He proposes the same estimator in the case of known mean, and uses the Lotka—
Nagaev estimator instead of the Harris estimator when the mean is unknown.

Finally, we consider arichersample{Z;,:j=0,1,2, .-,k =0,1,2, .- -},
where Z;, is the number of individuals of the jth generation having exactly k
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direct descendants. The maximum likelihood estimator of ¢? is then found and
shown to be consistent and asymptotically normal.

2. Estimation with known mean. Define, for each k =0,1,2, ..., n,7, =
((Zi1i/Zi) — m)*Z,, and put 6, = (L%=o 7)/(n + 1).

THEOREM 1. Assume py=0, m > 1,0 < 0* < oo and E(Z*) < +oo. Then
) E@,?) = o
and
(2) Var(d,”) = (n+ 1)7[20* + (n + 1)7}(Var (Z, — m)’ — 2¢*) 33%_ E(Z,7)] -

Proor. We will use repeatedly the fact that given Z,, Z, ., is distributed as
the sum of Z, independent copies of Z,, call them &®, £, ..., ‘z”,:- Assume
(since such a space can be constructed) that we are working on a space where
the random variables &% exists and are i.i.d. and that Z,,, = 3%, £,%®; we
will omit the superscript (k) as a matter of notational convenience.

First, we have

1
E(t,| Zy) = 7z E((Zyy1 — mZ,)*| Z,)

k

1 1
— Var (Z,,,| Zy) = - Var (U{+ €] Z,) = o*
Z, Z,

so that E(z,) = ¢% secondly,
E(r,7;) = E(E(r;75( Zis Zisas -+ 25 Z5))
= E(r,E(t;|Z;)) = E(r,0®) =0*, Vi<],
which shows that the z,’s are uncorrelated. Thus
Var (6,%) = (n + 1)7* >3%_, Var (7).

There remains only to show that Var(z,|Z,) = Z,7'Var(Z, — m)* +
Z,~2(Z,— 1)a*, since Var E(r, | Z,) =0. But Var (r,| Z,) = Z,~* Var (227, (§;,—
m))* | Zy) = Z,7* Var [(D7h (§ — m)* + 2 31i¢; (§ — m)(&; — m)) | Z,].

Now, Vi, j, k,j <k, (§, — m)*and (§; — m)(§, — m) are uncorrelated. Also,
Vi<j, k<l and (i,)) # (k, 1), (§; — m)(§; — m) and (§, — m)(§, — m) are
uncorrelated, so Var(z,|Z,) = Z,2*[Var (Z, — m)* + 2Z/(Z, — 1)¢*], from
which the conclusion follows.

It is immediate from Theorem 1 and Tchebyschev’s inequality that G,2 —, o2
Furthermore, there are some reasons to believe that if k, is big enough the
{ri: k > k,} are asymptotically independent and identically distributed (see [3]).
So it would seem natural to have asymptotic normality for &,>. The next
theorem, which could easily be obtained using a central limit theorem for
martingales due to Billingsley (1961, page 52), states that this is indeed true.
The proof is omitted since it is a special case of Heyde’s Theorem 2 (1974).
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THEOREM 2. Let p, =0, m > 1,0 < ¢* < oo and E(Z,*) < +co. Then,

(n+ DR =), o, 1y.
g

3. Estimation with unknown mean. Consider now the case where the mean
is unknown. The maximum likelihood estimator of m is i, = (Z, + ... +

Z, WZy+ -+ + Z,). Puts,? = (n+ )7 3% Z,((Zeis/Zy) — )%
THEOREM 3. Let p, =0, m > 1, and 0 < ¢* < co. Then,

6,2 — 3,2(n + 1) 5,0 Ve>0.

n

Proor.
Ve>0
(6n2 — 6-”2)(’, + l)l—e
= (n+ D)7 Zia0 Zl((Zen/ Ze) — m)* = (Zen/Zi) — )]
= (n + 1) Zieo Zil (R, — mY(2AZisa|Ze) — (B + m))]
= (n+ )70h, — m[2AZy + -+ + Z,p) — (B, + m) (2o + -+ + Z,)]
=(Zo+ - + Z,)0h, — m)¥(n + 1)~
and this tends to zero in probability, since (Z, + - -- + Z,)/o*)(h, — m)* —, y,?
by Theorem 3.1 of [3]. []

(A stronger result would follow by using the full generality of Theorem 3.1
of [3]).

Note. This proof also showed that ¢,* < 4,% a.s. Since 4,* is an unbiased
estimator of ¢%, 4,* will tend to underestimate ¢* (although it is consistent).
As an immediate consequence of Theorem 3 one has the following.

CoROLLARY. Under the hypotheses of Theorem 2,

((n+ D@ =),y

0.2

where X stands for a rv normal (0, 1), and the convergence is in distribution.

4. Maximum likelihood estimation. In some situations we may have a richer
sample. We may know {Z,,j =0, 1,2,.-..,n,k=0,1,2, ...} where Z,
represents the number of individuals of the jth generation having exactly k
direct descendants. With respect to this sample Harris (1948) showed that
pi= (X" Z;)(Zy+ - - - + Z,) is the maximum estimator for p,,i = 0,1,2, .. ..
Thus the maximum likelihood estimator for ¢%, say é,%, will be Y 57, (k — m,)%p,
when the mean is unknown.

The following theorem suggests that this estimator would perform better than
the one given in Section 3. (This is only natural since it uses more information.)

Let 4 be the set of non-extinction of the process, i.e. 4 = (»: Z,(w) > 0,
k=1,2,...}.
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Suppose m > 1 (p, need not be zero). Then P(4) > 0 and P,(+) = P(-|A) is
well defined. Put S(w) = P, (W < w), where W is the almost sure limit of the
martingale {Z,/m"}.

THEOREM 4. Assume m > 1, 0 < 6? < oo, and E(Z) < +oo. Then for any
probability measure Q absolutely continuous with respect to P,

v (0.2 — )Zy + - - +Zn)& ——) N R
M © { ' (Var (Z; — m)*)? = x} ®E) "

and

2 0 {w: (G "(2} ;rJ(rZ:”_me');); +m) x} — §& D(x(w?) dS(w)
with ®(x) = 1/(2x)t §=., e~42 dt.

Furthermore, the conclusion of the theorem remains valid if Q(+) is replaced by
P(+|Z,,; > 0).

ProOOF. As, by Theorem 3.1 of [3],

P, {w: (Zot - + 2 iy () — m) < x} - D(x),
ag

it follows that |¢,> — S1v, (k — m)*3,|(Z, + - -+ + Z,)} —p, 0. So it isenough

to show that the theorem holds if 4,2 is replaced by 7., (k — m)’p,.

Put N, = Y»_, Z,; it is the number of individuals among the (1 + Z;, + --- +
Z,)-firsts, having exactly k direct descendants. With the help of a sequence of
independent rv {£,}, each distributed as Z,, it is possible to express the distri-
bution of Y ¢, (k — mN(0)/(Zy + --- + Z,), as that of > lff1++2a (§(w) —
my>(Zy + -+ + Z,), w€ A.

Also (Zy+ --- + Z))J1 +m + ... + m*)— Wa.s. (see[5]) and P(W > 0) =
P(A) so that P(« | W > 0) = P,(-). The conclusion follows by the results of [3]
(namely by Theorem 1, Theorem 2, and the lemma of Section 2).
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