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RESISTANCE OF BALANCED INCOMPLETE BLOCK DESIGNS

By BERNARD M. MosT
The University of Texas

Hedayat and John (1974) studied the case of resistance of a balanced
incomplete block design (BIBD) to the removal of one treatment. They
showed that a necessary and sufficient condition for a BIBD to be resistant
(that is, retain its variance balance) upon removal of a single treatment is
that the two proper subdesigns created by this removal be BIBDs. Herein
their results on the structure of resistant BIBDs are generalized and the
relationship of such designs to z-designs (which are of interest in combi-
natorial theory) is shown. The main result is a structure theorem which
states that a BIBD in v treatments and & plots per block is resistant to the
removal of any subset of a specific set of  treatments, n < k < v, if and
only if all of the 2* proper subdesigns formed when all n treatments are
removed are BIBDs in all v — n remaining treatments. This leads to a
lower bound (of 2#(v — 1)) on the number of blocks required for fully locally
resistant BIBDs which are not essentially trivial. Examples of resistant
designs are given.

1. Preliminaries. In dealing with block designs we assume the homoscedastic
linear additive fixed-effects model and the basic definitions, notation, and intro-
ductory lemmas of Sections 1 and 2 of Hedayat and John (1974). All designs
- considered here are connected so that we may use the coefficient matrix, C, to
characterize variance balance in a block design, D (see Rao (1958), Atiqullah
(1961)).

LEMMA 1.1. If D is connected then it is variance balanced if and only if C is of
the form C = ¢,1 + ¢,J, c, is a scalar, 1 the identity matrix and J a matrix of ones.

A binary design (the only kind we consider), D, in v treatments and b blocks,
may be looked upon as the union of proper subdesigns D,, ---, D , ¢ < b, and
the elements of C may be written

1,1 o= F. — q.__ ____ri(j) ; . = — '1._ __—.Xh"(]) .
( ) cu i J=1 k(]) chz ZJ—I k(])
hi=1,2, eV, £

where ¢ is the number of proper subdesigns considered, and for subdesign D;,
we let (), k(j), and 4,,(j) (the pairing parameter for treatments # and i) denote,
respectively, the number of replications of treatment i, the number of plots per
block, and the number of blocks in which treatments % and i both appear.

2. Definition of and notation for resistance of BIBDs. Let D be a BIBD (v,
b, r, k, A) on a set, Q, of v treatments.
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”

Let S be a subset of Q. We make the following definitions (where “=" is
read “is defined to mean”):

D is LR (S) = The block design remaining after all experimental units cor-
responding to the treatments in S are removed is variance balanced; in this case
we say D is locally resistant to S.

D is LR (s) = D is locally resistant of degree s.
= There exists at least one subset of Q of cardinality s to which
D is locally resistant. We may specify such a subset explicitly in which case
we would write D is LR (x,, x,, - - -, x,) where {x,, x,, - - -, x,} is a subset of Q.

D is FLR (x, x,, - - -, x,) = D is fully locally resistant to (x,, - - -, X,).
= D is LR (all subsets of {x,, - - -, x,}).

D is FLR (n) = D is fully locally resistant of degree n.
= D is FLR (some treatment set of size n).

DisFLR (s: x,, - - -, x,) = D is fully locally resistant to any subset of {x,, - - -,
x,} of size less than or equal to s, s < n.

D is FGR (m) = D is fully globally resistant of degree m.
= D is FLR (all subsets of Q of cardinality less than or equal
to m).

3. Notation regarding subdesigns. Let D be a BIBD with parameters v, b, r,
k, 2 whose treatments are denoted by #, 1, t;, -+, ¢, ---,t,. When a subset
consisting of s(s < v) treatments is removed, this subset will be labelled x,,
X, - -+, X,. For the moment, we imagine the treatments being removed succes-
sively starting with x,. Collecting those blocks of D which contain x, and those
which do not, we have two subdesigns; if x, is removed from each block in
which it appears, we are left with two proper subdesigns of D. Removal of x,
from each of these subdesigns results in formation of four subdesigns. Con-
tinuing in this manner we see that when s treatments are removed there are 2
proper subdesigns “formed” (with block sizes ranging from max (k — s, 0) to k
plots per block).

We denote by Z, the collection of subdesigns “created” or formed by the
removal of treatments x,, --., x,. THe notation D(s: %;, £,, - - -, X,) refers to a
proper subdesign of the design formed when s treatments, namely x,, x,, - - -, x,,
are removed from D; further we uniquely identify one of these subdesigns by
specifying those blocks of D which, when truncated (that is, when the s treat-
ments are removed), comprise the blocks of the desired subdesign. The sub-
designs of interest may be defined in terms of which of the s treatments had to
be deleted from the blocks of D in order to form the blocks of this subdesign.

We set X; = %; when x; is present, and ¥; = x; when x; is not present in the
original blocks of D prior to their removal when forming the subdesigns.

We may simplify the above notation by arranging the individual subdesigns
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TABLE 3.1
Standard order Subdesign full Contains all blocks originally
name designation having the treatments indicated*
D@3, 1) D(3:123) X3 Xz X1
D(@3,2) D(3:123) X2 X1
D@3, 3) D(3:123) X3 X1
D(3, 4) D(3:123) X1
D(3,5) D3:123) X3 X2
D3, 6) D3:123) X2
D(3,7) D(3:123) X
D(3,8) D(3:123)

* Note that these treatments are then removed in forming the subdesigns.

comprising 7, in a standard order and denoting them by D(s, 1), D(s, 2), - - -,
D(s, 2*). The standard ordering is exemplified in Table 3.1 for the case when
s = 3 and the special subcase when the treatments removed are x,, x,, and x;.
For example, D(3, 1) consists of just those blocks of D which contained treat-
ments x;, x, and x, but with these three treatments removed.

Corresponding notation may be used to specify the parameters of a specific
subdesign of D. Thus, using the standard order notation, the number of blocks
in D(s, ), 1 £ j < 2¢, will be denoted &(s, j); the number of plots per block in
D(s, j) will be denoted k(s, j); the number of replications of treatment ; in D(s, j)
will be denoted r(s, j); the pairing parameter of treatments 4 and i in D(s, j)
will be denoted 4,,(s, ). (All of the subdesigns of D to be considered will be
proper and binary.)

4. The structure theorem.

THEOREM 4.1 (structure theorem). A BIBD, D, with k plots per block, is
FLR (x,, - -+, x,), n < k, if and only if all subdesigns formed by removal of each
subset of x,, - - -, x, are BIBDs in all of the remaining treatments (but generally with
differing block sizes).

Theorem 4.1 focuses on the structure of those BIBDs whose resistance prop-
erties would seem to be of greatest significance in actual experimentation where
any element of a certain set of treatments is potentially lethal, while the subset
of these treatments which will actually be lethal is not known a priori; in general,
loss of experimental units upsets the balance of the experiment in addition to
complicating the analysis.

The case when n > k requires more groundwork and is covered in Theorem
6.6.

5. Proof of structure theorem and corollaries. For n = 1, the theorem has
been proved by Hedayat and John (1974). We proceed by complete induction
on the size of the subset removed using Lemma 1.1 to test for balance.

Assume the theorem to be true when the size of the subset removed is s — 1
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or less, s < n. Thusourinduction hypothesis, H, is: Dis FLR (s — 1:x,--4,x,)
if and only if all subdesigns formed by the removal of any subset of x;, - -, x,
of size < s — 1 are BIBDs. We must show that this implies: D is FLR (s:
x;, - -+, x,) if and only if all designs formed by the removal of any subset of
{x;, -+, X,} of size < s are BIBDs. We are considering the removal of subsets
of {x,, - - -, x,} of size s which may be thought of as subsets of size s — 1 with
one other treatment adjoined. By relabelling and rearrangement of blocks we
may, without loss of generality, focus on the subset {x,,- - -, x,}; that is, the proof
will be the same for any subset of size s. In this light and because of our in-
duction hypothesis, H, we may rephrase our goal as follows: Assuming D is

FLR (s — 1: x;, X,, - - -, x,) if and only if all subdesigns formed by the removal
of any subset of x, - -+, x, of size < s — 1 are BIBDs, we wish to show D is
LR (x,, - -, x,) if and only if all designs formed by the removal of x;, - -, x,

are BIBDs. By the way in which we have defined the subdesigns of interest in
terms of the original BIBD D, each of these subdesigns is binary and proper.
Thus, for any two treatments 4 and i, our interest will center on the parameters
Au(s, j) and r(s, j). If, for design D(s, j), the parameters 4,,(s, j) and r,(s, j) can
be shown to be independent of 4, i and i respectively, then we may conclude
that D(s, j) is a BIBD.

We shall focus on the parameters 4,,(s, j) wherej = 1,2, ..., 2°. (A parallel
argument holds when the parameters ry(s, j) are used in place of 4,(s, j); in fact,
except for a minor change in (5.5), we may identify r (s, j) with “2,(s, j)”).
We may relate these parameters to those of the subdesigns formed by removal
of subsets of size s — 1 or less. For example, when s = 4, we may consider the
subdesign D(2: 2, 3) formed when only treatments 2 and 3 are removed as the
union of four subdesigns. Using the notation introduced earlier, we have

D2:23)=D(4:1234; +1, +4) 4 D(4: 1234; +1)
4+ D(4:123%; 14) + D(4: 1234)

where the notation “+4 1, +4” indicates that treatments 1 and 4 have been ap-
pended to each block of the design; the notations “+1” and “+4” are defined
similarly. Then, restricting / and i to be distinct treatments which are not
among those whose removal is considered we have

1,42:23) = 2,4, 1) + 444, 2) + 4,44, 9) + A4, 10) .

Since similar equations may be written for any other pair of removed treat-
ments or, in fact, for any subset of size less than or equal to 4 — 1 = 3, the
“trick” lies in selecting a correct (linearly independent) subset of these relations
for consideration. In general, just such a linearly independent subset is given
by the matrix equation (5.1):

(5.1) M, 2,(s) = A (S s — 1)
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where
24(8) = (Ai(85 1)s A48, 2), -+ -, Api(s, 27))
L(Es—1D=[440:9,4(:5—=1),2,,2:5s5s—1), ---,
(s —1:s—=T,s=2,..., )]
The matrix M, is defined by four submatrices as in equation 5.2:
(5.2) Ms — I:Msl MaZ] .
Ma3 Mu
These submatrices are defined recursively as follows, forj =1, --.,s — 1,
Ml = [Mu M12] = [1 1]
M;,,, = M; with a row added consisting of a 1 followed by
(5.3) 2i — 1 zeros
Mj+1,2 = Mj+1,1
M =M;

M, , = 01, thatis,a (27 — 1) X 27 matrix of zeroes.

For demonstration purposes, when s = 3, Equation (5.1) becomes

(5.4) M;2,,(3) = A (= 2)

where
111 111 1 17
10101010
11001100 ,

M |1 0001000 :[_lfffz_gﬂf}

11110000 M, | M.,
10100000
11 0 0/0 0 0 0]

Equation (5.1) provides a set of 2° — 1 linearly independent equations in the
2* parameters 2,5, 1), 4,5, 2), - - -, 4,(5, 2°). Recalling equation (1.1) to de-
scribe the (A, i) entry of the coefficient matrix corresponding to the design re-

maining after removal of the treatments {x,, x,, - - -, x,}, we have relation (5.5):
8 A »(S,’j)

5.5 2~_ Zhi\T> J) = —C;; .

e sy T

Appending this equation to equation (5.1), we obtain:
M, 2(s) = 4 (S s — 1) = [Zhi(é 5 — 1)]
—Chi
where
) M
M= 1 1
k(s, 1) k(s, 2) e k(s’ 25)
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For s < n we have:

(i) From equation (5.6), 4,,(s) is constant if and only if fz,“.(g s—1)is
constant since rank (1\7[,) = 2° (see Lemma 5.7).

(ii) Saying that 2,,(s) (and, using a parallel argument, r(s)) is a constant
independent of 4 and i is equivalent to saying that each subdesign in <7, is a
BIBD.

(iii) By the definition of A, (£s5—1), A (£ s — 1) is constant if and only
if 4,;(< s — 1) is constant and c,; is constant.

(iv) 4, (< s — 1) is constant if and only if D is FLR (s — 1: x;, x5, - - -, X,)
by the induction assumption.

(V) c;; is constant if and only if D is LR (x, X,, - - -, X,) by Lemma 1.1.

Combining these, we have:

A,(s) isconstantifand onlyif D is FLR(s: x, x, -+, X,)
which is the desired result.

LEMMA 5.7. For s < k, the rank of M, is 2°.

ProOOF. Denote by E, the determinant of M We wish to show E, q& 0; we
will, in fact, show E, > 0. Because of the pattern of elements in M,, M may
by elementary column operations be reduced (see Most (1973)) to an upper
triangular matrix with all diagonal elements being one except for the entry in
the last row. This entry, and hence E, is given by (5.8).

1
5.8 E, = — 1y ( >___~
(5.8) 3 (=1 () =5
To show E, > 0, consider advancing (mth order) finite differences of a positive

real valued function f(x) with unit, “1,” incrementation of x, A™f(x), m =0,
1,2, ..., defined recursively as follows:

ASf(x) = ASf(x) = f(%)
Af(x) = fix + 1) — f(%)
A(x) = Adf(x + 1) — AJf(x) = fix + 2) = 2f(x + 1) + f(x)

AMf(x) = Am(x 4 1) — AP(x) = Do (= DI (x +m — ).
When f(x) = (@ + x)™!, x = 0, m = 5, a = k — s with k an integer greater than
s, we have, after some reparametrization (namely, in E,, note that (;) = (,,);
let u = s — j; then let # = j and compare term by term with A;f(0)),

(5.9) E, = (—1y7A(0) -
But, by repeated use of the mean value theorem of calculus, we may write
(5.10) Af(x) = f@(x + &,) for some &, in (0, 5)

(valid for all x > —1 since f(x) is infinitely differentiable for x > —1) where
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the superscript (s) represents the sth order derivative. Using x = 0 in (5.10)
and substituting in (5.9) we have

(5.11) E, = (—1)yA2f(0) = s! (k — s + &,)~¢+D forsome &, in (0, s).

Recalling k > s > 0, we conclude E, > 0, which completes the proof of Lemma
5.7. 0

CoROLLARY 5.12 (to structure theorem). BIBD D in k plots per block is FLR (x,,
Xy o+ 0y X,), B < k, if and only if for each s < n, every (s + 2)-tuple containing
any subset of x,, - - -, x, of size s appears in the same number of blocks of D.

Proor. The condition on the (s + 2)-tuples is clearly equivalent to requiring
that all of the subdesigns formed when any subset of x,, - - -, x, is removed have
the same pairing parameter, 1,;, for any two remaining treatments 4 and i and
that these subdesigns are equireplicate; these subdesigns are thus BIBDs. Hence
the result follows immediately from the Structure Theorem (4.1). []

6. Essentially trivial designs and degeneracy. An unreduced (or trivial)
block design for v treatments in blocks of size k (k < v) is obtained by taking as
blocks all possible combinations of k out of v treatments; we will consider mul-
tiples of unreduced designs to be unreduced designs. The resultant BIBD has
parameters

v, ¢(?), c(32D), k, c(322) , ¢ a positive integer.

We shall say that a BIBD is essentially trivial if its parameters are identical to
those of an unreduced design. (We note that while the combinatorial properties
of trivial (unreduced) designs and essentially trivial designs may differ consider-
ably, the two are identical insofar as analysis of experimental data using our
assumed model is concerned.)

To illustrate, consider the following BIBD: ABE, CDE, ACF, BDF, ADG,
BCG, EFG with parameters (v, b, r, k, ) = (7,7, 3, 3, 1). This design is not
trivial. Yet, if we form a new design, P, by uniting five copies of this one, the
resultant design has parameters (7, 35, 15, 3, 5) exactly those of a trivial design
for seven treatments in blocks of size three; here, P is essentially trivial but not
trivial. Obviously, from the definition, a trivial design is also essentially trivial.

We shall say that a BIBD is degenerate upon removal of p treatments if for some
g, 1 £ ¢ < p, removal of ¢ treatments results in making at least one of the 2¢
proper subdesigns formed a complete block design in all of the unremoved treat-
ments. (In this context, a void design is considered to be complete.) Clearly,
degeneracy upon removal of p treatments implies degeneracy upon removal of
p’ > p treatments. Degeneracy, upon removal of n treatments, occurs if (1) less
than 2" nonvoid subdesigns are formed, and/or (2) some of the subdesigns
formed are complete block designs which may be considered as a special type
of BIBD but which need not satisfy Fisher’s inequality. Both of these possi-
bilities are exemplified in the following unreduced design, U, for five treatments
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in blocks of size three: ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE.
This design is FGR (3) and hence is certainly FLR (4, B, C). Yet, when 4 and
Bare removed we have CDE as one of the subdesigns formed (situation (2) above)
and when 4, B, and C are removed, D(3, 1) is void (situation (1)).

The following lemmas prepare us for the proofs of Theorems 6.6 and 7.1.
For Lemmas 6.1 through 6.3, let 4 be an LR (x) BIBD and let 4, and 4, be the
BIBDs formed when x is removed from A4 (see Figure 6.1). It is readily shown
(Most (1973), Appendix C) that if the parameters of any one of designs 4, 4,,
and 4, are known, then those of the other two are determined; the equations for
computing these parameters will be referred to below as the “LR (x) relations”;
for example, we have: If 4 is (v,b,r,k, 4), then 4, is (v — 1,r, 4, k — 1,
Ak —2)/(v —2))and A,is (v — 1, b —r,r — A, k, (r — A)(k — 1)/(v — 2)).

LEMMA 6.1. If A, is complete in v treatments (and not void) then A, is trivial in
v treatments, v — 1 plots per block.

(Note that since 4, has one less plot per block than A4, and both subdesigns
contain the same treatments, it would be impossible for 4, to be complete unless
A, were void.)

PRrOOF. A, is complete implies that v, = k,. In terms of the parameters of A,
this may be stated v, = k, + 1 or k, = v, — 1 so that the blocks of 4, are formed
by sets of all but one of the treatments. Identifying each block by the treatment
it lacks, we see that b, = v, = (,1,) = the number of combinations of v, — 1
out of v, treatments, yielding a trivial design. []

In the proofs of the next two lemmas we consider only essentially trivial de-
signs with the smallest possible number of blocks, (}); the proofs still go through
for finite unions of such designs.

LEMMA 6.2. A, is essentially trivial in v treatments and (k — 1) plots if and only
if A, is essentially trivial in v treatments and k plots.

PRrOOF. Suppose 4, is essentially trivial in v treatments, k plots. This implies
that b, = () and r, = b,kjv = (k/v)(}). We must show that b, = (,*,) (that is,
that the number of blocks in A4, is equal to that of a trivial design). Now the
LR (x) relations imply b, = r,v/(v — k 4+ 1) = (k/v)(Q)v/(v — k + 1) = (Dk/(v —
(k — 1)) = (). '

On the other hand, suppose 4, is essentially trivial in v treatments, k — 1
plots. This implies that b, = (,*,) and r, = (k — 1)/v(,?,). We must show that
b, = (;). The LR (x) relations imply that

b, = V(b — ) — V(%) — ((k — D/v)(v/(k — 1))
k, + 1 k

- )-0 n

LEMMA 6.3. A is essentially trivial if and only if A, and A, are essentially trivial.
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Proor. Let the parameters of 4 be (v, b, r, k, 1). Suppose A4 is essentially
trivial. Then b = (}) and r = (}Z}). By the LR (x) relations we have b, = r =
»~]) so that A, is essentially trivial, and b, = b — r = (}) — (}21) = (*;") so that
A, is essentially trivial. On the other hand, suppose 4, and 4, are essentially
trivial. Then b, = (}=]) and b, = (*;"). Hence b = b, + b, = (}) so that A is
essentially trivial. [T

LemMA 6.4. If BIBD D is FLR (n) with k plots per block and is degenerate upon
removal of n treatments, n < k, then D is essentially trivial.

ProoF. Suppose the smallest integer for which D is degenerate is p. This
means that when any p — 1 treatments of the » to which D is FLR are removed
there are 2?~! nonvoid, noncomplete BIBDs formed; also, when a pth treatment
is removed, one of the 27 subdesigns formed is degenerate (that is, either void
or complete in v — p treatments). Denote this degenerate design by B*. B*
must be a subdesign of one design, say B, of the 27~! nonvoid, noncomplete
designs.

We observe that B* cannot be void, else we would have the situation depicted
in Figure 6.2. That is, B* void would imply that BIBD B contained variety x,
in each block which would imply that B were complete, a possibility ruled out
by our definition of p. Thus, B* is complete and not void.

By Lemma 6.1, B is trivial and, a fortiori, essentially trivial. Now, either
B = D, in which case we are done, or B is embedded in H, a subdesign of D,
in the manner depicted in Figure 6.3a (case a) or Figure 6.3b (case b). (This
embedding arises as a consequence of the formation of B when the (p — I)th
treatment is removed.) In either case, by Lemmas 6.2 and 6.3, H is essentially
trivial. If b,, b are the number of blocks in H and B respectively, we observe
that b, is strictly greater than b; this is so because B’ cannot be void, again by
our definition of p.

Now we repeat our reasoning. Either H = D or H is embedded in D in one
of the two possible ways illustrated in Figures 6.3a and 6.3b for the case of
B’s embedding in H which is contained in D. Thus, H is contained in an es-
sentially trivial design, say J, having a number of blocks strictly greater than
that of H. We continue in this way to consider larger and larger (in number
of blocks) subdesigns of D. Since D is of finite block size, the process terminates
at which point the essentially trivial design, analogous to H or J, must be D
itself. []

LEMMA 6.5. Let D be a BIBD with k plots per block which is FLR (n), n < k.
If any one of the subdesigns formed when q < n treatments are removed is essentially
trivial, then D is essentially trivial.

PrOOF. Same as for Lemma 6.4 after the point at which we concluded that
subdesign B is essentially trivial. []

We may now complete the structural description of FLR (n) BIBDs begun in
the Structure Theorem (4.1) by considering the case n > k:
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THEOREM 6.6. If BIBD D with k plots per block is FLR (n), n = k, then D is
essentially trivial.

Proor. Observe that if D is degenerate upon removal of kK — 1 treatments
(and since D is FLR (k) implies D is FLR (k — 1)) then (by Lemma 6.4) D is
essentially trivial and we are done. Hence, assume that D is not degenerate
upon removal of x,, ---, x,_; and, therefore, that this removal results in 2*~*
nonvoid, noncomplete BIBD subdesigns being formed which contain all of the
remaining treatments. Specifically, D(k — 1, 2) is a BIBD with two plots per
block which is readily shown to be essentially trivial. Hence, by Lemma 6.5,
D is essentially trivial. []

7. Further structure results.

THEOREM 7.1. Let D be a FLR (n) BIBD with parameters (v, b, r, k, 2). Then
either

(i) b =2 — n)or
(ii) D is an essentially trivial design.

Proor. If n = k, D is essentially trivial by Theorem 6.6; hence, consider
below only the case n < k. If D is not degenerate upon removal of n treatments,
then Fisher’s inequality (that is, the number of blocks is at least as great as the
number of treatments) and Theorem 4.1 imply (i) of Theorem 7.1. To complete
the proof, it suffices to prove that degeneracy occurs only in the case of an es-
sentially trivial design; but this is exactly the statement of Lemma 6.4. []

For the essentially trivial FLR (2) design, U, given near the beginning of Sec-
tion 6, b = 10 while 2*(v — n) is 12 for n = 2.

The following theorem describes the structure of an FLR (n) design which is
not essentially trivial and in which the lower bound on the number of blocks
of Theorem 4.2 is actually attained.

THEOREM 7.2. If Disan FLR (n) BIBD (v,b,r,k, ), n < k, with b = 2"(v — n)
and D is not essentially trivial, then each of the 2™ proper subdesigns formed when
the n treatments to which D is resistant are removed is a symmetric BIBD inv — n
treatments.

Proor. By hypothesis, b = Y22, b(n,'i) = 2*(v — n). Thusifb(n,j) >v —n
for some j then b(n, k) < v — nforsome k, k # j, k,j = 1,2, ...,2". However,
since by Lemma 6.4 each subdesign is a nonvoid BIBD in v — n treatments,
b(n, k) < v — n violates Fisher’s inequality. Therefore b(n, j) = v — n for each
jj=1,---,2% [

FGR (n) designs are intimately related to s-designs (or tactical configurations,
Definition 4.1 in Hedayat and John (1974)) as follows:

THEOREM 7.3. A BIBD, D, with k plots per block is FGR (n), n < k, if and
only if D is an (n + 2)-design.
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Proor. Follows directly from Corollary 5.12 and the definition of a z-design. 0

Some of the consequences of Theorem 7.3 are discussed in Most (1973).

8. Existence and construction of BIBDs resistant to more than one treatment.
Hedayat and John (1974) present a significant number of resistant designs of
degree one. Aside from a few examples of strictly LR (1) designs, the examples
they give are FGR (1) designs which, by Theorem 7.3, are t-designs with 7 = 3.
When we consider resistance of degree two or more, we leave behind the rela-
tively simple world in which the only types of resistance to be considered are
LR (1) and GR (1). If we consider the potential removal of several, say n, treat-
ments from a BIBD, the types of resistance to be considered increase rapidly.
We may consider resistance to any subset of s treatments, s < n; again, local
as well as global resistance are topics of interest. In addition, it is possible to
consider sequential resistance.

By Theorem 7.3, the existence of an (n + 2)-design implies the existence of
an FGR (n) design which is, a fortiori, an FLR (n) design. Since infinite classes
of nontrivial s-designs are known to exist for r = 3, 4, and 5 (see Alltop 1969,
1971, 1972), we may conclude that infinite classes of fully globally resistant
BIBD:s of degrees 1, 2, and 3 exist. Unfortunately, to our knowledge, no non-
trivial z-designs for ¢ = 6 have yet been found. Existence of a nontrivial t-design
for “high” values of ¢ necessitates finding (perhaps not explicitly) many non-
trivial BIBDs which “fit” together in just the right way—a very difficult task in
general. Such considerations lead us to anticipate that the nonexistence of cer-
tain BIBDs implies the nonexistence of certain ¢-designs—a topic which we shall
not pursue further at this time.

We now state two existence theorems for fully locally resistant BIBDs of
degree 2; proofs may be found in Most (1973).

THEOREM 8.1. Let A be a BIBD which is resistant to the removal of a single
treatment, y. Further assume that the parameters of A may be written (2k + 1,
m(2k + 1), mk, k, m(k — 1)/2), for positive integers m, k. Then, there exists an
FLR (2) BIBD with parameters (2(k + 1), 2m(2k + 1), m(2k + 1), k + 1, mk).

Theorem 8.1 may be considered as a means of extending a design in v treat-
ments which is resistant to one treatment to a design in v + 1 treatments which
is resistant to two treatments. Alltop (1972, page 393) proves an Extension
Theorem for z-designs which is similar in form to Theorem 8.1. In our notation,
Alltop’s Extension Theorem states that given a t — (2k + 1, k, ) design, with
t even, there existsa (r + 1) — (2k + 2, k + 1, pz) design. Thus, Alltop, starting
with a r-design of special form, extends it toa (¢ + I)-design. We, starting with
an FLR (1) design of special form extend it to an FLR (2) design. For certain
parameter values, Theorem 8.1 expresses a special case of Alltop’s theorem.
However, Theorem 8.1 provides an extension of FLR (1) designs which are not
also FGR (1) designs (and hence not covered in Alltop’s theorem) to FLR (2)
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Overall BIBD: (12, 66, 33, 6, 15): FLR (x,, x,)

We describe the design in terms of the subdesigns formed when x, and
X, are removed.

D(2, 1) is the following BIBD (10, 15, 6, 4, 2):

1 2 3 4 1 6 8 10 3 59 10
1 25 6 2 36 9 3 6 7 10
1 3 7 8 2 4 7 10 345 8
1 4 9 10 2 5 8 10 4 5 6 7
1 57 9 2 7 8 9 4 6 8 9

D(2,2) and D(2, 3) are each the following BIBD (10, 18, 9, 5, 4):

1 2 3 4 5 1 4 56 10 25 6 8 10

1 2 3 6 7 1 48 9 10 26 7 9 10

1 2 4 6 9 157 9 10 346 7 9

125 7 8 2 3 4 8 10 345 7 9

1 3 6 8 9 2 3509 10 3 56 8 9

1 378 10 2478 9 4 56 7 8

D(2, 4) is the following BIBD (10, 15, 9, 6, 5):

1 2 45 8 9 2 3 46 8 10 1 45 7 8 10
56 7 8 9 10 1 2 6 7 9 10 1 23 5 7 10
2 45 6 9 10 1 356 8 9 2356 7 38
1 2 46 7 8 1 2 3 8 9 10 1 3 45 6 10
3478 9 10 23457 9 1 346 7 9

FiG. 8.1. (Source: Hedayat and John (1974)).

designs. An example of such an FLR (1) design corresponding to 4 of Theorem
8.1 is known to exist for k = 5, m = 3. The corresponding FLR (2) design is
given in Figure 8.1. Design A of Theorem 8.1 is a BIBD (11, 33, 15, 5, 6) formed
by uniting D(2, 1) and D(2, 2) and adjoining an additional treatment to each
block of D(2, 1).

Another extension theorem of the same genre as the two discussed above is
given by Hedayat and John (1974) (their Theorem 5.1). Their theorem states
that starting with a BIBD (v, b, r, k, 2) such that b + 21 = 3r we may construct
a GR (1) design with parameters (v + 1, 28, b, (v + 1)/2, r).

To our knowledge, the three extension theorems mentioned above were in-
dependently motivated. Yet, the basic rationale in all cases was the same: Unite
a design with its complement and add a treatment to each block of the original
design; then, see what conditions are needed on the original design parameters
to make the resultant design an “extension” of the original design.

THEOREM 8.2. If there exists a BIBD, D(2, 1), with parameters (v, b, r, k, 2)
such that b 4 22 = 3r and a second BIBD, D(2, 4), with parameters (v, v(b —
N —k —Dj(k +2)(k + 1), (b — r)(v — k — 1)/(k + ),k +2,b—2r+42
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then there exists an FLR (2) design for v + 2 varieties in blocks of size k + 2 with
(BIBD) pairing parameter b.

At least ten FLR (2) designs have been found corresponding to Theorem 8.2.
These are described precisely in Most (1973) which also contains a variety of
examples of other FLR (2) designs. To illustrate, we describe an FLR (x,, x,)
BIBD (11, 66, 36, 6, 18) in terms of the subdesigns formed when treatments x,
and x, are removed:

D(2, 1) is the following BIBD (9, 18, 8, 4, 3):

1 2 3 4 1 4 8 9 2 5 6 8
1 2 5 6 1 5709 3 589
1 2 7 8 2 38 9 4 6 7 9
1 3 5 7 2 45 09 3 45 6
1 4 6 8 2 6 79 3 6 7 8
1 3 6 9 2 3 4 7 4 5 7 8

D(2, 2) and D(2, 3) are each the following BIBD (9, 18, 10, §, 5):

1 3 6 7 8 1 3 4 709 1 3 4 5 8
2 3 4 6 8 1 2 3 6 9 1 2 4 6 7
2 4 5 7 8 1 4 5 6 7 1 2 3 5 8
56 7 809 1 2 4 5 9 2 3 5 79
3456 9 34 7 8 9 1 2 7 8 9
2 4 6 8 9 2 3 5 6 7 1 56 8 9

D(2, 4) is the following BIBD (9, 12, 8, 6, 5):
124578 125679 1356738 456789
2356809 134589 124689 123456
1346709 234678 2345179 123789
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