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CHARACTERIZATIONS OF PREDICTION SUFFICIENCY
(ADEQUACY) IN TERMS OF RISK FUNCTIONS

By KE1 TAKEUCHI AND MASAFUMI AKAHIRA
University of Tokyo and University of Electro-Communications

Prediction sufficiency (adequacy), as it is usually defined in terms of
conditional expectations, does imply ‘‘real’’ prediction sufficiencys; i.e. suf-
ficiency in terms of risk functions. The converse holds provided we permit
the loss to depend on the unknown parameter. This is no longer true if
we insist on loss functions which do not involve the unknown parameter.
Conditional independence still holds but ordinary sufficiency may fail. If,
however, we require equivalence of risk functions, then ordinary sufficiency
and, consequently, prediction sufficiency follows.

1. Introduction. It has been shown by Bahadur [2] that sufficiency as defined
in terms of conditional expectations, under regularity conditions, implies “real
sufficiency” i.e. sufficiency in terms of risk functions. Furthermore it follows
from Theorem 11.3 in Bahadur’s paper [1] that prediction sufficiency is equiv-
alent to ordinary sufficiency w.r.t. a larger class of probability measures. One
may therefore expect similar results to hold for prediction sufficiency (adequacy)
as well. In the case of prediction problems it may be of interest to consider
loss functions which depend only on the decision to be made and the quantity
to be predicted. If we insist on this restriction, then prediction sufficiency in
terms of risk functions no longer implies prediction sufficiency as it is defined
in terms of conditional expectations. Conditional independence holds but ordi-
nary sufficiency may fail. It will, however, be shown that equivalence of risk
functions implies ordinary sufficiency and consequently prediction sufficiency.
(One of the authors proved this in an earlier work [7].)

We will, essentially, use the framework of Skibinsky [6]. The notion of ade-
quacy in Skibinsky’s paper is, however, replaced by the notion of prediction
sufficiency.

2. Theorems. We shall assume that we are given a model consisting of a
sample space (27, /") and a family {P,: 6 € O} of probability measures on %"
A sub c-algebra <Z of " summarizes what can and what can not be observed.
Similarily, a sub c-algebra & of .o describes what we are interested in pre-
dicting. Finally, we are given a sub g-algebra <2, of <% and our problem is to
decide if anything is lost by basing our predictions on <Z, rather than 7.

The prediction problem is assumed to be completely described by a decision
space (T, .7"), i.e. a measurable space and a loss function L from © x 27 x T
to [0, oo[. It will always be assumed that L as a function on 2”7 x T for given
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0 €0 is € x .7~ measurable. This implies that the loss does not depend on all
of x € 22, only on the part of x which is to be predicted.

A decision rule  will here be defined as a Markov kernel d(S|x): S€ .7,
x € &2 which is <% measurable when § is fixed and a probability measure on
7~ when x is fixed.

If 6 is a decision rule then its performance characteristic z,(+ |6); 6 € © may
be defined by defining—for each ¢ — p,(+|6) as the probability measure on
& x 7 defined by

#:(C x §10) = 15 (S| x)Py(dx) .
The risk function r,(0); @ € © of a decision rule J is given by:
ry(0) = § [§ Ly(x, 1)o(dt| x)]Py(dx) , 6ecO.
The risk function is determined by the loss function and the performance
characteristic through

ry(6) = § Ly dpy(+16) , 6e0.
A decision rule § will be called <%, measurable if §(S|+) is <%, measurable
for each S.

DEFINITION 1. <7 and & are conditionally independent given <7, iff
(i) P,#(C| ) = P,“(C|Z,) a.e. [P,] for all C e Z and for all # € ©.
It is shown in Loéve [5], page 351 that (i) and (ii) are equivalent:
(i) P;*(Bn C|ZB) = Py*(B| B)P,"(C| ) a-e. [Py]

for all Be < and all C e ¢ and for all 6 € ©.

We define prediction sufficiency (adequacy) and prediction sufficiency in the
wide sense as follows:

DEFINITION 2. <%, is prediction sufficient for <& w.r.t. & iff <7, is sufficient
for &£ and <& and € are conditionally independent given <Z,.

DEFINITION 3. <%, is prediction sufficient in the wide sense for <Z w.r.t. &
iff (a) &% and & are conditionally independent given <%, and (b) there exist <Z-
measurable sets B, and B, so that P,(B; U B,) = 1 for all # €©® and Py, (.| <Z,)
is independent of @ if x € B, and P§ (- | 5,) is independent of ¢ if x e B,.

In the following example we shall show that <7, is prediction sufficient in the
wide sense for <% w.r.t. & but not prediction sufficient for <& w.r.t. <.

We assume that X;, X,, - - -, X, and Y are random variables such that X, X,, - - -,
X, are independently and identically distributed as N(¢, 1) while the conditional
distribution of Y given X, X, ---, X, is N(0, 1) or N0, 1) as >}, X, > a or
2 X; < a. Let &%, &%, and & be the g-algebras induced by, respectively, (X,
X,, .-+, X,), min (a, 3}, X;) and Y. Then 7, is prediction sufficient in the wide
sense for <7 w.r.t. € but not sufficient for <.

That sufficiency alone is insufficient in prediction problems may be seen by
considering, for example, the situation where P, does not depend on ¢ and
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B, = {¢,2Z}. It is then fairly obvious that prediction of a & which is not
independent of <% should not, in general, be based on £7.,

It follows, as has been pointed out by Skibinsky [6], from Theorem 11.3 in
Bahadur [1] that <7, is prediction sufficient for & w.r.t. < if and only if &7,
is sufficient for <% w.r.t. all probability measures on <% of the form:

B N— Py(B|C),
where Ce &, 6 € © and P,(C) > 0.

In analogy with Theorem 10.2 in Bahadur [1] we get:

THEOREM 1. Suppose <Z, is prediction sufficient for &8 w.r.t. € and there exists
a regular conditional probability PZ(« | <B,) of <& given &, which does not depend
on 0. Let 6 be any decision rule from (27, &) to (T, .9") and put 6(S|x) =
§ 0(S| x")P,#(dx'| B,); Se€ T, xe Z.

Then 6 is <8, measurable and it has the same performance characteristic as 6. In
particular & and 0 have the same risk functions.

PrOOF.
#4(C x 8] 0) = §¢ 6(S| x)Py(dx) = o E7(5(S| +)| G5, dP,
— {, E*(0(S| )| i ©) dPy = {, 8(S| +) dP, = 1(C x S13).
REMARK. As is immediately seen from above, we need to allow randomized
decision rules. This is not always necessary for the subsequent discussions.

Consequences of “risk prediction sufficiency” for various classes of loss functions.
In order to show prediction sufficiency of <%, we must establish conditional in-
dependence and ordinary sufficiency. We will assume that we are given a certain
class of loss functions and that to any loss function within that class and to any
decision rule § corresponds a decision rule § which is <%, measurable and has
uniformly smaller risk than §. The problem is to decide whether this suffices
to establish conditional independence or ordinary sufficiency. It is clear that
conditional independence cannot, in general, be established by only considering
loss functions which do not depend on x. Similarly loss functions which do not
involve ¢ will, in general, be insufficient to establish ordinary sufficiency.

Conditional independence may, however, be established by considering only
loss functions which do not depend on ¢.

Similarly, and this follows from corresponding facts for sufficiency (see
Bahadur [2], Blackwell [3] and Le Cam [4]), sufficiency of <%, may be established
by considering loss functions which do not depend on x.

Conditional independence may be established by considering the two decision
problem with loss functions not depending on @ as follows:

THEOREM 2. Consider the decision space T = {0, 1} and the set of all loss func-

tions, L, of the form
Ly(x, 0) = Io(x) xeZ,0e0,

Ly(x, 1) = plye(x) , XeZ,0e€0,
where pc 10, 1[ and Ce &
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Suppose that to each decision rule d and to each loss function L, of the above form,
there corresponds a <%, measurable decision rule 6 so that

r3(0) = r:(0) fe®.
Then <% and € are conditionally independent given <7,.
Before proving the theorem a few remarks may be in order.

ReMARK 1. It follows from the proofs that we may restrict attention to non-
randomized decision rules.

REMARK 2. The proofs imply also that much smaller sets of loss functions
will do. We may, for example, restrict C to a r-system generating &

REMARK 3. The parameter space O does not play any role in this theorem.
We may—and shall—in the proof assume that © consists of a single point.
Conditional independence is, in this situation, equivalent to prediction
sufficiency.

Proor oF THE THEOREM. We may, by Remark 3, omit the subscript 6.
Furthermore a decision rule  may be identified with the critical function
x O— 0(1|x). The risk may then be written:

H3) = § L(+, 0)dP + §[L(+, 1) — L(+, 0)]6 dP
_ . P _
—SL(,0>dP+<p+1>s(erl I,) 0 dp

— {L(-,0)dP + (p + 1)5[;%— PﬂCL@’)J&dP

Z L, 0P — (p+ 1§ P(ClD) — P ap,
p+1
where “="is obtained iff 6 = 0 a.e. or 6 = 1 a.e. as P¥(C|<Z) < p/(p + 1) or
PY(C| ) > pl(p + ).

The same argument applied to <%, implies, by the assumption of the theorem,
that the minimizing ¢ may be chosen .£%,-measurable and such that § = 0 a.e.
or 6 =1 a.e. as P(C| &) < p/(p + 1) or P¥(C| ZB) > p/(p + 1). It follows
that the event [P¥(C| 7)) < p/(p + 1)] and the event [P¥(C|<Z) < p/(p + 1)]
are equivalent provided P¥(C| %) + p/(p + 1) a.e. and P*(C| <Z,) + p/(p + 1)
a.e. This implies that the random variables P¥(C| <) and P¥(C|<Z,) have the
same distribution. Hence, since P¥(C|Z,)) = E“(P(C| %) | &,): P*(C| &) =
P¥(C| <) a.e. It follows that &% and < are conditionally independent given
B,.

4

ReMARK. This form of the proof was suggested by one of the referees.

A criterion based on least squares prediction theory is, as has been pointed
out by one of the referees, even simpler to establish. Consider a sufficiently
large class of square integrable and <-measurable random variables g. To a
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given g we associate the loss function
L(x, t) = (9(x) — 1)?, XezZ,te]—oo, 0c0[.

Then a predictor § minimizes the risk if and only if it is a version of E¥(g| <7).
If %, is assumed to be just as good in this situation then E¥(g9| %) = E¥ (9| £7,)
a.e. This establishes conditional independence if, for example, we admit all
functions g = I, where C runs through a r-system generating <.

For the Lemma and Theorem 3 we assme that {P,: 0 € ©} is dominated. Then
we get the following lemma.

LEMMA. If for any SB-measurable critical function ¢ there exists a <5,-measurable
cr..ical function ¢ such that E,(¢) = E,(¢) for all 6 € O, then B, is sufficient for 7.

The proof of the lemma is essentially the same as in Bahadur [2]. The outline
is as follows: Let 4, and 6, be any two points of ©. Let ¢ be a most powerful
test for 0, against §,. Then for some k

dpP
x) =1 if % S k,
B(x) aP, >
=0 if aPs, <k,
dP,,

and the set {x: (dP,, [dP, )(x) < k} is &,-measurable. Further for every ¢ (in-
cluding o), the set {x: (dP, /dP, )(x) < c} is &,-measurable. Hence 7, is pair-
wise sufficient for <Z. Since {P,: 6 € ©} is dominated, <7, is sufficient for <7.

The following proposition is an immediate consequence of the lemma:

Suppose that the decision space 7' = [0, 1] and the loss function L satisfies
L(x,t) =1t, for0 < t < 1. If for any <#-measurable decision rule 9, there exists
a ZZ,-measurable decision rule ¢ such that r;(0) = r,(6) for all 6 € ©, then <7,
is sufficient for 2.

From the above, we get the following theorem.

THEOREM 3. If for any loss function L not depending on 0 and for any <&-meas-
urable decision rule 0, there exists a Z8,-measurable decision rule 6 such that r;(0) =
ry(0) for all 6 € ©, then B, is prediction sufficient for & w.r.t. & .

Various criteria for prediction sufficiency may be obtained from these results
by considering, in addition to the loss functions described above, loss functions
which depend on ¢. If we insist on considering only loss functions which do
not depend on ¢ then we will, in general, not be able to conclude prediction
sufficiency. This follows by considering the case where <&, = {¢, 27}, & is
ancillary and independent of <Z and {P,: 0 ¢ O} is finite.

Let, in this situation, (7, .77) be any decision space and L any loss function
which does not depend on ¢ and ¢ any decision rule from (27, &%) to (T, 7).

Choose a ¢, € T such that

§ L(x, )Po(dx) = § [§ L(x, )Py(dx)]voldr) 0co,
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where v,(S) = § (S| x)Py(dx). Then
ro(t,) = ry(9) 0e®.
The necessary condition for prediction sufficiency in the wide sense is obtained
as follows:

THEOREM 4. Suppose that, for each 0, there are regular conditional probabilities
Py(B|B,): Be &% and Py(C| ) : Ce €. Suppose further that <&, is prediction
sufficient in the wide sense for & w.r.t. €.

Let L be a loss function not depending on 6 and assume that there is a <Z,-meas-
urable function t on B, and an ¢ = 0 so that

{ L(x', 7)P(dx' | <) < § L(xX', O)P(dx" | ) + ¢, teT on B,.

Then there corresponds to any decision rule § a <5,-measurable decision rule 6 so

that )
75(0) = 19(0) + ¢, 0e®.

6 may be defined as t on B, and as E(6(+ | +)| <5,) on B,.

REMARK. There exist, for each ¢ > 0, a £Z,-measurable r on B, satisfying
the desired inequality provided

(i) There exists a countable subset {t,, #,, - - -, #,, - - -} of T such that for all
te T and for all x e B,

inf, § L(¥', 1,)P,7(dx' | ) < § L(x', )P, (dx' | 7)) ,
and
(ii) For every pair i, j and for any ¢ > 0 the set
M;i(e) = {x: § L(x', t;)P,7(dx' | &) < § L(X', 1;)P, % (dx" | &) + ¢}
is measurable.
Proor OF THE THEOREM. Put, for each 6,
05*(S|+) = § 0(S|x")Py(dx’ | Z,) -
By the proof of Theorem 1:
e+ 7o(0) = & + § [§ L(x, 1)0,*(dt| x)]Py(dx)
= §5, [§ L(x, 1)6(dt| x)]Py(dx)
+ e+ 5, {§ [§ L(x', )P (dx"| £5,)]0,*(dt | x)}Py(dx)
= (5, [§ L(x, 1)0(d1| x)]Py(dx)
+ 5, {§ L(X', 6(x)) Py, o(dX' | 5,)}Py(dx)
= §5, [§ L(x, )0(dt | x)]Py(dx) + § 5, L(x, 6(x))Py(dx)
= ry(9) .
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