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HOW MUCH DO GAUSS-MARKOV AND LEAST
SQUARE ESTIMATES DIFFER?
A COORDINATE-FREE APPROACH!

By SHELBY J. HABERMAN
University of Chicago

A simple expression is developed for the difference between the least
squares and minimum variance linear unbiased estimators obtained in
linear models in which the covariance operator of the observation vector
is nonsingular. Bounds and series expansion for this difference are ob-
tained, and bounds for the efficiency of least squares estimates are also
obtained.

1. Introduction. Kruskal (1968) has used coordinate-free methods to establish
a necessary and sufficient condition for the least squares estimator in a linear
model to be the minimum variance linear unbiased (Gauss-Markov) estimator.
In this paper, similar methods are used to obtain a general formula for the dif-
ference between the least squares estimator and the minimum variance unbiased
estimator when the covariance operator of the observations is nonsingular. This
formula is useful in examining the effects of departures from underlying assump-
tions in regression models. It can also be helpful in computation of the minimum
variance linear unbiased estimator in cases in which the least squares estimator
has already been determined or is easily computed.

2. Least squares estimators and Gauss-Markov estimators. In this section,
the general model considered by Kruskal (1961, 1968) is employed. In this
model, Y is a random vector in an n-dimensional inner product space W with
inner product (., +). Itisassumed that Y has an expectation # and a covariance
operator Y. In other words, for all vectors x and z in the space,

E(x, Y) = (x, p)
and
Cov[(x,Y),(z, )] =(x, I 2) .

The vector y is assumed to lie in a linear manifold Q, and Y = oV, where V
is a known symmetric positive definite linear transformation.

Given the inner product (-, «), the orthogonal projection P on Q is defined
for any x e W to be the unique element Px of Q such that (x — Px, z) = 0 for
all ze Q. If p* = PY, then p* is the least squares estimator of p. Thus, p* is
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the unique element of Q such that
Y —p*2)=0 forall zeQ.
If ((+, +)) is the inner product defined for x and z in the space by
((x,2)) = (x, V7%2),,
then the projection Q on Q orthogonal with respect to ((-, +)) is defined for any
x € W to be the unique element Qx of Q such that
((x—0x,2))=0 forall zeQ.
If 2 = QY, then g is the Gauss—-Markov estimate of p; that is, z is the unique
element of Q such that
(Y—pg,2)=0 forall zeQ.
To compare p* and g, some preliminary observations are needed concerning
the relationships between adjoints and projections. The adjoint A* of a linear

transformation 4 on W is the unique linear transformation such that for all x

and z in W,
(Ax, z) = (x, A*2) .

If 4 and B are linear transformations on W, then

(AB)* = B*A*
and
A¥* = 4.
The projections P and Q then satisfy the relationships
P =P = P*,
Q*=0,
Q*r-t="r-"Q,
PQ =0,
QP="P.

The relationship between P and Q is described by means of the following
theorem.

THEOREM 1. If A is a linear transformation on W such that

(1) Ax = PV-'x, xeQ,
then
2) AQ = AP + PV-Y(I — P)
and
3) Ap = Ap* + PV-YY — p¥).
Proor. It suffices to note that
4) AQ = PV-Q = PQ*V~' = (QP)*V-! = P*V-! = pPy-!

= PV-'P + PV-YI — P) = AP + PV-I — P).
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As a corollary to Theorem 1, one has the following result.

CoROLLARY 1. If
R=({I—-P)+ Prt
and

S=U—P)+ PV'P,
then the following equations are satisfied:
Q =P+ R'PV-Y(I— P)
=P+ [I—RI—-P
=P 4 SWPV-Y (I — P).
f = p* + ROPV(Y — %)
= p* + [ — RY(Y — %)
= p* + S'PV-Y(Y — pu¥).
2.1. Conditions for identity of f and p*. Theorem 1 may be used to provide
the following necessary and sufficient conditions for the least squares and Gauss-
Markov estimators to be identical.

THEOREM 2. The estimators ji and yp* are identical if and only if one of the fol-
lowing equivalent conditions is satisfied:

) PV-‘I—P)=0.
(6) (I—Py-'P=0.
0] V1Qc Q.
®) rQc Q.

%) Qs c QL.
(10) Qs c QL.

REMARKS. Equations (7) and (8) are given by Kruskal (1968). In (9)and (10),
Q+ is the orthogonal complement of Q (see Halmos (1958, page 123)).

Proor. By Corollary 1, i and p* are identical if and only if (5) holds. Condi-
tion (5) is equivalent to the assertion that the range of V~'(/ — P) is in the null
space of P. Since V-Y(I — P) has range V-'Q* and P has null space Q' (see
Halmos (1958, pages 74 and 146)), (5) and (9) are equivalent. Since V' is non-
singular, (9) and (10) are equivalent. Since

[PV-YI — P)]* = (I — P)V-'P,
(5) and (6) are equivalent.

It may be the case that g and p* are not identical, but the least squares esti-
mator 8* = (c, #*) and the Gauss-Markov estimator 5 = (c, £2) of a linear func-
tional 8 = (c, ) of p may still be identical. Without loss of generality, one may
assume that ¢ € Q (see Halmos (1958, page 130)). In this case, we have the fol-
lowing theorem:
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THEOREM 3. The estimators § and B* are identical if and only if Ve e Q.

REMARK. This theorem is also given in Zyskind (1967). The proof presented
here is somewhat simpler than Zyskind’s proof.

Proor. The estimators § and 8* are equal if and only if
(¢, Px) = (c, QOx), xew.
This condition is equivalent to the assertion that
(¢, x) = (Q*c, x) , xeW.
In turn, this condition is equivalent to the assertion that
Ve = VQ*c = QVc.
Consequently, § = g* if and only if Ve e Q.
2.2. Equality of P and PV-'P. If P = PV-'P, then S = I and Corollary 1
implies that
(11) A= p* + PV Y — p¥).

This formula can be useful if P and V-! are easily evaluated. The following
theorem provides further insight into this formula:

THEOREM 4. The following statements are equivalent:
(12) P = PV-'P.
(13) (x,2) =((x,2)) forall xeQ and zeQ.
Proor. Equation (12) holds if and only if for all x, ze W
(Px, Pz) = (x, Pz)
= (x, PV-'Pz)
= (Px, V-'Pz)
= ((Px, P2)) .
This condition holds if and only if (13) holds.
COROLLARY 2. If B is a linear combination (c, ) and if (11), (12), or (}3) holds,

then the least square estimate f* = (c, p*) and the Gauss-Markov estimate B = (c, fi)
satisfy .
B = B* + (Pe, V(Y — p¥)).
B=p*+ (. V(Y — ).
Proor. By Corollary 1,
B = (e %) + (cs PY(Y — p¥)
= B* + (Pe, V(Y — p¥)) .

If ceQ, then

If ceQ, then Pc = c.
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3. The effect of small differences between P and PV-'P. When the difference
between P and PV~'P is small, S—* is approximately equal to 7 and the difference
between 2 and p* is approximately PV-Y(Y — pu*) = PV~ — P)Y. To make
this statement more precise, let be a norm on W. Define the norm ||4|| of
a linear transformation 4 on W to be

[|4]] = SUp,ew;pap=1 |1 4x|| -

Given this definition, if 4 and B are two linear transformations, then

(14) 48] = [14]]|B]]

and

(15) 14 + Bl = [l4[] + [1B]] -
If ||4|| < 1, then I — A is invertible and

(16) (= A7 = 1A — [|4]])

(see Loomis and Sternberg (1968, page 224)).
Given these results, the following theorem is a simple consequence of Cor-

ollary 1.
THEOREM 5. For any nonnegative integer k,
(1) p— p* = PVXY — p*) + Ehey (P — PVTP)IPV-HY — p¥)
+ S-Y(P — PV-IP)+PYV-Y Y — p*).
If ||P — PV'P|| < 1, then
(18)  ||S7(P — PV-PY+PY-YY — )|

< 1P — PV R Py — DY — ]
= 1— ||P = PVP|

Proor. Note that
(19) S =[I— (P— PV'pP)J*
=TI+ Y%, (P — PV-'P)i 4 S7{(P — PV-1P)k+

Equation (17) follows immediately. Equation (18) follows by application of
(14), (16), the first equation in (19), and the observation that

(I = PYY — pr¥) = Y — .
In the particular case in which [|P — PV'P|| < 1 and k is 0, Corollary 1, (19),
and Theorem 5 lead to the following corollary:
CoRrOLLARY 3. If ||P — PV~'P|| < 1, then

2 ) < 1PV = P)IIY — p|
o — it < W2 DI

and
|P — PY=P|[[[PV-X(I — P)|[|[Y — p*]|

i — x __ PV—l Y_ * S |
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4. A canonical analysis of # — p*. In this section, a description of g — p*
is obtained in terms of appropriately chosen bases {x,: i =1, - .., m} and {z;:
j=1,.-.,n — m}of Q and Q-+, respectively, where m, the dimension of Q, is
assumed in this section to satisfy the inequality 0 < m < n.

The basic observation required in this section is the result given in Dempster
(1969, page 99) that {x,:i=1,...,m} and {z;:j=1,-.-.,n — m} may be
chosen so that ((x;, x,)) =0 if i =, ((x;, X)) =1, ((z;,z;2)) =0 if j+# [,
((z;, 2;)) = 1, and ((x;, z;)) = 0 if i # j. If k is the minimum of m and n — m,
then the vectors may be ordered so that if 8, = ((x;,2)), i =1, ---, k, then
10, = |0.]if1 £ i< < k. Since((x,;, x;)) = (2, 2;)) = 1 and x; + z;, Schwarz’s
inequality implies that |6, < 1 fori=1, ...,k

Given this result, the following theorem may be proven:

THEOREM 6. The difference between fi and p* satisfies
(20) A— = i l0,((z; — ;x5 Y))/(1 = 0;7)]x; .

Proor. Let u @ v be defined for u, v ¢ W as the linear transformation on W
such that
(& v)w = u((v, w)), weW.

It is well known that

£ =0Y = X7, (x5 Y))x; .
If

U=z, O~

1_02 0;2;) + Dk X; @ X5,

then Ux; = x; forj=1,...,mand Uz; =0 for j =1, ...,n. Thus Ux = x
for xeQ and Ux = 0 for x e Q*. Consequently, P = U. It now follows that

f—p*=Q0Y-UY
= L l((x Y)) — (x5 — 052, V))/(1 — 0;7)]x;
= Z, =1 [0,((z; — 0%, Y))/(1 — 0;%)]x; -

This theorem implies that 2 — p* depends only on the k random variables
((z; — 0;x;,Y)),j=1, ..., k. Each of these variables has mean

((z; — O;x5 1)) = 20y (%0 ))(2; — 0;%55 x3))
=0
and variance

(25 — 03%;, 2, — 0;x,)) = (1 — 0,7).
Since
((z; — 0;x —0;x;)) =0

]9
if j # j', the random variables ((z; — 6, x
related when j = j.

Given Theorem 6, a simple expression is available for the efficiency of a least

Y))and ((z;; — 0, x;,, Y)) are uncor-

.1.1’
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squares estimate 8* of a linear functional 8 of p. As noted by Halmos (1958,

page 130), to a linear functional § of u corresponds a ¢ € Q such that

B=((cn)-
By Kruskal (1961, 1968), the corresponding Gauss-Markov estimate is
B =((c: )
= (Y1),

and the corresponding least squares estimate is
B = ((e; %)) -
By (20),
B* = B — B4 0,((z; — 05, V))((xs /(L = 0,) -

Since

(z; — 0;x;,¢) =0, j=1,--

f is uncorrelated with ((z; — 0,x;, Y)),j =1, --+, k. Thus
Var (§*) = Var (§) + Xo (x> )0;%(1 — 07 .
By Parseval’s identity (see Halmos (1958, page 124)),
Var (B) = (¢, 9)) = X (x5 9))* -
Thus
Var (8%) = Zi5a (x5 0)/(1 = 07%) + ZFaana (%5 9))
where the second summation is 0 if k = m. The efficiency is then

Var () _ 2171 (x4, 9))* .
Var (B*) ~ 2k, (x5 V(1 — 02 + D™ s (x5 ©))°

'ak)

Since 1 — ;> < 1, this equation for the efficiency is always less than or equal
to 1, asis to be expected. At the other extreme, the efficiency is at least 1 — 6,7,
with the lower bound achieved if ¢ = x,. Following Dempster (1969, page 99),

it is useful to note that

(©2)"
(% D)@ 2)

2
01 — Supzen,x*o;zeﬂl,z$0

Thus 4,? is the square of the maximum correlation between a nonzero linear

functional ((x, Y)), x € Q, and a nonzero linear functional ((z, Y)), z e Q.

The following bounds for the efficiency may be obtained in terms of the maxi-

mum eigenvalues y and ¢ of V'~
THEOREM 7. The variances of [ and p* satisfy the relationship

(> Var(B) o 40 _ 4
S Var () (r+9))  (r+ 1y

b

where © = y[0 is the ratio of the largest and smallest eigenvalues of V=" (or V).
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Proor. By application of Cleveland’s (1971) Theorem 5 to the span of x, one
finds that if x € Q, ((x, x)) = 1, ze Q+, and ((z, z)) = 1, then

(2, 2)) __ L _G@+or
(@ 2) = (5 2)((x> %) 1= ((2) 476
Thus Var (§)/Var (8%) = 1 — 6. = 478/(r + 0)*
In the special case in which Y is an element of R*, (-, +) is the Euclidean
inner product, Cov (Y;, Y;) = ¢%,;, and v;; = 0 if i # j, then

. 1
0 = min,_;, —
1 ”’vii
and
1
7= mMaX gqn — -
(13
If the covariance structure is permutation-invariant, with »;, = 1 and v;; = p
for i # j, where —1/(n — 1) < p < 1, then

1/6=1+(n—1)p if p=0,
=1—0p if p<O0,
and
lr=1—p if p=0,
=14+ (1n—-1)p if p<0.
Thus the lower bound for the efficiency of g* is

4o _ 40 — o)l + (n — Dp]

(r + 9y [2 + (n = 2)o)

The canonical decomposition and efficiency analysis provided in this section
is related to work by Watson (1967). Watson’s results are based on coordinate
systems and generalized variances and are not strictly comparable to those derived
in this paper. Theorem 7 is essentially equivalent to a result in Golub (1963)
which is expressed in terms of coordinate systems. Referees have made sub-
stantial contributions to the exposition. In particular, their help has contributed
to the formulation of Theorem 1 and to simplifications in the proofs of Theorems
3,6,and 7.
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