A FINITE MEMORY TEST OF THE IRRATIONALITY OF THE PARAMETER OF A COIN

By Patrick Hirschler¹ and Thomas M. Cover²

Georgia Institute of Technology and Stanford University

Let X_1, X_2, \cdots be a Bernoulli sequence with parameter p. An algorithm $T_{n+1} = f(T_n, X_n, n)$;

$$d_n = d(T_n);$$
 $f: \{1, 2, \dots, 8\} \times \{0, 1\} \times \{0, 1, \dots\} \rightarrow \{1, \dots, 8\};$ $d: \{1, 2, \dots, 8\} \rightarrow \{H_0, H_1\};$

is found such that $d(T_n) = H_0$ all but a finite number of times with probability one if p is rational, and $d(T_n) = H_1$ all but a finite number of times with probability one if p is irrational (and not in a given null set of irrationals). Thus, an 8-state memory with a time-varying algorithm makes only a finite number of mistakes with probability one on determining the rationality of the parameter of a coin. Thus, determining the rationality of the Bernoulli parameter p does not depend on infinite memory of the data.

1. Introduction. Let X_1, X_2, \cdots be a sequence of independent identically distributed Bernoulli random variables with unknown mean p. We are interested in determining as much as possible about p with finite methods. Toward this end it has been shown in Cover [1] that there exists a four state finite memory algorithm of the type shown below that tests $H_0: p < p_0$ vs $H_1: p > p_0$ with only a finite number of errors with probability one. Hirschler [4] demonstrates that four states are sufficient to test $H_0: p = p_0$ vs $H_1: p \neq p_0$.

Without the restriction of finite memory, it is well known (see, e.g., Cover [2]) that there exists a test for the hypothesis $H_0: p$ is rational vs. $H_1: p$ is irrational, which makes a decision after each new observation and makes only a finite number of errors with probability one for any $p \in [0, 1] - N_0$, where N_0 is a null set of irrationals. In this paper we show that these results can be combined.

We consider algorithms of the form

(1)
$$T_{n+1} = f(T_n, X_n, n)$$
 $n = 1, 2, \dots; T_n \in \{1, 2, 3, \dots, m\};$
 $X_n \in \{0, 1\},$

with the interpretation that T_n is the state of memory at time n, and m is the number of states in memory. It is appropriate to designate f a time-varying algorithm, as opposed to time-invariant [3], because of its dependence on n. Let

(2)
$$d: \{1, 2, \dots, m\} \rightarrow \{H_0, H_1\}$$

Key words and phrases. Finite memory, coin, hypothesis testing, rationals.

www.jstor.org

Received December 1972; revised October 1974.

¹ This work was supported under RADC Contract F30602-72-C-0118 and AFOSR Contract F44620-69-C-0101.

² This work was supported under AFOSR Contract F44620-69-C-0101.

AMS 1970 subject classification. 62C99.

be a decision rule making decision $d(T_n)$ at time n. We shall describe a deterministic 8-state time-varying algorithm (f, d) that makes only a finite number of mistakes with probability one on the above hypothesis testing problem. Thus 8 states of memory are sufficient for determining the rationality of the bias of a coin.

In other words, the infinite precision necessary to determine the irrationality of p does not imply the need for an infinite memory of the past data X_1, X_2, \dots , but requires only the memory of an integer in $\{1, 2, \dots, 8\}$ and knowledge of the index n of the current observation X_n .

2. Theorem and heuristic proof. We shall prove a generalized version of the aforementioned theorem that extends the test of the rationals to a test of any countable subset of the unit interval. Let (f, d) denote a finite memory decision rule of the form given in (1) and (2). Let S be a countable subset of (0, 1). We shall say that an error is made at time n if the decision $d(T_n) \neq H_{\text{true}}$.

THEOREM. Let X_1, X_2, \cdots be a sequence of i.i.d. Bernoulli rv's with $\Pr\{X_i = 1\} = p$. Then there exists an 8-state algorithm (f, d) such that only a finite number of errors is made under either hypothesis for the two-hypothesis testing problem

(3)
$$H_0: p \in S = \{p_1, p_2, \dots\} \text{ vs } H_1: p \in (0, 1) - S - N_0,$$

where N_0 is a subset of [0, 1] - S of Lebesgue measure zero.

An outline of a possible proof will now be given. A detailed proof involving error bounds and some simplifying (but unnecessary) randomization in f will be given in the next section.

PROOF (Outline). The case where S is a single point has already been proved (using 4 states) in [4] (see also [1]). The idea is to test $p=p_0$ by testing a sequence of n consecutive observations to see if the first np_0 terms are 1 and the last $n(1-p_0)$ terms are 0. Only one bit of memory Q_1 is needed to test for such a block $B_{0,n}$. Suppose that, given $p=p_0$, the probability of this sequence of 1's and 0's is β_n . For large n, the probability of this event for any $p \notin [p_0 - \delta_n, p_0 + \delta_n]$ is some number $\tilde{\beta}_n \ll \beta_n$. Thus, by repeating this block test $m_n = (\beta_n \tilde{\beta}_n)^{-\frac{1}{2}}$ consecutive times, we have an expected number of successes (i.e., observations of the successful block $B_{0,n}$) given by $(\beta_n/\tilde{\beta}_n)^{\frac{1}{2}} \gg 1$, for $p = p_0$, and $(\tilde{\beta}_n/\beta_n)^{\frac{1}{2}} \ll 1$, for $p \notin [p_0 - \delta_n, p_0 + \delta_n]$. One additional bit of memory Q_2 keeps track of whether at least one success has occurred in the m_n blocks in the nth cycle. Let $Q_2 = 1$ denote at least one success. By Markov's inequality, we see that

(4)
$$\Pr\{Q_2 = 1\} \approx 1$$
, $p = p_0$
 $\Pr\{Q_2 = 0\} \approx 0$, $p \notin [p_0 - \delta_n, p_0 + \delta_n]$.

These probabilities can be made arbitrarily extreme for any δ_n by choice of large enough n and m_n . This is the object of Lemma 1.

Let $B(p_0, \delta_n)$ denote the above mentioned block test testing for $p = p_0$ with accuracy δ_n . The idea of the algorithm is to generate the sequence of block tests

(5)
$$B(p_1, \delta_1)$$

$$B(p_1, \delta_2)B(p_2, \delta_2)$$

$$B(p_1, \delta_3)B(p_2, \delta_3)B(p_3, \delta_3)$$

$$B(p_1, \delta_4) \cdots$$

with the interpretation that the block test on line 1 is repeated m_1 times, the sequence of block tests on line 2, m_2 times, etc. The m_n consecutive tests of line n will be designated cycle n. At the end of each line, let a third memory variable T take on the value 0 if at least one block success has occurred in the line and 1 otherwise. The variable T denotes the current total decision of H_0 vs H_1 , i.e., $d(T, Q_1, Q_2) = H_T$; $T, Q_1, Q_2 \in \{0, 1\}$. This entire procedure requires only 3 bits, i.e., 8 states. The probability of error in the hypothesis test $p \in \{p_1, p_2, \dots, p_k\}$ vs $p \notin \bigcup_{i=1}^k [p_i - \delta_k, p_i + \delta_k]$ (at the end of the kth cycle) can be made less than any preassigned number $\nu_k > 0$ under either hypothesis.

For H_0 , if $\sum \nu_k < \infty$ and $p \in S = \{p_1, p_2, \dots\}$, then T will equal 0 all but a finite number of times with probability one. This follows, because $p = p_i$ will be tested from the *i*th line of blocks on, and the number of failures is finite with probability one from the Borel-Cantelli Lemma.

For H_1 , by the construction of the test, the probability of the event T=0 at the end of the kth cycle is less than ν_k for any $p \notin \bigcup_{i=1}^k [p_i - \delta_k, p_i + \delta_k] = E_k$. Since $\mu(E_k) \leq 2k\delta_k$, where μ denotes Lebesgue measure, proper choice of δ_k yields $\sum \mu(E_k) < \infty$. This implies that the Lebesgue measure of $N_0 = \{p \colon p \in E_k, \text{ i.o.}\}$ is zero. Thus, $\sum \nu_k < \infty$ and $\sum k\delta_k < \infty$ imply $T_n = 0$ all but a finite number of times with probability one for $p \in (0, 1) - S - N_0$.

The more detailed proof in the next section is accomplished in two steps. Lemma 2 first studies the steady-state probability distribution ν_n on (H_0, H_1) at the "end" of cycle n (i.e., m_n infinite). It is shown that the probability of the state associated with the incorrect hypothesis can be made less than $1/n^2$ by proper choice of δ_n . Finally, the true probability distribution μ_n on (H_0, H_1) can be made very close to ν_n by proper choice of the duration m_n of cycle n. A possible choice for m_n is exhibited in Lemma 3.

This concludes the outline of the construction of a deterministic algorithm that achieves the goal of Theorem 1.

3. Detailed proof of theorem.

PROOF. For a given enumeration $\{p_i\}$, choose $\delta_n > 0$, $\delta_n \to 0$, such that

(6)
$$0 < p_j - 2\delta_n < p_j + 2\delta_n < 1, \qquad j = 1, \dots, n.$$

Define

(7)
$$p_{j,n} = p_j - \delta_n, \quad \text{and} \quad p'_{j,n} = p_j + \delta_n.$$

Thus, $p_{j,n} \nearrow p_j$ and $p'_{j,n} \searrow p_j$. Let q = 1 - p throughout, and define

$$a_{j,n} = \log(q_{j,n}/q'_{j,n})$$
 $b_{j,n} = \log(p'_{j,n}/p_{j,n})$

(8)
$$H_{j,n} = (p_{j,n})^{a_{j,n}} (q_{j,n})^{b_{j,n}}$$

$$r_n(p_j, p) = (a_{j,n} \log p + b_{j,n} \log q) / (a_{j,n} \log p_{j,n} + b_{j,n} \log q_{j,n}).$$

It can be seen that $a_{j,n}$ and $b_{j,n}$ converge to 0 as n tends to infinity. In addition, $r_n(p_j, p)$ satisfies the relations

(9)
$$r_n(p_i, p_{i,n}) = r_n(p_i, p'_{i,n}) = 1, \qquad \forall j, \forall n.$$

Moreover, $r_n(p_j, p)$ is strictly convex function of p with a minimum < 1 achieved in the interval $[p_{j,n}, p'_{j,n}]$. Let $\{m_n\}_{n=1}^{\infty}$ be a sequence of positive integers. Divide the sequence of observations into m_n consecutive superblocks P_n , each of which consists of a sequence of blocks $P_{1,n}, P_{2,n}, \dots, P_{n,n}$. A successful block consists of $[a_{j,n}t_{j,n}]$ 1's followed by $[b_{j,n}t_{j,n}]$ 0's. (The symbol [a] denotes the least integer greater than or equal to a.)

The proof of the general case, i.e., $S = \{p_1, p_2, \dots\}$ relies heavily on the proof given here for the point test. See [4] for a different proof. An algorithm involving randomization will be used. The block $B_{i,n}$ has the length of $P_{i,n}$.

LEMMA 1. In the test of m_n consecutive blocks $B_{0,n}$, the probabilities of at least one success can be made arbitrarily near one and zero under hypotheses H_0 and H_1 , respectively, for any δ_n , by choosing n and m_n sufficiently large.

PROOF. To achieve this behavior, let W_1, W_2, \cdots be i.i.d. Bernoulli rv's with $\Pr\{W_i = 1\} = \varepsilon_n$. Let the state variable T equal 0 at the end of the kth block if the block is a success. Then, if the result of the experiment W_k is 1, we let T equal 1.

Clearly, for fixed n, the steady-state probability for (T = 0, T = 1) is

(10)
$$\boldsymbol{\nu}_{n} = \left(\frac{\beta_{n}}{\beta_{n} + \varepsilon_{n}}, \frac{\varepsilon_{n}}{\beta_{n} + \varepsilon_{n}}\right).$$

Let $\lambda_n = \min(r_n(p_0, p_0 - 2\delta_n) - 1, r_n(p_0, p_0 + 2\delta_n) - 1)$ and $\varepsilon_n = (1/n)^{3+6/\lambda_n}$. Under H_0 , we have

(11)
$$\frac{\beta_n}{\varepsilon_n} \ge p_0 q_0 \frac{1}{\varepsilon_n} \left(\frac{1}{n}\right)^{6r_n(p_0, p_0)/\lambda_n},$$

i.e., $\beta_n/\varepsilon_n \ge p_0 q_0 n^3$ or $\beta_n/\varepsilon_n > n^2$, for n sufficiently large. Under H_1 ,

(12)
$$\frac{\varepsilon_n}{\beta_n} \ge \exp_n((6r_n(p_0, p) - 1)/\lambda_n - 3).$$

But $r_n(p_0, p) > 1 + \lambda_n$ for $p \notin (p_0 - 2\delta_n, p_0 + 2\delta_n)$, for n sufficiently large. Thus, we have

(13)
$$\nu_n^{1-i} < \frac{1}{n^2} \quad \text{under} \quad H_i \quad (i = 0, 1) .$$

Since this fully regular Markov chain approaches its steady-state distribution,

it is clear now that in the test of $p = p_0$ vs $p \neq p_0$, the probabilities $\mu_n^i(m_n)$ can be made arbitrarily small (e.g., less than $2/n^2$) under any hypothesis by choosing m_n large enough.

Let the memory consist of the triple (T, Q_1, Q_2) where $T, Q_1, Q_2 \in \{0, 1\}$. Consider the automaton A described by the following algorithm:

Start
$$n:=2$$
;
 $Cycle$ $n:=n+1$; $m:=0$;
 L_1 $m:=m+1$; $j:=0$; $Q_2=0$;
 L_2 $j:=j+1$; $Q_1:=0$;
If $Q_1(B_{j,n}, P_{j,n}) = 1$, set $Q_2=1$;
Otherwise Q_2 stays unchanged;
If $j < n$, go to L_2 ;
If $Q_2=1$, set $T=0$;
Set $T=1$ with probability ε_n ;
If $m < m_n$, go to L_1 ;
Go to Cycle; End.

In other words, the blocks are tested sequentially in the order of appearance. When a block $B_{j,n}$ in B_n is successful, the memory T takes the value 0. At the end of each superblock, if T=0, a random mechanism sets T=1 with conditional probability ε_n . This updating procedure is repeated similarly m_n consecutive times before the new cycle n+1 starts. Within each cycle the process constitutes a fully regular two-state Markov chain with transition probabilities $P_{01}=\varepsilon_n$ and $P_{10}=\alpha_n$. The decision rule chooses H_i if T=i (i=0,1). Let d_n be the decision taken at the end of cycle n. Let e_n denote the event that the decision is incorrect. The probability of error at the end of cycle n is $\Pr\{e_n \mid H_i\} = \Pr\{d_n \neq H_i \mid H_i\}$. By the Borel-Cantelli Lemma, if $\sum_{n=1}^{\infty} \Pr\{e_n \mid H_i\}$ is finite under each hypothesis, the above algorithm will make a finite number of errors w.p. 1.

If the blocks $B_{j,n}$ are too long, transitions to state 0 will occur too rarely. On the other hand, if the blocks $B_{j,n}$ are too short, transitions to state 1 will occur too easily. We propose to show that the length of the blocks $B_{j,n}$ can be adjusted in such a way that $\Pr\{e_n \mid H_i\} \leq 1/n^2$, for i = 0, 1.

First, consider the transition probabilities. Let

(15)
$$\beta_{j,n} = \Pr\{B_{j,n} \text{ succeeds}\} = p^{[a_{j,n}t_{j,n}]}q^{[b_{j,n}t_{j,n}]}.$$

We have

(16)
$$\alpha_n = 1 - \prod_{j=1}^n (1 - \beta_{j,n}).$$

From the inequalities $a \leq [a] < a + 1$, we conclude

(17)
$$pq(p^{a_{j,n}}q^{b_{j,n}})^{t_{j,n}} < \beta_{j,n} \leq (p^{a_{j,n}}q^{b_{j,n}})^{t_{j,n}}.$$

Define

(18)
$$\lambda_n = \min_{j=1,\dots,n} \min \left\{ r_n(p_j, p_j - 2\delta_n) - 1, r_n(p_j, p_j + 2\delta_n) - 1 \right\},$$

and choose $t_{i,n}$ such that

(19)
$$t_{j,n} = \log (H_{j,n})[n^{-6/\lambda_n}].$$

From (17) we obtain

$$pq\gamma_{j,n} < \beta_{j,n} \le \gamma_{j,n},$$

where

$$\gamma_{j,n} = n^{-6r_n(p_j,p)/\lambda_n}.$$

In addition, choose the probability ε_n to be

$$\varepsilon_n = n^{-3-6/\lambda_n}.$$

Next, consider the asymptotic behavior. Let $\mu_n(0) = (\mu_n^0(0), \mu_n^1(0))$ be the probability vector on the states 0 and 1 at the beginning of cycle n. Let $\mu_n = (\mu_n^0(m), \mu_n^1(m))$ be that same probability vector after m iterations within cycle n, and $\nu_n = (\nu_n^0, \nu_n^1)$ be the steady-state probability vector. Then,

(23)
$$\boldsymbol{\nu}_{n} = \left(\frac{\alpha_{n}}{\alpha_{n} + \varepsilon_{n}}, \frac{\varepsilon_{n}}{\alpha_{n} + \varepsilon_{n}}\right),$$

and by a simple computation,

(24)
$$\mu_n(m) = \left(\frac{\alpha_n - \Delta_n(m)}{\alpha_n + \varepsilon_n}, \frac{\varepsilon_n + \Delta_n(m)}{\alpha_n + \varepsilon_n}\right),$$

where

(25)
$$\Delta_n(m) = (1 - \alpha_n - \varepsilon_n)^m [\alpha_n \mu_n^{1}(0) - \varepsilon_n \mu_n^{0}(0)].$$

We study now the steady-state probability vector for cycle n, and show the following.

Lemma 2. Within a given cycle, the steady-state probability of the state associated with the incorrect hypothesis can be made less than $1/n^2$ by proper choice of δ_n .

PROOF. Under H_0 , $p = p_l$ for some fixed l. This implies $r_n(p_l, p_l) < 1$. But

(26)
$$\frac{\alpha_n}{\varepsilon_n} = \frac{1}{\varepsilon_n} \left[1 - \prod_{j=1}^n \left(1 - \beta_{j,n} \right) \right] \ge \frac{1}{\varepsilon_n} \left[1 - \exp\left(- \sum_{j=1}^n \beta_{j,n} \right) \right],$$

and since $\beta_{l,n} \to 0$ as $n \to \infty$, we have

(27)
$$\frac{\alpha_n}{\varepsilon_n} \ge \frac{1}{2} \frac{\beta_{l,n}}{\varepsilon_n} = \frac{1}{2} p_l q_l \frac{\gamma_{l,n}}{\varepsilon_n} > \frac{1}{2} p_l q_l n^3.$$

Hence, $\alpha_n/\varepsilon_n > n^2$, and consequently $\nu_n^{-1} < 1/n^2$ under H_0 , for sufficiently large n. Under H_1 , we have

(28)
$$\frac{\varepsilon_n}{\alpha_n} = \varepsilon_n [1 - \prod_{j=1}^n (1 - \beta_{j,n})]^{-1} \ge \varepsilon_n [\sum_{j=1}^n \beta_{j,n}]^{-1}$$
$$\ge \varepsilon_n [\sum_{j=1}^n \gamma_{j,n}]^{-1} = [\sum_{j=1}^n \gamma_{j,n}/\varepsilon_n]^{-1}.$$

But,

(29)
$$\frac{\gamma_{j,n}}{\varepsilon_n} = \left(\frac{1}{n}\right)^{\theta[r_n(p_j,p)-1-(\frac{1}{2})\lambda_n]/\lambda_n}.$$

Let

(30)
$$E_n = \{ p \in (0, 1) \mid \min_{j=1,\dots,n} r_n(p_j, p) \leq 1 + \lambda_n \}.$$

From the definition of λ_n following (10), the Lebesgue measure of the set E_n is less than $4n\delta_n$. Let $\delta_n = 1/n^3$. Thus,

$$\sum_{n=1}^{\infty} \mu(E_n) \leq \sum_{n=1}^{\infty} 4n\delta_n < \infty.$$

Therefore, for $p \in E_n^c$, we have $r_n(p_j, p) > 1 + \lambda_n$. This implies, for n sufficiently large,

(32)
$$\varepsilon_n/\alpha_n \ge [n(1/n)^3]^{-1} = n^2$$
, i.e., $\nu_n^0 \le n^{-2}$ under H_1 .

Finally,

(33)
$$\nu_n^{1-i} \le 1/n^2$$
 under H_i $(i = 0, 1)$.

The last step of the proof is to show by proper choice of the duration of cycle n that it is possible to have $\sum_{i=1}^{\infty} \Pr\{e_n | H_i\} < \infty$. This then results in a finite number of failures with probability one.

LEMMA 3. There exists a sequence $\{m_n\}_{n=1}^{\infty}$ such that $\mu_n^{1-i}(m_n) \leq 2/n^2$ under H_i (i=0,1).

PROOF. We shall exhibit a sequence $\{m_n\}$ for which $\mu_n^{1-i}(m_n) \leq 2\nu_n^{1-i}$ under H_i . Equation (25) can be rewritten in the form

(34)
$$\Delta_n(m) = (1 - \alpha_n - \varepsilon_n)^m [(\alpha_n + \varepsilon_n)\mu_n^{-1}(0) - \varepsilon_n].$$

Since $0 \le \mu_n^{-1}(0) \le 1$, (34) implies

$$(35) -(1-\alpha_n-\varepsilon_n)^m\varepsilon_n \leq \Delta_n(m) \leq (1-\alpha_n-\varepsilon_n)^m\alpha_n.$$

Under H_0 , since $\alpha_n/\varepsilon_n > n^2$, we have $|\Delta_n(m)| \leq (1 - n^2\varepsilon_n)^m\alpha_n$. Thus, if

(36)
$$m \ge [\log \varepsilon_n / \log (1 - n^2 \varepsilon_n)],$$

then $|\Delta_n(m)| \leq \varepsilon_n$, for H_0 .

Under H_1 , $|\Delta_n(m)| \le (1 - n^2 \alpha_n)^m \varepsilon_n$, by (35). But for any integer $s \in \{1, 2, \dots, n\}$,

(37)
$$\varepsilon_{n}/\alpha_{n} = \varepsilon_{n}\left[1 - \prod_{j=1}^{n} (1 - \beta_{j,n})\right]^{-1} \leq \frac{2\varepsilon_{n}}{\beta_{s,n}}$$
$$\leq \frac{2}{pq} \left(\frac{1}{n}\right)^{6\left[1 - r_{n}(p_{s}, p)\right]/\lambda_{n} + 3}.$$

Consider integers s and n_0 such that $r_n(p_s, p) \in (3/2, 2)$, $\forall n > n_0$. Then,

(38)
$$\varepsilon_n/\alpha_n < (2/pq)n^{6/\lambda_n}, \qquad \text{for } n > \max\{s, n_0\}.$$

If we choose m greater than $[[-(1+6/\lambda_n)\log n][\log (1-n^2\alpha_n)]^{-1}]$, then

 $|\Delta_n(m)| \le \alpha_n$, for H_1 . Let $m_n = (\log \varepsilon_n)(\log (1 - n^2\alpha_n))^{-1}$. Thus, we have shown that

(39)
$$\mu_n^{1-i}(m_n) \le 2\nu_n^{1-i} \quad \text{under} \quad H_i \quad (i = 0, 1),$$

and the lemma is proved.

REFERENCES

- [1] COVER, THOMAS M. (1969). Hypothesis testing with finite statistics. Ann. Math. Statist. 40 828-835
- [2] COVER, THOMAS M. (1973). On determining the irrationality of the mean of a random variable. Ann. Math. Statist. 1 862-871.
- [3] HELLMAN, M. E. and COVER, THOMAS M. (1970). Learning with finite memory. Ann. Math. Statist. 41 765-782.
- [4] Hirschler, P. (1974). Finite memory algorithms for testing means of Bernoulli random variables. *Information and Control* 24 11-19.

E.N.S.T. LABORATOIRE D'AUTOMATIQUE PIECE B 214 46, RUE BARRAULT 75634 PARIS CEDEX 13 FRANCE DEPARTMENT OF STATISTICS STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305