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Let X1, Xz, - - be a Bernoulli sequence with parameter p. An algorithm
Toyr = f(Tn, X, n);
dn—':d(Tn), f: {1,2, "'38} X {03 1} X {0> 1> "'}4{1, ""8};
d: {13 23 M) 8} - {HD’ Hl} 5
is found such that d(T,) = H, all but a finite number of times with proba-
bility one if p is rational, and d(T,) = Hj all but a finite number of times
with probability one if p is irrational (and not in a given null set of irra-
tionals). Thus, an 8-state memory with a time-varying algorithm makes
only a finite number of mistakes with probability one on determining the

rationality of the parameter of a coin. Thus, determining the rationality of
the Bernoulli parameter p does not depend on infinite memory of the data.

1. Introduction. Let X,, X,, - - - be a sequence of independent identically dis-
tributed Bernoulli random variables with unknown mean p. We are interested
in determining as much as possible about p with finite methods. Toward this
end it has been shown in Cover [1] that there exists a four state finite memory
algorithm of the type shown below that tests H,: p < p, vs H,: p > p, with only
a finite number of errors with probability one. Hirschler [4] demonstrates that
four states are sufficient to test Hy: p = p, vs H,: p = p,.

Without the restriction of finite memory, it is well known (see, e.g., Cover
[2]) that there exists a test for the hypothesis H,: p is rational vs. H,: p is irra-
tional, which makes a decision after each new observation and makes only a finite
number of errors with probability one for any p € [0, 1] — N,, where N, is a null
set of irrationals. In this paper we show that these results can be combined.

We consider algorithms of the form

1) T,.=fT, X,,n) n=12,...; T,e{l,2,3,...,m};
Xne{o’ 1}’

with the interpretation that T, is the state of memory at time n, and m is the
number of states in memory. It is appropriate to designate f a time-varying
algorithm, as opposed to time-invariant [3], because of its dependence on n. Let

@) d:{1,2, ..., m}—{H, H}
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be a decision rule making decision d(T,) at time n. We shall describe a deter-
ministic 8-state time-varying algorithm (f, d) that makes only a finite number
of mistakes with probability one on the above hypothesis testing problem. Thus
8 states of memory are sufficient for determining the rationality of the bias of
a coin.

In other words, the infinite precision necessary to determine the irrationality
of p does not imply the need for an infinite memory of the past data X, X,, - - -,
but requires only the memory of an integer in {1, 2, ..., 8} and knowledge of
the index n of the current observation X,.

2. Theorem and heuristic proof. We shall prove a generalized version of the
aforementioned theorem that extends the test of the rationals to a test of any
countable subset of the unit interval. Let (f, d) denote a finite memory decision
rule of the form given in (1) and (2). Let S be a countable subset of (0, 1). We
shall say that an error is made at time n if the decision d(7,) # H,,y.

THEOREM. Let X, X,, - - - be a sequence of i.i.d. Bernoulli tv’s with Pr{X, =
1} = p. Then there exists an 8-state algorithm (f, d) such that only a finite number
of errors is made under either hypothesis for the two-hypothesis testing problem

3) Hy:peS={p,py---} vs H:pe(©0,1)—S§—N,
where N, is a subset of [0, 1] — S of Lebesgue measure zero.

An outline of a possible proof will now be given. A detailed proof involving
error bounds and some simplifying (but unnecessary) randomization in f will be
given in the next section.

Proor (Outline). The case where S is a single point has already been proved
(using 4 states) in [4] (see also [1]). The idea is to test p = p, by testing a se-
quence of n consecutive observations to see if the first np, terms are 1 and the
last n(1 — p,) terms are 0. Only one bit of memory Q, is needed to test for such
a block B, ,. Suppose that, given p = p,, the probability of this sequence of 1’s
and 0’s is $8,. For large n, the probability of this event for any p¢[p, — 0.,
Po + 0,] is some number B, < B,. Thus, by repeating this block test m, =
(B.B.)"* consecutive times, we have an expected number of successes (i.e.,
observations of the successful block B, ,) given by (8,/5,)! > 1, for p = p,, and
(B./B)Y € 1, for pg[p, — 8,, po + 6,]. One additional bit of memory Q, keeps
track of whether at least one success has occurred in the m, blocks in the nth
cycle. Let Q, = 1 denote at least one success. By Markov’s inequality, we see
that

“ Prig,=1}=1, P =P
Pr{Q,=0}=0, pPelpo— 0 Po+ 0,]-

These probabilities can be made arbitrarily extreme for any §, by choice of large
enough n and m,. This is the object of Lemma 1.
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Let B(p,, d,) denote the above mentioned block test testing for p = p, with
accuracy d,. The idea of the algorithm is to generate the sequence of block tests

B(py, 9,)
B(py» 65)B(py, 05)

(%) B(p1; 03)B(pss 03)B(ps; 05)
B(ps, 0,) -+ .

with the interpretation that the block test on line 1 is repeated m, times, the
sequence of block tests on line 2, m, times, etc. The m, consecutive tests of line
n will be designated cycle n. At the end of each line, let a third memory vari-
able T take on the value O if at least one block success has occurred in the line
and 1 otherwise. The variable T denotes the current total decision of H, vs H,,
iie., d(T, Q,, Q,) = H;; T, Q,, Q,€{0, 1}. This entire procedure requires only
3 bits, i.e., 8 states. The probability of error in the hypothesis test p € {p;,
P - P} V8 pe U [ps — 0i pi + 0i] (at the end of the kth cycle) can be
made less than any preassigned number v, > 0 under either hypothesis.

For Hy, if 3} v, < 0 and pe S = {p,, p, - - -}, then T will equal 0 all but a
finite number of times with probability one. This follows, because p = p, will
be tested from the ith line of blocks on, and the number of failures is finite with
probability one from the Borel-Cantelli Lemma.

For H,, by the construction of the test, the probability of the event T'= 0 at
the end of the kth cycle is less than v, for any p ¢ U, [p; — 04, p; + 0] = E,.
Since p(E,) < 2ké,, where p denotes Lebesgue measure, proper choice of g,
yields 3 u(E,) < oo. This implies that the Lebesgue measure of N, = {p: pe
E,, i.0.} is zero. Thus, 3} v, < oo and }] kd, < oo imply T, = 0 all but a finite
number of times with probability one for p e (0, 1) — S — N,.

The more detailed proof in the next section is accomplished in two steps.
Lemma 2 first studies the steady-state probability distribution v, on (H,, H,) at
the “end” of cycle = (i.e., m, infinite). It is shown that the probability of the
state associated with the incorrect hypothesis can be made less than 1/n* by
proper choice of 9,. Finally, the true probability distribution g, on (H,, H,)
can be made very close to v, by proper choice of the duration m, of cycle n.
A possible choice for m, is exhibited in Lemma 3.

This concludes the outline of the construction of a deterministic algorithm
that achieves the goal of Theorem 1.

3. Detailed proof of theorem.
Proor. For a given enumeration {p;}, choose 4, > 0, d, — 0, such that

(6) 0<P1_26n<p1+25n<1, j=1,---,n.
Define

(7) Pin =Pi — Ou>s and Pin =Pj+ 0,.
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Thus, p; ./ p;and p; .\, p;. Let ¢ =1 — p throughout, and define

@, = 108 (q;,n/95,n) b;,n =108 (P} a/P;,n)
(8) H; = (P3,a)""(g;,n)" 5

(P P) = (3,108 p + b;,, 108 9)/(a;,, 108 p; . + ;.. 108 ¢;,) -
It can be seen that a; , and b; , converge to 0 as n tends to infinity. In addition,
r.(p;> p) satisfies the relations
® (P> Pi,n) = Tu(Pys Pn) = 1, Vj, Vn.
Moreover, r,(p;, p) is strictly convex function of p with a minimum < 1 achieved
in the interval [p; ,., pi ,]. Let{m,}z_, be a sequence of positive integers. Divide
the sequence of observations into m, consecutive superblocks P,, each of which
consists of a sequence of blocks P, ,, P, ,, ---, P, ,. A successful block consists
of [a; ,t; ] 1’s followed by [b; ,t;,] 0’s. (The symbol [a] denotes the least inte-
ger greater than or equal to a.)

The proof of the general case, i.e., S = {p,, p,, - - -} relies heavily on the proof

given here for the point test. See [4] for a different proof. An algorithm in-
volving randomization will be used. The block B; , has the length of P; .

LEMMA 1. In the test of m, consecutive blocks B, ,, the probabilities of at least
one success can be made arbitrarily near one and zero under hypotheses H, and H,,
respectively, for any o, by choosing n and m,, sufficiently large.

Proor. To achieve this behavior, let W,, W,, ... bei.i.d. Bernoulli rv’s with
Pr{W, =1} =¢,. Let the state variable T equal O at the end of the kth block
if the block is a success. Then, if the result of the experiment W, is 1, we let

T equal 1.
Clearly, for fixed n, the steady-state probability for (T = 0, T = 1) is
(10) y,,=< Bu )

Let 2, = min (r,(py po — 26,) — 1, 1(po> po + 28,) — 1) and ¢, = (1/n)**%*u,
Under H,, we have

1 1 \67ra(Po:2g)/ 2y
(1) % = Poqo = <—) e >

" n
i.e., B,/e, = pyqon® or B,[e, > n? for n sufficiently large. Under H,,
(12) 7 Z xPu((6ru(pop) = D2, = 3).

n

But r,(p,, p) > 1 + 2, for p ¢ (p, — 26, p, + 24,), for n sufficiently large. Thus,
we have

- 1 .
(13) vt <L — under H; (i=0,1).

Since this fully regular Markov chain approaches its steady-state distribution,
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it is clear now that in the test of p = p, vs p # p,, the probabilities 1, '(m,) can
be made arbitrarily small (e.g., less than 2/n? under any hypothesis by choosing
m, large enough.
Let the memory consist of the triple (T, Q,, Q,) where T, Q,, @, €{0, 1}. Con-
sider the automaton A described by the following algorithm:
Start n: =2;
Cycle n:=n+1; m: =0;

L, m:=m+1; ji=0; Q=03
L, ji=j+1; Q,: =0;
If QBj. P;.)=1, set Q,=1;
(14) Otherwise @, stays unchanged;

If j<n, goto L,;

If Q,=1, set T=0;

Set T =1 with probability e,;
If m<m,, goto L;;

Go to Cycle; End.

In other words, the blocks are tested sequentially in the order of appearance.
When a block B, , in B, is successful, the memory T takes the value 0. At the
end of each superblock, if T = 0, a random mechanism sets 7' = 1 with condi-
tional probability ¢,. This updating procedure is repeated similarly m, consecu-
tive times before the new cycle n 4 1 starts. Within each cycle the process
constitutes a fully regular two-state Markov chain with transition probabilities
Py, = ¢, and P, = a,. The decision rule chooses H, if T =i (i = 0, 1). Letd,
be the decision taken at the end of cycle n. Let e, denote the event that the deci-
sion is incorrect. The probability of error at the end of cycle n is Pr {e,| H,} =
Pr{d, + H,|H;}. By the Borel-Cantelli Lemma, if }3_, Pr{e,|H,} is finite
under each hypothesis, the above algorithm will make a finite number of errors
w.p. 1.

If the blocks B; , are too long, transitions to state 0 will occur too rarely. On
the other hand, if the blocks B, , are too short, transitions to state 1 will occur
too easily. We propose to show that the length of the blocks B; , can be adjusted
in such a way that Pr{e,| H;} < 1/n? fori =0, 1.

First, consider the transition probabilities. Let

(15) B; . = Pr{B;, succeeds} = pleiniinlgltintjnl
We have
(16) a,=1—T", (1 —=B;.)-

From the inequalities a < [a] < a + 1, we conclude

(17) Pq(P‘lj,nqu,n)ty,n < ‘3’,’” é (p”ﬂ'mqbim)tﬂ'm .
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Define
(18) A, = minj=1,,,,,n min {r,(p;, p; — 20,) — L, r,(p;, p; + 24,) — 1},

and choose ¢; , such that

(19) 1,0 = log (H; )[n™""] .
From (17) we obtain

(20) PaTin < Bin = Tio
where

(21) Tim = 2P in
In addition, choose the probability ¢, to be

(22) e

Next, consider the asymptotic behavior. Let g,(0) = (¢,°(0), ¢,'(0)) be the
probability vector on the states 0 and 1 at the beginning of cycle n. Let g, =
(¢#.2(m), p,(m)) be that same probability vector after m iterations within cycle n,
and v, = (»,°, »,) be the steady-state probability vector. Then,

(23) ,,n:< % G )

an+en an+en

and by a simple computation,

_(a,— A, (m) ¢, + A, (m)
(24) ) = (T2, S S0 ).
where
(25) An(m) = (1 - a, — en)m[an"‘nl(o) - enﬂfno(o)] .

We study now the steady-state probability vector for cycle n, and show the
following.

LEMMA 2. Within a given cycle, the steady-state probability of the state associated
with the incorrect hypothesis can be made less than 1/n* by proper choice of 0.

Proor. Under H,, p = p, for some fixed [. This implies ,(p,, p;) < 1. But

@) %= L[ D (= Bon)] 2 - [1 = exp(—E3a 0]

€n

and since 3, , — 0 as n — oo, we have

a 18 1 1
27 > - ke © Tim — 3,
@7) &, 2 &, 21’;‘]; 6”>2p,q,n

Hence, a,/¢, > n?, and consequently v,' < 1/n* under H,, for sufficiently large n.
Under H,, we have

= 6,,[1 - ?=1 (1 - ﬁ:‘,ﬂ)]_l = 5%[2?=1 ‘Bj,n]_l

g en[Z?=1 rj,n]_l = [Z?:l rj,n/sn]_l *

n

(28) :

-
a,



FINITE MEMORY TEST OF IRRATIONALITY 945

But,

29 Tim — 1)mw,m—1-<&»x,,wn

@) &n —<7 )

Let

(30) E,={pe(0, )|min;_, .. r.(psp) =1+ 4,}.

From the definition of 2, following (10), the Lebesgue measure of the set E, is
less than 4nd,. Let d, = 1/n®. Thus,

(31) Z::=l #(En) é Z:L‘,:l 4n5n < o .

Therefore, for p e E,°, we have r.(pj> p) > 1 4+ 4,. This implies, for n suffi-
ciently large,

(32) eja, = [n(1/n)]t = n?, ie., v =<n? under H,.
Finally,
(33) v, "< 1/n* under H; (i=0,1).

The last step of the proof is to show by proper choice of the duration of cycle
n that it is possible to have 7 Pr{e,| H;} < co. This then results in a finite
number of failures with probability one.

LEMMA 3. There exists a sequence {m,}:_, such that p,'~(m,) < 2/n* under H,
i=0,1).

Proor. We shall exhibit a sequence {m,} for which p,-%(m,) < 2v,-* under
H;. Equation (25) can be rewritten in the form

(34) Aym) = (1 — a — &) [(@, + ), (0) — <,].
Since 0 < p,'(0) < 1, (34) implies
(35) —(l =, — &), < A(m) < (1 — a, — &), .

Under H,, since a,/e, > n?, we have |A,(m)| < (1 — n%,)"a,. Thus, if
(36) m 2 [loge,/log (1 — n's,)],

then |A,(m)| < «,, for H,.
Under H,, |A,(m)| < (1 — n*a,)",, by (35). But for any integer se¢
{1’ 23 DR} l’l},

2
(37) oty = e[l — I3 (1 — 8] = 1{—"
sy
pqrnm
Consider integers s and n, such that r,(p,, p) € (3/2, 2), Yn > n,. Then,
(38) eaf, < (2/pg)n®in for n > max {s, n)} .

If we choose m greater than [[—(1 + 6/2,)logn][log (1 — na,)]-"], then
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[A(m)| < a,, for H,. Letm, = (loge,)(log (1 — n%,))~*. Thus, we have shown
that

(39) pii(m,) < 20,2 under H, (i=0,1),

and the lemma is proved.
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