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WEAK CONVERGENCE OF THE EMPIRIC PROCESS
FOR INDEPENDENT RANDOM VARIABLES
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IBM Corporation

Introduction. This paper investigates the (weak) convergence properties of the
Empiric Process in a more general framework of independent random variables
(without common distribution). In this situation the Empiric Process converges
to a Gaussian Process on the unit interval which is “dominated” by the Brownian
Bridge.

The weak convergence of the Empirical Process, the “smoothed” Empirical
Process and the Empiric Process for a sequence of independent random variables
is derived without the restriction that they have a common distribution. The
characteristics of the Gaussian Process which is their “weak” limit is discussed.

The author would like to acknowledge the guidance given him by his advisor,
Professor Kei Takeuchi, and the interest and assistance of Professor E. Parzen
and Professor W. Rosenkrantz.

1. Theoretical preliminaries. Let S be a metric space, & the g-algebra gen-
erated by the open sets. If P, and P are probability measures on (S, &) such
that {5 fdP, — (s f dP for every bounded continuous function f on S, we say that
P, converges weakly to P and write P, — P. Further generic properties of weak
convergence can be found in [2]; in particular, P, = P if and only if P,(A4) —
P(A) for all subsets 4 such that P(04) = 0 where 04 is the boundary of A.

Let Y, and Y be random elements of S. We say that Y, converges in distribu-
tion to Y and write Y, —_ Y if and only if the probability distributions of Y,
converge weakly to the probability distribution of Y.

For the case of S‘(x, ), the empirical distribution function of independent
identically distributed random variables with continuous distribution F, weak
convergence can be used to prove the Glivenko-Cantelli Theorem ([3], page 20)

(1) P[0 [SUP_acycan [S0(x; @) — F(x)| - 0] = 1
and the sharper result due to Kolmogorov ([2], page 104)
(2)  Plo|ntsup_eipea |S.(x, ) — F(x)| < a] > 1 — 2 315, (—1)k+le—tha

for all @ = 0. The method of proof involves weak convergence of random ele-
ments of the metric space D, of all real-valued functions on [0, 1] which are right
continuous and have left-hand limits. The metric used for D is defined by ([2],
page 112)

dy(x, y) = inffe > O[|12)] = e, SUPoi [X(1) — y(A())] = ¢}

where x, y € D, 2 is a non-decreasing function on [0, 1] such that 2(0) = 0 and

Received July 1970; revised August 1974.
787

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access

The Annals of Statistics. RIKOJIS ®

5 ()

v

o 22

to

WWw.jstor.org



788 R. RECHTSCHAFFEN

A(1) = 1 and ||2|| = sup,., |log (A(t) — A(s))/(t — s)]. The metric space (D, d,) is
separable and complete. A4 special subset C of D, the space of all continuous
functions on [0, 1], is a separable and complete metric space in the sup-norm
metric p(x, y) = SUP,g,<: |X(f) — y(¢)|]. The importance of identifying (C, p) and
(D, dy) as complete separable metric spaces is that weak convergence can be
established by use of Prohorov’s Theorem ([2], page 37).

Let {X;} be a sequence of independent random variables defined on (Q, &)
and let F; be the distribution function of X; for each i, and F,(.) = (1/n) 17 F(+)
for each n. Let P, denote the probability measure of a random variable X with
distribution function F. Let I, denote the characteristic function of the set A4
and .72 be the o-algebra generated by the open subsets of the real line. For each
A e 2 and each v € Q, we define the empirical measure for X,(w), - - -, X,(w) by

1
Pn,w(A) = —n— Z;‘=1 IA(Xz(w)) *
THEOREM 1.1. A necessary and sufficient condition that Plw|P,, = P,] =1 is

that F,(x) — F(x) for all continuity points of F.

ProOF. Let 4, = (— o0, x], where x is a continuity point of F. By the Strong
Law of Large Numbers,

P[P, (A4,) — Py(A4)]=1.
Let ¥ be any countable dense subset of {x|x a continuity point of F}, then
P[P, (A,) — Py(A,) forall xeV]=1,

from which the result follows ([2], page 14). The converse follows from the
bounded convergence theorem.

CoroLLARY 1.1. (Glivenko-Cantelli Theorem). If F(x) is continuous for all x,
and lim F,(x) = F(x) for all x, then

P[lim,_,, SUP_.cpce |Su(x) — F(x)| = 0] = 1

where S,(x) is the empirical distribution function of the independent random variables
X}i=12,...,n

Proor. Applying the previous theorem to all sets of the form (— oo, x] we
have that §,(x) converges with probability 1 to F(x). Since both are monotonic
bounded functions of x, it follows that the convergence is uniform.

2. Notation. Let

(N1) bo(t) = PIF,(X) < 1],
(N2) his, ) = L pr b, (91 — b)) O0<s<ri<1,
and

(N3) h(s, ) = lim h,(s, 1) which is assumed to exist.
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The notation,

(N4) Y(+, ®) o< {(ay(®), By(w)):i=0, -, k}

means that Y(¢, ) is the polygonal arc connecting the k + 1 points, (@, (),
B(®)), i = 0, - ., k, with straight lines,

Y(t, 0) = B,_y(@) + L= %=1®) g,
(1 0) = i) + =2
if
a;_(0) £t £ a,(w) and aw)y=0, aw)y=1.

If0 < ay(w) < ay(w) < - -+ < a,_4(w) < 1, then Y(¢, w) is a well-defined element
of C.

Let
() Byt 0) = © Rty o o Pu(X (@)
(N6) Bt 0) = - Bty o o FX(@)
(N7) Fy(e, 0) o {(FXou(@) - J’r )ii=0 g i},
and
(N8) F*(+, ) o {(n J’r 1 ,F(X(im(co))): T 1}.

We now define the following stochastic processes on [0, 1]:
(N9) Ly(t, 0) = ni(F (1, 0) — 1),

the empirical process

(N10) Ly(t, 0) = mi(E (1, 0) — 1),

the smoothed empirical process

(N11) L(t, 0) = n(F,(1, 0) — 1) ,

and the empiric process [4]

(N12) L*(t, 0) = nd(F,*(t, ) — 1) .

3. Main theorems. Applying Theorem 1.1 to the sequence of random vari-
ables {F(X,)}, we have the following corollary:

COROLLARY 1.2. Under the hypothesis of Corollary 1.1,
P[lim,_,, SUpy<;<; |EW(t, @) — 1] = 0] = 1.

Proor. Let p,(f) = P[F(X;) < t], and p,(f) = (1/n) 23r,p.(t). We define
Z, = X, where{I,}is a sequence of random variables independent of { X;} and for



790 R. RECHTSCHAFFEN

each n, P[I, = k] = 1/n, 1 <k < n. Then P[Z, < x] = F,(x). Since F,(x) —
F(x), for all x, Z, —_ X where X has distribution function F. Since F is con-
tinuous, F(Z,) —, F(X) ~ U, where U is a uniformly distributed random vari-
able on [0, 1]. Hence for all ¢, P[F(Z,) < ] — P[U < ] = ¢, and by the defini-
tion of Z,, p,(t) = P[F(Z,) < t]—t for all t. The random variables {F(X,)}
and their distribution functions {p,(f)} satisfy the hypothesis of Corollary 1.1
where the limiting distribution is F(f) = ¢, 0 < ¢t < 1, and the result follows.

We note that in the non-identically distributed case in order for (1) or (2) to
hold it is necessary that F, — F. A sufficient condition for (2) is the weak con-
vergence of the empirical process (N10) to the Brownian Bridge. It is of interest
to note that the convergence of the smoothed empirical (N11) implies the con-
vergence of the empiric process (N12) directly as follows: Since F, is the in-
verse of F,* (see N7, N8) we have that L,(F,*(¢, w), o) = —L,*(¢, w). Further,
o(F,, F,) < 1/n so that Corollary 1.2 implies sup,.,<, |F.(t, @) —t| —,0;
SUPy<,<1 |[F,*(f, ®) — t| —, 0. Hence ([2], page 145) if L, converges in distribu-
tion, so does L,*. The fact that p(L,, L,) = 1/nt establishes the following
result.

LemMMA 1.1. If any of the three processes L,, L,, and L,* converge so do the
other two. Further, if the limiting process is symmetric (has zero expectation) they
converge to a common limit.

It is actually Z, (N9), which is a generalization of L, when all the F; are not
assumed to be equal, which can be shown to converge. The proof parallels the
proof of convergence in the identically distributed case and is therefore omitted
([2], pages 125, 128) and differs only in minor technicalities.

THEOREM 1.2. Suppose {X,} is a sequence of continuous random variables. Let
h(s, t) (N3) exist for all 0 < s <t < 1. Then there exists a Gaussian process Z
with support on C such that; E(Z(t)) = 0, E(Z(s)Z(t)) = h(s, )0 < s <t £ 1, and
L,— > Z.

THEOREM 1.3. The conclusion of Theorem 1.2 also follows from the existence
of h(s,t) and the assumption that {X,} are discrete random variables such that
P[X; = X;] = O for i + j and the existence of a uniform bound for the ratio of the
maximum jump in F, to the minimum jump in F,.

To establish the convergence of L, from the above we require the following
additional assumption B.

AssuMPTION A. Let {X,},_,, .. either satisfy the hypothesis of Theorem 1.2
or 1.3.

AssuMPTION B. Let F(x) be an arbitrary distribution function such that
lim, n? sup, |F,(x) — F(x)| =0,
P[0 < F(X)) #+ F(X;) < 1] =1 for isj.
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THEOREM 1.4. Under Assumptions A and B,
L,—-.,Z in C,
L.—>_Z in D,
L*—_Z in C.
Proor. Except for some minor complications which require careful handling

when F,(X,,,,) = 1 the proof is straightforward. Omitting these complications
we define (see N4)

i

Liu(» 0) o {(Fo(Xgu@), m (- '

— Fn(X(im(w))>> i=0, .. n 4 1} .

Theorem 1.2 or 1.3 (whichever is appropriate) implies that L,, —_ Z since
IO(Lln’ En) = l/né’ and ﬁn —5 Z. Let

Lan(e @) oc {(FXu(@)), i (- + C = Fu(Xn(@))) 31 =0, ooyn 1

and

An(es @) o< {(F(X (@), Fo(Xiyu(@))); i =0, -+, n 4 1},
then L,,(2,(t, ), 0) = Ly,(t, ®). Since sup,.,,|2,(t, ) —t| < sup, |F.(x)—F(x)|,
which converges to zero by Assumpion B, we can apply the result used in
Lemma 1.1 ([2], page 145) to show that L,, —_ Z. Finally, o(L,, L;,) <
ntsup, |F,(x) — F(x)|, and Assumption B establish the convergence of L,.
Lemma 1.1 can then be used to establish the remaining conclusions.

The relationship between the Gaussian process Z and the Brownian Bridge, as
well as the Kolmogorov result (2) on the limiting distribution of n* sup,,, |L.(?)|,
can now be stated. Since 4(x) = sup,.,., |x(¢)| is a continuous function on C,
|h(x) — k(y)| < p(x,y) for all x,yeC, we have that sup,.,., nt|L,(f)| —,
SUP,<. <1 |Z(f)| under Assumptions A and B.

THEOREM 1.5. For all values of a = 0,
P[supys,: | Z(1)] < @] = P[suPogsi [W(1)| < ] .

Proor. This theorem follows from the fact that the quadratic form generated
by the Brownian Bridge W° dominates the quadratic form generated by Z and
[1]. To prove this dominance, let,

0§t1§t2§ étkéli
— Z°(t, -+, t,) the dispersion matrix of (W(t), - .., W(t,))
— X(t, -+ -, t) the dispersion matrix of (Z(z,), - -+, Z(t})) .

Then with F, continuous, we have that

i Zz‘zl bn,i(s) =5, for all Sy and
14

S(U= ) = By ) = - Dt bos) — Hbuil) =) (NI, N2).
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Hence
ke[ Z(t, s ty) — Byt -5 )]
= lim, L [Zhes eby(t) — )P 2 0
Since
it - 0) =11 — 1), l<igjsk.

T Xty oty ezt By, e, ) - C
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