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THE DISTRIBUTION OF THE CHARACTERISTIC ROOTS
OF S,S,”! UNDER VIOLATIONS!

By K. C. S. PiLLAI
Purdue University

The paper deals with the density of the characteristic roots of S;Sz!
where S; has a noncentral Wishart distribution, W(p, m, %1, Q), and S, has
an independently distributed central Wishart distribution W(p, ns Zz, 0),
under a condition. This density is basic for an exact study of robustness
of tests of at least two multivariate hypotheses.

1. Introduction. Consider the test of the following two hypotheses: 1) equality
of covariance matrices in two p-variate normal populations and 2) equality of
p-dimensional mean vectors in / p-variate normal populations having a common
covariance matrix. In order to carry out some exact investigations of robustness
of tests of 1) when the assumption of normality is violated and of 2) when that
of a common covariance matrix is disturbed, the density of the characteristic
roots of S, S, is studied, where S, has a noncentral Wishart distribution W(p,
ny, Z;, ), S, has an independently distributed central Wishart distribution W(p,
n,, Z,, 0), and an assumption is made on Q or Z, Z,~* (see Section 3 for definitions).
The results of the robustness studies will be reported in a second report. The
distribution is also considered when Q is a random matrix.

2. Motivation. The distribution of the latent roots of S,;S,! is derived when

S,(p x p) has a noncentral Wishart distribution with n, d.f. and noncentrality

parameter matrix Q and covariance matrix Z,, W(p, n;, Z;, Q), and S,(p x p)
has an independently distributed central Wishart distribution with n, d.f. and
covariance matrix Z,, W(p, n,, Z,, 0), where n,, n, = p. Let R = diag(r, - - -,r,),
where 0 < r, < ... < r, < oo are the latent roots of S;S,~*. Then the distribu-
tion of R is obtained in two forms: the first when Q is partially random (de-
noted “random” hereafter) and the second when A = Z,Z,~'is “random”. Here
“random” implies diagonalization by an orthogonal transformation H and in-
tegration over H; in other words putting a Haar prior on H leaving the latent
roots non-random. The method not only serves to separate variables but also,
as for example in Theorem 1, leads to non-normality in the distribution, because
with Q “random” the Wishart distribution is no longer Wishart. Hence W(p,
n,, Z,, Q) with Q “random” is more analogical to the Edgeworth series type
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expansions in the univariate case. In Theorem 2, A is “random” and not Q,
as is appropriate for MANOVA. For canonical correlation Q can be made
totally random. It is also appropriate for non-normality in the sense that the
noncentral Wishart distribution itself is analogical to Edgeworth series expan-
sions for tests of Z, = Z,, although the approach of Theorem 1 is more interest-
ing in this case. However, from the discussion in the next section, convergence
questions favor the results of Theorem 2 for both studies.

3. The distribution of the latent roots of S,S,~*. The joint distribution of
Iy, -+, r, is derived in this section, (a) when Q is “random”, (b) when A is
“random”, and (c) when Q is completely random under (a) or (b).

THEOREM 1. Under the assumption that Q is “random”,
(i) the density function of R is given by
B1) Gy myy ma)e A PmR[HmP DA 4 R|-bemitny

o (3(m + ny)), -1
X 2o 2k m C((A + R)"R)C,(Q),

and
(ii) the joint density function of r,, - - ., r, is given by

C(ps ny, ny)e~ AR mmr=D T, (r, — 1)

oo CIC(Q)
(32) % Zk=0 Z‘ (%nl)xcx(lp)k!
o (=1)"91,,3(n + n,)), C(AH)C,(R)
X Zn:O Zv,a 2 C,,(Ip)n! s
where

(3-3) Co(p> m, m) = Tp(3(my + my))/[T,(3m)T,(3n5)] »
C(ps m, ny) = w¥’Cy(p, m, m,)|T,(3P) , A= 2P 150,

and g} , are constants (see Equation (27) of [2], Lemma 2 of [8] and tabulations in
[6]) with6 = (d, = dy = --- = d, = 0) such that }?_,d, = k + n.
Proor. The joint density of S, and S, is given in [1], [4],
[T (Em)Tp(3m,) |22, #1[22, 2] "te~ 2 exp[ — 4172, 18 ]|S, [Hmar =D
X exp[—4trZ,”'S,]|S,| ™ —?=V F,(3n,; 1Z,7'QS)) .

Let us transform A, = 4$Z,-#S, Z,-*and A, = 1Z,-3S,Z -4, since the characteristic
roots are invariant under the simultaneous transformations. (Z,7#(p x p) is sym-
metric positive definite like other matrices of the form A? defined later.) We
now have the joint density of A, and A, in the form
3.4) Ci(ps mys ny)e | Alime—trai| A |Hm—2-D

X e~rMa|A [Housh F(1n; QA,)
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where
Ci(p, ny, ny) = [I',(3n)T,(3n,)]
Now transform A; = A,}RA,} and A, = A,. (The same notation is used to denote

the matrix R both before and after diagonalization.) The Jacobian is |A,[}®+",
and hence the joint density of R and A, is given by

Ci(ps myy my)e™ 0| Atraemt MR [Hmmp=Detrba| A, [Hmt ==  Fy(fny; QAARALY) .

If we transform Q — HQH’ where H € O(p), and integrate over O(p) (see [1]),
all the factors in the above expression remain the same except the hypergeometric
function which becomes ,F,(3n;; Q, RA;). Now expand the latter hypergeometric
function in terms of zonal polynomials (see [4]), integrate out A, using Eq. (1)
of [1] and obtain (i) of Theorem 1. (The integration above and subsequently
is with respect to Lebesgue measure on the sets of variables involved.)

Further, in the expression before integrating out A,, expand exp(—1rRA,) =
F(—RA,) in zonal polynomials (see [4]) and apply Equation (27) of [2] (see also
[8]). The joint density of R and A, becomes

Ci(p, nys nz)e—t'rﬂlA[}nleI&(n1~p—1)e—trAAzlAzli(n1+n2—p-l)

X TS, —C®) __ye 5

—1)"g2, C,(RA,
" (3m). Co(1,)k! S

n!

Now integrate out A, using (1) of [1] as before and obtain the density of R in
the alternate form

Co(p> s my)e™ 2 A[im|R[HmmP=h
c@ (=12, T, (™ 5) @A)
© (3m). I, )k!
R can be diagonalized by an orthogonal transformation H such that HRH' =
diag (ry, ---,r,) wherer,, ---, r, are the characteristic roots of R. For unique-
ness, we assume that the elements in the first row of H are positive and the

roots are arranged in the order 0 < r, <7, < -+ < r, < co. The volume ele-
ment dR becomes (see [1], [4])

(3.5) dR =[], (r; _'rj) T1%..dr(dH) .

Substituting R in the above expression and integrating out H (where (dH) is not
normalized), we have the joint density of r, -+, r, in the form

X D=0 2 2i5=0 2ins

n!

Ci(ps nys ny)e™ B |A[4m|R[Fmm2=D T, (r, — 1))

—1)y*g? T <"1+”2’5)
XZ“—Z—C—‘(QL—ZZ’—oZa( ro T\

S (3ny), C L)kt A n!
X 2-? So(m C‘,(HRH’A—l)(dH) .

The factor 2-? multiplying the integral arises from the restriction that the
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elements in the first row of H are positive. Finally, by using the property of
the zonal polynomials given by James [4] for normalized measure,

(3-6) Yo CHSHT)(@H) = [C(S)C(T))/C(L,) ,

and (15) and (44) of [1], we have the result as stated in (ii) of Theorem 1.

For Q =0, since g;, =1 and § = v, the expression (3.2) gives the result
stated in (65) of [4].

The expression (3.2) may not converge for all values of R, A, and Q since
the remarks on page 480 of [4] concerning (65) also apply here. Hence we prove
the following theorem.

THEOREM 2. Let S, S,, R and r;’s be as stated in Theorem 1. Then the joint
density function of ry, - - -, r, is given by

C(P’ n,, nz)e-:rnlAl—&nllRléml—p—l)lI + 2R[—§(ﬂ1+n2) Hi>j (ri _ r_,,-)

(37) % Z/T:o Z,c (nl —2|— nz)x C,C(ZR(Ik-!I— ZR)—I)

0, C( = IATIL (@)
(%), cmem
]

X Zid=o 2is

where A is “random”, 2 is a positive real number, and C(p, n,, n,) is as defined in
(3.3). The generalized Laguerre polynomial L,(S) is defined in Equation (14) of [2]
and a, , are constants (see Equation (20) of [2], tabulations in [7]).

Proor. We start from the expression (3.4). Now apply (29) of [4] to ,F\(3n,;
QA Q%) to get the joint density of A, and A, as

Cz([” nz)e—trﬂIAl{;nze—t'rAAzlAz[i(nz—p—l)lAlli(nl—p—l)
X SRe(T)=X0>0 et'rT[Tl—inle—tr(l—W)Al(dT) s

where

Cy(ps 1)) = 247-D /[(27:1')“(““1‘,, <_’;1>] W = QiT-1Qi

and T = X, + /Y with X, a positive definite symmetric matrix and Y, real sym-
metric. The characteristic roots are invariant under simultaneous transformations
B, = AtA Al and B, = AtA A%,

Apply the transformation B, = B,!R, B, and B, = B, and integrate out B, using
(1) of [1] with £ = (0), and also (15) of [1]. Then we have the density of R,
in the form
(3.8)  Cy(p, ny, ny)e~t8|A|~im|R [} m=2-D

X SRe(T)=X0>0 e TR, + A~HI — W)A-#|~4m+m)(dT) ,
where

Cy(ps 1y 1) = Cy(ps )T, ("I_sz"z) .
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Upon transforming R = R;~}, (the Jacobian of this transformation is [R|-?+}),
(3.8) becomes
(3.9) Cy(p, ny, ny)e~ 8| A|~4m|R|tm—?-D
X Yre(my=xy>0 €77 T|7#|I 4 RAHI — W)A-~tmtn)(dT) .
Since R is symmetric we can diagonalize by an orthogonal transformation H
and use the same technique as before. After making necessary substitutions
and integrating out H using (3.5), we get the joint density of 7, --., r, in the
form
Cy(p> my my)e™ 0| A|m[R|EM=2=D I, (r, — 1)
(3.10) X SRe(T)=X0>o e T|~4m
X Yo 2771 + HRH'A-{(I — W)A-}|-tmtn)(dH)(dT) .
Now we can write
I + HRH'A| = |I 4 AR||I — (I — 27'A)H(AR)(I + AR)~'H'|
where 1 is a positive real number and in our case A = A~}I — W)A-i. After
making use of (James [4])

o [T — HRH'A|=*(dH) = ,F(a; A, R) ,
and (44) of [1], the expression (3.10) becomes
(3.11) Cy(p> ny, e~ 8| A|~tm|R|Fm-?=D|L 4 AR|~¥mtm) TT, - (r, — 7))
X Trocmyaxgro €[ T| 4
X By (BE M5 X — 22 AT — W)AH AR(L 4+ AR)) T,
where
Cp, 1o 1) = [C p> my m) T |IT(3) -

Now expand ,F, and integrate term by term. The expression (3.11) involves
the integral of the form

C.(I — 27'A~H(I — W)A—#
(3.12) § e 1y oxgpo €T T| 171 S CK((I) AT gt
Let us use the relation (Constantine [2])
¢(1-5) C.(S)

(3.13) = Zin=o 20 (—1)"a,,

C.(M) cm’
where a, , are constants discussed earlier. Then (3.12) becomes
k (_2—1)na‘ v trT|IT|-31C (A-YI W) dT
(3‘14) n=0 Zu — SRe(T)=X0>0 € | I ! v( ( - )) °
.
Now assume A “random” and transform A — HAH’ by an orthogonal trans-

formation H and integrate over H using (3.6). Then (3.14) becomes

(3.15) t 3, (=A)e, CAT

CV(I)CV(I) ) SRe(T)=X0>0 etrTlTI‘inlcv(I — T—lg) dT .
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Applying (17) of [2] to (3.15) gives

(zﬂi)&p(p+l) ax,v Cv(_Z_IA_I)Lvi(”l_p_l)(Q)

_ 2“,“,_1) ZI:L=0 Zv n .
T, (71 u) C,()C,(T)

(3.16)

Combining (3.11)—(3.16) and making use of (15) of [1] we have the result as
stated in the theorem. []

Formula (3.7) yields the following special cases:

(a) For Q =0, it is seen from (21) of [2] (see also Herz [3], page 487),
L7(0) = (r + 3(p + 1)), C.(I). Substituting L,}"~»-(0) into (3.7) and making
use of (3.13), we have the result of Khatri [5].

(b) By letting A = I 'and 2 = 1 and by using the relation (Constantine [2])

L‘,T(S) — k. Z (_l)nax,vcv(s)
(r+mCm TG+ m) e
where m = 1(p + 1), whenever Sis a (p X p) matrix and v = § = r we have
the result of Constantine [1], James [4].

In order to discuss the convergence of the series (3.7) let us note that series
(3.7) (excluding the factors outside the summation) is dominated termwise by

the series

(3.17)

et rQ

o (&(m + m)). C.AR(I + AR)™) -1p-1
2ii=0 i 2 il c.(I) D=0 205, Cs(—ATA )C,,(I)

in view of Theorem 3 of [2]. Further
Dm0 205 8, Co(—27ATC,(T) = C (I — 27°A7Y)/C(T)
by (19) of [2]. Hence (3.7) is dominated termwise by
C(ps my my)| A|~Hm[R[F=P=IL 4 AR[THME) [ 5 (ry — 1)

oo 1+ 2] )k —1A -1 -1
X ZMZK-@(,(”!—EK—(’I’%C‘(I—A A-)C,(AR(I + IR)™),

which is independent of Q and a, , coefficients, and is in fact the joint density
function of the characteristic roots of S, S,~* given by Khatri [5].
Let us now consider  as a random matrix $Z,"*MYY'M'Z,~¢ where YY’ has
a central Wishart distribution W(q, ny, Z;, 0), i.e.,
(3.18) {To (@) |22} YY'[rsm=0 exp tr (— 32,7 YY')] .
Multiplying (3.2) by (3.18), integrating term by term with respect to YY’, and
using (1) of [1], we get the joint density of r,, - - -, r, in the form:
C(p, ny, ny)| A1 + M'Z,~'ME,|-ins|R|m-p—D
- iny), C.[(I + Q)7'Q]
3.19 (=) T (313). Cs )7,
( ) X H’L>J (rz l") Zk—o Zx (%nl)‘ C‘(I)k!

- (=1)"g2,G(m + my)), C;(AT)C,(R)
x Zn:O Zv,d 2 C,(I)n' )
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where Q, = ZiM'Z -'"MZ;. Now, alternately, consider (3.7). Expand the gen-
eralized Laguerre polynomial in (3.7) using the expansion in (3.17). After mul-
tiplying this new form of (3.7) by (3.18), integrating YY’ and using (1) of [1],
we have the joint density of r,, - - -, r, in the form

Cpr e A1+ B, ME,
X |Rpm=P=DIL 4 AR|~Htm) T, s (r, — 1))

(3.:20) X Do Do (0 + ), SRR

k!
k Cy(—=2'A7Y)
X 2ld=0 215 9,s —_-—C,(I)

d (=1)a,,,(3ns), C,[A + Q)7'Q,]
X Lo 2 (3. C.0D |

It is easy to see that the distribution of the characteristic roots for the canoni-
cal correlation problem is a special case of (3.20).
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