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CHARACTERIZING EXPONENTIAL FAMILY DISTRIBUTIONS
BY MOMENT GENERATING FUNCTIONS!

By ALrLAN R, SAMPSON
Florida State University and Tel Aviv University

It is shown that if T has an unknown exponential family distribution
with natural parameter 6, then G(@) = ET uniquely specifies the moment
generating function. The converse is proved, namely, if {To} is a family
of random variables with moment generating functions of a certain form,
then it must be an exponential family. Moreover, several necessary and
sufficient conditions are given so that a function can be the mean value
function of an exponential family distribution.

1. Introduction. In this paper we consider certain results characterizing expo-
nential family distributions through their mean functions and moment generating
functions. We also give necessary and sufficient conditions so that a function
can be the mean value function of an exponential family distribution. Our work
was motivated in part by Anderson [1]. She shows that the normal distribution
is characterized by being an exponential family distribution having a mean
function of a certain form. Bildikar and Patil [3] give a general discussion of
multidimensional exponential family distributions and consider certain chatac-
terizations for this family. In particular they show that the ratio of the mean
to the variance of the family’s sufficient statistic characterizes the binomial,
Poisson and negative binomial distributions.

Suppose {T,, 6 ¢ 8} is a family of scalar valued random variables where the
following holds.

There exists a o-finite measure g, such that the pdf p(z, 6)
(1.1) of T, withrespectto p is of the form

p(t, 0) = exp[0t + Q(0) + R(1)]
on some set S (independent of 6).

Thus T, is a random variable whose distribution is an exponential family
distribution with a single natural parameter 6.

It is shown that if (1.1) holds and g(f) = ET, for 6 ¢ ©, then the moment
generating function (mgf) of T, is uniquely determined and given by

(1.2) my,o(S) = exp[§5* g(w) dw] .
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Additionally we prove the converse showing that if {T,, # € ©} is a family of
random variables whose mgf’s are given by (1.2), then T, must have an expo-
nential family distribution with respect to some g-finite measure ¢ and ET, must
be equal to g(f). Also, we give necessary and sufficient conditions on functions
g(0) so that g(f) can be equal to ET,, § € ®, when {T,} is a family of random
variables satisfying (1.1). Multivariate versions of these results are obtained.

In expressing our results, as will become apparent in the proofs, we could
equivalently use mgf’s or characteristic functions or bilateral Laplace Trans-
forms (B.L.T.).

2. The scalar case. Because we are dealing with the natural parameter in
(1.1), we consider © to be the natural parameter space. In order that the func-
tion g(@) be differentiable everywhere on ©, we make the following assumption.

AssUMPTION. Let © be open.

Because additionally the natural parameter space is convex, O is alternatively
written (a, b), which may possibly be a non-finite interval.

THEOREM 1. Let {T,, 0 € (a, b)} be a family of random variables such that (1.1)
holds and ET, = g(0). Then for 0 € (a, b) the mgf of T, exists and is given by (1.2)
for se(a—6,b —0).

Proor. Note se(a — 0,6 — 0) iff 6 + se(a, b)) = O. Because (1.1) holds
and se(a — 0, b — 0),

Mro(8) = §5 eXp[(0 + )t + Q(0) + R()] dp
— exp[Q(6) — Q(6 + 9)] .

Differentiate m,, ,(s) by s and set s = 0 to obtain that Q(0) satisfies the differen-
tial equation g(0) = —dQ(6)/d6. [I

Theorem 1 is implicitly contained in [3], though not in the actual form given
here.

A much more interesting result is the converse of Theorem 1 given in the
theorem below.

THEOREM 2. Suppose {T,, 0 € (a, b)} is a family of random variables. For all 0,
let my, o(5), the mgf of T,, be given by (1.2) for se (@ — 6, b — ). Then for all 0,
ET, = g(0) and (1.1) holds.

Proor. That ET, = g(¢) follows by evaluating dm, ,(s)/ds at s = 0.

To show (1.1), first fix 6 =6, for any 6,¢(a,b). Because my ,(s) =
exp[§%** g(w) dw] is a moment generating function, there exists a probability
measure g, such that

Mz,0,(5) = {Zw € dpty, ,
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for se(a — 6,, b — 6,). But for any 6 ¢ (a, b)

mz,o(s) = eXp[§5** g(w) dw]
= exp[{G* 770 g(w) dw + (o g(w) dw]
= exp[§70 g(w) dwlmy (s + 0 — 6y)
because s + 6 — 0, € (@ — 0y, b — 0,) iff se (@ — 0, b — 6). Therefore,

mro(s) = (2 e'p*(t, 0) dpy,
where
p¥(t, 0) = exp[t0 + (fog(w)dw — 16,] .

Observe that p*(r, #) > 0 and § p*(s, 6) dye = 1 so that p* is a pdf with respect
to s, In this case S is the support of #o, Which does not depend on 6. The result
now follows from the uniqueness theorem for moment generating functions. []

Note 2.1. The proof of Theorem 2 demonstrates that a set of functions of the
form (1.2) forse (@ — 0, b — ) and 0 € (a, b) is a set of mgf’s if at least one of
the functions is an mgf.

The question arises as to what are necessary and sufficient conditions on a
function g, so that if {T,} is a family of random variables satisfying (1.1), ET,
can be equal to g(f) for § ¢ ©. Loosely speaking, the question is which functions
can arise as expectations of exponential family random variables?

DEFINITION. M = {r(+): there exists a family {T,, 6 € (a, b)} satisfying (1.1)
with y(0) = ET,}.

THEOREM 3. In order that a function g € M, it is necessary and sufficient that for
some 0, € (a, b), exp[{jo+* g(w) dw], se (a — b,, b — 6,), be an mgf.

The proof of this Theorem follows immediately from Theorems 1 and 2 and
Note 2.1.

We now discuss some ways of verifying whether g e M, or equivalently if a
function exp[sgg“ g(w)dw], se(a — 6y, b — 6,), is an mgf.

LEMMA 1. In order that exp[{j* g(w) dw], s e (a — 6y, b — 8,), be an mgf, it is
necessary and sufficient that

2.1) exp[§5+” g(w) dw] is nonnegative definite for (2u,2v)e® x O,
where © = (a, b).
Proor. Note that exp[{f* g(w) dw], se(a — 6y, b — 6,), is an mgf iff
(2.2) exp[{5—° g(w)dw], se (@, — b, 0, — a)

isa B.L.T. However, by Theorem 21 of [9] a necessary and sufficient condition
that (2.2) be a B.L.T. is that exp[{%~“1**v g(w) dw] be nonnegative definite for
0y — b < 2u, 20, < 0, — a. Setu =0,/2 — u,andv = 6,/2 — v, to see that this
condition is equivalent to (2.1). []
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LEmMMA 2. Let g(0) = P,(0), where P,(+) is a polynomial of degreen. Ifn = 2,
then g ¢ M.

Proor. If g(f) = P,(f), n = 2, then by Theorem 1, m, 4,(s) = exp[Q,,(5)]
where Q,,,(s) is a polynomial of degree n + 1 > 2. But by the Theorem of
Marcinkiewicz (e.g., page 213 of Lukacs [7]), m, ,(s) cannot then be an mgf for
any 0 € (a, b). The result now follows from Theorem 3. []

As noted earlier we could express our results in terms of the characteristic
function ¢, ,(s) of T,. It can be shown that if {7, 6§ ¢ ©} satisfies (1.1), then

(2.3) b7 .6(5) = exp[G(@ + is) — G(O)],

where G(z) is the analytic extension to the complex plane of { g(w)dw. The proof
follows the same lines as that of Theorem 1 with the added observation that

b(0) = {exp[0t + R(t)] du

considered as a function of the complex variable 6 is analytical in the strip: real
part of # in © (e.g., Theorem 9, page 52 of [6]). Hence, equivalent to (1.2)
being an mgf is that (2.3) is a characteristic function.

We can obtain additional results about {T,} by verifying other properties about
9(0). For example, suppose {T,} is a family of nonnegative random variables
satisfying (1.1) for § € (— o0, ¢)and ET, = g(f). Then a necessary and sufficient
condition that for a given 6,, T, have an infinitely divisible distribution is that
fort >0

9%, — 1 >0 for k=0,1,--.,

where g*¥(x) = d*g(x)/dx*. A proof of this result can be obtained using Theo-
rem 1, page 450 of Feller [4].
We now consider some simple examples of Theorem 1.

ExampLE 1. If g(0) = 6, then m,(s) = exp[sf + s*/2] which is the mgf of a
normal random variable with mean # and variance 1.

ExaMmpLE 2. If g(f) = —6-, then m,(s) = (1 + s/6)~* which is the mgf of an
exponential distribution with parameter —4.

ExampLE 3. If g(0) = €, then m,(s) = exp[e’(e* — 1)] which is the mgf of a
Poisson random variable with parameter ’.

ExampLE 4. If g(0) = (1 + e7%)%, then m,(s) = (1 + e**%)/(1 + €’) which is
the mgf of a Bernoulli random variable with probability of success (1 + e~%)~%.

Up to reparametrization by a constant, Example 1 is essentially Theorem 1
of [1]; Examples 3 and 4 overlap Theorem 5.1 of [3].

3. The vector case. In this section we discuss exponential families with more
than one sufficient statistic.
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Suppose {T,, @ € O} is a family of k-dimensional random vectors satisfying:

There exists a o-finite measure p, such that the pdf
(3.1)  p(t,0) of T, withrespectto p is of the form

p(t, 0) = exp[0't + Q(6) + R(t)]
on some set S (independent of @) .

Without loss of generality, assume © is an open k-dimensional rectangle. (It
is supposed that © is actually k-dimensional, so that convexity of the natural
parameter space implies © contains such a rectangle which may be used in place
of ©.)

Because the vector results are the analogues of the corresponding ones in the
previous section, we delete all proofs.

Analogous to (a — 6, b — @), define the following set

Af) ={s: 0 +sc0B}.

Note A(@) is an open rectangle containing the origin. For any function 4 of
0, define 0h(6)/060 = (0k(6)/36,, - - -, 0h(6)/d8,) .

THEOREM 4. Let {T,, 6 ¢ ©} be a family of random vectors such that (3.1) holds
and ET, = G(0). Then the differential equation

(3.2) —G(0) = oI'(8)/00
admits a solution and the mgf of T, exists and is given for s € A(0) by
(3.3) my 4(s) = exp[I'(@) — T'(6 + )],

where I'(0) is a solution of (3.2).

Note that the condition that there exists a solution to (3.2) is equivalent to
the integrability of g(¢) in the univariate case.

THEOREM 5. Let {T,, 8 € O} be a family of random vectors, such that for all 8,
my () is given by (3.3) and (3.2). Then ET, = G(0) and (3.1) holds.

THEOREM 6. [In order that a function G be the mean value function of a family
given by (3.1), it is necessary and sufficient that for some 6,¢ ©, exp[['(6,) —
['(8, + s)], where T is given by (3.3), is.an mgf for s € A(8,).

The multivariate form of (2.1) becomes:
exp[I'(@,) — I'(u + v)] is nonnegative definite for (2u,2v)c® x 0,
where I is again given by (3.2).

ExampLE 5. If G(6) = X6, X positive definite, then (3.2) becomes —26 =
oI'(#)/06 which admits only solutions of the form I'(@) = —16'260 + ¢ (e.g.,
Graybill [5], page 262). Hence, my ,(S) = exp[—30'Z0 + 1(6 + s)'Z(0 + s)] =
exp[s'Z0 + 1s'Zs] which is the mgf of a normal random vector with mean Z@
and covariance matrix X.
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The difference between the format of this example and Theorem 2 of [1] is a
result of our parametrizing by the natural parameter space.

ExamrLE 6. If G(0) = (—6,7%, ---, —6,7Y)', then I'(0) = — X% ,log ¥, + c,
so that mq ,(s) = [k, (1 + s,/6,)~* which is the mgf of a vector of independent
exponential random variables with natural parameters —6,, - - -, —0,.

Example 6 has an interesting interpretation in the formulation of possible
multivariate generalizations of the exponential distribution. It implies that if
we seek a multivariate exponential distribution of the form

p(t, 0) = c(0)h(t) exp(6't)
requiring that

(3.4) EX, = —0,~ 1<i<k,

then p(t, #) must be the trivial independent distribution. Note that (3.4) is much
less restrictive than the usual condition of exponential marginals. For a review
of multivariate exponential distributions see Marshall and Olkin [8].

More generally we have the following lemma about multivariate generaliza-
tions of arbitrary univariate exponential family distributions, the proof being
obvious.

LEMMA 3. Let {T,: 6 € ©} be a family of random variables satisfying (1.1) and
having ET, = g(0). Let {Y,= (Y}, ---, Y), 0= (0, ---,0,)e X%,0} be a
family of random variables satisfying (3.1). If EY, = (9(6,), - - -, 9(6)), then
Y, -+, Y, are i.i.d. with the same pdf as T,.

4. Comments. While the case when T is a symmetric matrix random variable
could be considered as part of the vector case, it is more convenient to handle
separately. We only sketch such an approach. Replace in (3.1) the density by

4.1) pt, A) = exp[—tr (tA) + Q(A) + R(1)],
where ¢, A are positive definite p X p-matrices. Define the operator 9*/9*2,; =
(3)293/02,,;, where A(i, i) = Oand for i + j, A(i, j) = 1. Further define for any
real-valued function F(A), 0*F(A)/o*A = {0*F(\)[0*2,;}, where A = {4,,}.

Let {T,} be a family of random variables each having density of the form (4.1)
and satisfying ET, = G(A). Then the mgf of T, is

4.2) exp[I‘(A) —_ F(A -8,
where A — Se0 and T is a solution of
(4.3) G(A) = a*T'(A)[o*A .

ExaMPLE 7. If® = {A: A is positive definite} and G(A) = (n/2)A~*then (4.3)
becomes (n/2)A~* = 9*I'(A)/a* A, which has as a solution I'(A) = (n/2) log |A| + ¢
(e.g., page 267, [5]). Then (4.2) becomes exp[(n/2)log|A| — (n/2)log|A — S|] =
[A|*2]|A — S|, for Se I(A) = {S: A — Se0B}. Thisisthe mgfof Vy;, -+, V,,,

2V «++5 2V, 4, wWhere ¥V = W and W has the Wishart distribution with
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parameter A~ on n degrees of freedom. For a derivation of the characteristic
function of W and thus its mgf, see Anderson [2], page 160.

Finally note that in our theorems we could use other central moments of 7,
in place of ET,. The difference is that the simple first-order linear differential
equation relating g(f) to Q(f) becomes a much more complicated nonlinear dif-
ferential equation of higher order. Along these lines there are presentations in
[1] and [3], respectively, of characterizations of normal distributions by vari-
ances and of characterizations of binomial, Poisson and negative binomial ran-
dom variables by Var T,/ET,.
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