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A NOTE ON SOME BAYESIAN NONPARAMETRIC
ESTIMATES

By M. GOLDSTEIN
University of Oxford

With respect to a general quadratic loss function, the Bayes rule for

the mean of a probability distribution of unknown form is obtained, in the

_class of linear functions of the sample. The associated Bayes risk is also

obtained. A number of recent results in the literature are shown to be

direct corollaries of this result, and applications are given for the empirical
distribution function of the sample.

A sample, x = (x;, - - -, X,), is drawn.from F(.), a probability distribution on
the real line. The form of F(.) is unknown, and it is required to estimate the
mean of F(+), #(F). The sample is not necessarily independent, but it is assumed
that E(x,| F) = p(F) for all i, E(x;*| F) is independent of i, and E(x,x;|F) is in-
dependent of i, j for i = j.

A prior probability measure, P(-), is assigned over &, the space of all prob-
ability distributions on the real line, and the Bayes rule is sought with respect
to the general quadratic loss function
(1) L(F, d) = w(F)(i(F) — )",
where w(+) is a real nonnegative function on 5.

Direct, explicit evaluation of the Bayes rule for p(F) will, typically, be very
difficult. However, in Goldstein (1973), a general method is detailed for evalu-
ating the Bayes rule for u(F) in the class of linear combinations of a finite
number of functions of x, and also the associated Bayes risk (essentially, by
solving the implied regression equations, using the general theory of least
squares). This method is applied to derive the Bayes rule for yx(F), in the class
of estimates of the form a,x; + ... + a,x, + b, and this rule will be shown to
be equivalent to the Bayes rule for y(F), in the class of estimates of the form
ax + b, where % is the sample mean (denote this estimate as the B.L.E. (Bayes
linear estimate) in X). A number of recent results in the literature are shown
to be direct corollaries of this result and also some applications are given.

The loss function is normalized by assuming that

{ w(F)dP(F) = 1.
Thus, the probability measure P, (-) may be defined on &, by the relation
) dP,(F) = w(F) dP(F) .

Assuming that, with respect to the prior measure P,(), the mean and
variance of F exist a.e., the expected mean and the variance of the mean and
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the variance of % are defined, with respect to P, by
oy = § p(F) dP,(F),
©) Vo) = § (u(F) — f1,) dPy(F) ,
Vo(®) = § (§ (& — p(F))* dF(%)) dP,(F) ,
respectively, where F is the distribution of X, when x is drawn from F.

THEOREM 1. (i) Given observation x, the Bayes estimate for y(F), in the class of
estimates of the form (a,x, + --- + a,x, + b), with loss function (1), is given by

@ V@) + Vu()D)/(Vu(X) + Vi) -
(ii) The Bayes risk of estimate (4) is
©) (Vo) 4+ (V)™

Proor. By Theorem 2.1 (i) of Goldstein (1973), the Bayes rule for p(F) of
required form is

(6) (1, x, -5 x,) D7,

where D is the (n + 1) X (n + 1) matrix whose (i, j)th entry, d,;, is

™ d; = § w(F)E(x,x;| F)dP(F), i,j=0,1,2,...,n,
(where x, = 1), and b is the (n 4 1) vector whose ith entry, b;, is

(8) b, = § w(F)u(F)E(x,| F) dP(F) , i=0,1,2,---,n.

The conditions on x assumed above ensure that the coefficient of each x,, i =
1,2, ---,n, in the expansion of (6) above, is the same. Thus, the Bayes rule
for u(F) of required form is also the Bayes rule for y(F) in the class of estimates
of the form (ax + ). Applying Theorem 2.1 (i) again, the Bayes rule of re-
quired form is

(9) (1, x) <ﬂw ﬂZ(w)> <ﬂw(2)) ’
where
(10) facy = §§ () dF(X) dP,(F) ,

Po® = § (u(F))* dP,(F) .
Expanding (9) and noting that
(11) Pacwy — L™ = V(%) »

ﬂw(z) - ()"-‘w)2 = Vw(iu) ’
gives (4).

(ii) Similarly, applying Theorem 2.1 (ii), the Bayes risk of (4) is

1z J2 )
w ! w 1 w
(12) ﬂw ﬂz(w) #w(m - .ﬂ *
ﬂw ﬂw(z) ﬂw(z) ﬂw /’42(10)

Expanding (12) and applying (11) gives (5).
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When the function w(F) is constant (i.e., L(F,d) = (¢(F) — d)?), then the
measure P,(+), defined by (2) is the original measure P(.), and z,,, V,, (1), V(%)
are the prior expected mean, the prior variance of the mean and the prior vari-
ance of %, respectively. Denote these quantities by 2, V(u), V(X), respectively.

The following corollary is immediate:

CoroLLARY 1. (i) If
E(u(F)|x) = a% + b,

where a, b are constants, then E(u(F)|x) is given by (4), with w(F) = 1.
(ii) The posterior variance of the distribution of u(F) (i.e., the posterior Bayes
risk with quadratic loss) is not greater than (5), with w(F) = 1.

Corollary 1 (i) is essentially the result given in Ericson (1969), and Corollary
1 (ii) is essentially the result given in Finucan (1971). The generalizations of
Corollary 1 (i) and (ii), are immediate: that is, for a general set of functions in x,
Py(e)s o5 B(e), if E(u(F)|x) = a,hy(x) 4+ -+ + a,h,(x), then we can apply
Theorem 2.1 (i), Goldstein (1973), to identify the constants a,, - - -, a,; similarly,
by applying Theorem 2.1 (ii), to general sets of functions in x, we may derive
general upper bounds for the Bayes risk.

The nature of the B.L.E. in % is partly clarified in the following corollary.

COROLLARY 2. When x is an independent sample, then for any prior distribution
P on & with respect to which the mean and variance of F exist a.e., there exists
another prior distribution P’ on &, such that the quantities g1, V(y), V(x) are the
same with respect to P and P’, and such that under quadratic loss, the B.L.E. in %,
for p(F), with respect to P, is the unrestricted Bayes rule with respect to P', for every
sample size.

For example, with 2, V(p), V(x) defined for P (V(x) is the value V(%) for a
sample size one), define a normal prior distribution for x, with mean f, variance
V(p), and define the conditional distribution for x given x# as normal, mean g,
variance V(x). By (4), with w(F) = 1, this prior distribution satisfies Corollary
2. Thus, in this sense, the B.L.E. in % is the best normal approximation to the
Bayes rule.

In the derivation of (4), (5), the only property of * which was used was that
it was an unbiased estimate for p(F). Therefore these results can be applied to
any unbiased estimator. As a specific example consider the following:

We wish to estimate the distribution F(.), over the real line, from an inde-
pendent, identically distributed sample x = (x,, - - -, x,,).

Define the empirical distribution function of the sample by F,(.), where

(13) F,(x)) = ro/n,

r, being the number of elements of the sample which are not greater than x,.
For each x,, define a real function g,(+) on & by

(14) ' 9o(F) = F(x,) -
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It is easily seen that F,(x,) is unbiased for g,(F), and so Theorem 1 applies.

Define
F(x)) = { F(x,) dP(F),
(15) F®(x,) = § F¥(x,) dP(F) ,
dy = (F(x,) — F®(x0))[(F®(x0) — (F(x))*) -

Since r, can be thought of as the number of successes in # binomial trials with
probability of success F(x,),
(16) B(F,(x) = ((n — DF®(x) + F(x)/n

Theorem 1 then gives

CoROLLARY 3. (i) The Bayes rule for F(x,), in the class (aF(x,) + bF,(x,)),
with respect to loss function

(7) Ly(F, F') = (F(x0) — F'(x)))* 5
is
(18) (A F(x) + nFu(x))/(dy + 1) -
(ii) The Bayes risk of (18) is
(19) (n(F(x)) — FO(xo)™ + (FD(x0) — (F(x)))™)™" -

(As in Theorem 1, (18) is also the Bayes rule for F(x,) in the class of estimates
of the form a,I,(x)) + --- + a,I,(x,) + b, where I, is the indicator of the set
[x;, %0).) o

Note that (19) is less than (F(x,) — F®(x,))/n, which is never greater than
(4n)~.

When the prior distribution for F is Dirichlet, parameter a, (18) is the un-
restricted Bayes rule for F(x,) and d, is a(R), (Ferguson (1973)). (The ratio of
the Bayes risk before and after sampling is thus (a(R)/(a(R) + n)).) The follow-
ing extension of Corollary 2 is thus immediate.

CoRroOLLARY 4. For any given x,, the Bayes rule for F(x,) under loss function (17),
in the class of linear estimates of F,(x,), against any prior distribution P on 5, is
the unrestricted Bayes estimate against the Dirichlet prior distribution P’ on &, with
parameter « defined by a(t) = F(f)d,. There exists a single Dirichlet prior distribu-
tion such that the result holds for each x, in S, where S is a given subset of the real
line, if and only if d, is constant on S.
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