A NOTE ON SOME BAYESIAN NONPARAMETRIC ESTIMATES

By M. GOLDSTEIN

University of Oxford

With respect to a general quadratic loss function, the Bayes rule for the mean of a probability distribution of unknown form is obtained, in the class of linear functions of the sample. The associated Bayes risk is also obtained. A number of recent results in the literature are shown to be direct corollaries of this result, and applications are given for the empirical distribution function of the sample.

A sample, $\underline{x} = (x_1, \dots, x_n)$, is drawn from $F(\cdot)$, a probability distribution on the real line. The form of $F(\cdot)$ is unknown, and it is required to estimate the mean of $F(\cdot)$, $\mu(F)$. The sample is not necessarily independent, but it is assumed that $E(x_i|F) = \mu(F)$ for all i, $E(x_i^2|F)$ is independent of i, and $E(x_ix_j|F)$ is independent of i, j for $i \neq j$.

A prior probability measure, $P(\cdot)$, is assigned over \mathcal{I} , the space of all probability distributions on the real line, and the Bayes rule is sought with respect to the general quadratic loss function

(1)
$$L(F, d) = w(F)(\mu(F) - d)^2,$$

where $w(\cdot)$ is a real nonnegative function on \mathcal{F} .

Direct, explicit evaluation of the Bayes rule for $\mu(F)$ will, typically, be very difficult. However, in Goldstein (1973), a general method is detailed for evaluating the Bayes rule for $\mu(F)$ in the class of linear combinations of a finite number of functions of \underline{x} , and also the associated Bayes risk (essentially, by solving the implied regression equations, using the general theory of least squares). This method is applied to derive the Bayes rule for $\mu(F)$, in the class of estimates of the form $a_1x_1 + \cdots + a_nx_n + b$, and this rule will be shown to be equivalent to the Bayes rule for $\mu(F)$, in the class of estimates of the form $a_{\bar{x}} + b$, where \bar{x} is the sample mean (denote this estimate as the B.L.E. (Bayes linear estimate) in \bar{x}). A number of recent results in the literature are shown to be direct corollaries of this result and also some applications are given.

The loss function is normalized by assuming that

$$\int w(F) dP(F) = 1$$
.

Thus, the probability measure $P_{w}(\cdot)$ may be defined on \mathcal{F} , by the relation

$$dP_w(F) = w(F) dP(F).$$

Assuming that, with respect to the prior measure $P_w(\cdot)$, the mean and variance of F exist a.e., the expected mean and the variance of the mean and

736

Received April 1974; revised May 1974.

the variance of \bar{x} are defined, with respect to P_w , by

(3)
$$\begin{split} \bar{\mu}_{w} &= \int \mu(F) \, dP_{w}(F) \,, \\ V_{w}(\mu) &= \int (\mu(F) - \bar{\mu}_{w})^{2} \, dP_{w}(F) \,, \\ V_{w}(\bar{x}) &= \int (\int (\bar{x} - \mu(F))^{2} \, d\bar{F}(\bar{x})) \, dP_{w}(F) \,, \end{split}$$

respectively, where \bar{F} is the distribution of \bar{x} , when x is drawn from F.

THEOREM 1. (i) Given observation \underline{x} , the Bayes estimate for $\mu(F)$, in the class of estimates of the form $(a_1x_1 + \cdots + a_nx_n + b)$, with loss function (1), is given by

(4)
$$(V_w(\bar{x})\bar{\mu}_w + V_w(\mu)\bar{x})/(V_w(\bar{x}) + V_w(\mu)) .$$

(ii) The Bayes risk of estimate (4) is

(5)
$$((V_w(\bar{x}))^{-1} + (V_w(\mu))^{-1})^{-1}.$$

Proof. By Theorem 2.1 (i) of Goldstein (1973), the Bayes rule for $\mu(F)$ of required form is

(6)
$$(1, x_1, \dots, x_n)D^{-1}b,$$

where D is the $(n + 1) \times (n + 1)$ matrix whose (i, j)th entry, d_{ij} , is

(7)
$$d_{ij} = \int w(F)E(x_i x_j | F) dP(F), \qquad i, j = 0, 1, 2, \dots, n,$$

(where $x_0 = 1$), and \underline{b} is the (n + 1) vector whose *i*th entry, b_i , is

(8)
$$b_i = \int w(F)\mu(F)E(x_i|F) dP(F), \qquad i = 0, 1, 2, \dots, n.$$

The conditions on \underline{x} assumed above ensure that the coefficient of each x_i , $i=1,2,\dots,n$, in the expansion of (6) above, is the same. Thus, the Bayes rule for $\mu(F)$ of required form is also the Bayes rule for $\mu(F)$ in the class of estimates of the form $(a\bar{x}+b)$. Applying Theorem 2.1 (i) again, the Bayes rule of required form is

(9)
$$(1, \bar{x}) \begin{pmatrix} 1 & \bar{\mu}_w \\ \bar{\mu}_w & \bar{\mu}_{2(w)} \end{pmatrix}^{-1} \begin{pmatrix} \bar{\mu}_w \\ \bar{\mu}_w^{(2)} \end{pmatrix},$$

where

(10)
$$\bar{\mu}_{2(w)} = \int \int (\bar{x})^2 d\bar{F}(\bar{x}) dP_w(F) ,$$

$$\bar{\mu}_w^{(2)} = \int (\mu(F))^2 dP_w(F) .$$

Expanding (9) and noting that

(11)
$$\bar{\mu}_{2(w)} - \bar{\mu}_{w}^{(2)} = V_{w}(\bar{x}) ,$$

$$\bar{\mu}_{w}^{(2)} - (\bar{\mu}_{w})^{2} = V_{w}(\mu) ,$$

gives (4).

(ii) Similarly, applying Theorem 2.1 (ii), the Bayes risk of (4) is

(12)
$$\begin{vmatrix} 1 & \bar{\mu}_{w} & \bar{\mu}_{w} \\ \bar{\mu}_{w} & \bar{\mu}_{2(w)} & \bar{\mu}_{w}^{(2)} \\ \bar{\mu}_{w} & \bar{\mu}_{w}^{(2)} & \bar{\mu}_{w}^{(2)} \end{vmatrix} / \begin{vmatrix} 1 & \bar{\mu}_{w} \\ \bar{\mu}_{w} & \bar{\mu}_{2(w)} \end{vmatrix}.$$

Expanding (12) and applying (11) gives (5).

When the function w(F) is constant (i.e., $L(F, d) = (\mu(F) - d)^2$), then the measure $P_w(\cdot)$, defined by (2) is the original measure $P(\cdot)$, and $\bar{\mu}_w$, $V_w(\mu)$, $V_w(\bar{x})$ are the prior expected mean, the prior variance of the mean and the prior variance of \bar{x} , respectively. Denote these quantities by $\bar{\mu}$, $V(\mu)$, $V(\bar{x})$, respectively.

The following corollary is immediate:

COROLLARY 1. (i) If

$$E(\mu(F)\,|\,\underline{x})=a\bar{x}+b\;,$$

where a, b are constants, then $E(\mu(F)|\underline{x})$ is given by (4), with w(F) = 1.

(ii) The posterior variance of the distribution of $\mu(F)$ (i.e., the posterior Bayes risk with quadratic loss) is not greater than (5), with w(F) = 1.

Corollary 1 (i) is essentially the result given in Ericson (1969), and Corollary 1 (ii) is essentially the result given in Finucan (1971). The generalizations of Corollary 1 (i) and (ii), are immediate: that is, for a general set of functions in \underline{x} , $h_1(\cdot), \dots, h_r(\cdot)$, if $E(\mu(F) | \underline{x}) = a_1 h_1(\underline{x}) + \dots + a_r h_r(\underline{x})$, then we can apply Theorem 2.1 (i), Goldstein (1973), to identify the constants a_1, \dots, a_r ; similarly, by applying Theorem 2.1 (ii), to general sets of functions in \underline{x} , we may derive general upper bounds for the Bayes risk.

The nature of the B.L.E. in \bar{x} is partly clarified in the following corollary.

COROLLARY 2. When \underline{x} is an independent sample, then for any prior distribution P on \mathcal{F} with respect to which the mean and variance of F exist a.e., there exists another prior distribution P' on \mathcal{F} , such that the quantities μ , $V(\mu)$, V(x) are the same with respect to P and P', and such that under quadratic loss, the B.L.E. in \bar{x} , for $\mu(F)$, with respect to P, is the unrestricted Bayes rule with respect to P', for every sample size.

For example, with $\bar{\mu}$, $V(\mu)$, V(x) defined for P(V(x)) is the value $V(\bar{x})$ for a sample size one), define a normal prior distribution for μ , with mean $\bar{\mu}$, variance $V(\mu)$, and define the conditional distribution for x given μ as normal, mean μ , variance V(x). By (4), with w(F) = 1, this prior distribution satisfies Corollary 2. Thus, in this sense, the B.L.E. in \bar{x} is the best normal approximation to the Bayes rule.

In the derivation of (4), (5), the only property of \bar{x} which was used was that it was an unbiased estimate for $\mu(F)$. Therefore these results can be applied to any unbiased estimator. As a specific example consider the following:

We wish to estimate the distribution $F(\cdot)$, over the real line, from an independent, identically distributed sample $\underline{x} = (x_1, \dots, x_n)$.

Define the empirical distribution function of the sample by $F_n(\cdot)$, where

(13)
$$F_n(x_0) = r_0/n ,$$

 r_0 being the number of elements of the sample which are not greater than x_0 . For each x_0 , define a real function $g_0(\cdot)$ on \mathscr{F} by

(14)
$$g_0(F) = F(x_0)$$
.

It is easily seen that $F_n(x_0)$ is unbiased for $g_0(F)$, and so Theorem 1 applies. Define

(15)
$$\bar{F}(x_0) = \int F(x_0) dP(F) ,$$

$$\bar{F}^{(2)}(x_0) = \int F^2(x_0) dP(F) ,$$

$$d_0 = (\bar{F}(x_0) - \bar{F}^{(2)}(x_0))/(\bar{F}^{(2)}(x_0) - (\bar{F}(x_0))^2) .$$

Since r_0 can be thought of as the number of successes in *n* binomial trials with probability of success $F(x_0)$,

(16)
$$E(F_n^2(x_0)) = ((n-1)\tilde{F}^{(2)}(x_0) + \tilde{F}(x_0))/n.$$

Theorem 1 then gives

COROLLARY 3. (i) The Bayes rule for $F(x_0)$, in the class $(a\bar{F}(x_0) + bF_n(x_0))$, with respect to loss function

(17)
$$L_0(F, F') = (F(x_0) - F'(x_0))^2,$$

is

$$(18) (d_0 \bar{F}(x_0) + nF_n(x_0))/(d_0 + n) .$$

(ii) The Bayes risk of (18) is

$$(19) (n(\bar{F}(x_0) - \bar{F}^{(2)}(x_0))^{-1} + (\bar{F}^{(2)}(x_0) - (\bar{F}(x_0))^2)^{-1})^{-1}.$$

(As in Theorem 1, (18) is also the Bayes rule for $F(x_0)$ in the class of estimates of the form $a_1 I_1(x_0) + \cdots + a_n I_n(x_0) + b$, where I_j is the indicator of the set $[x_j, \infty)$.)

Note that (19) is less than $(\bar{F}(x_0) - \bar{F}^{(2)}(x_0))/n$, which is never greater than $(4n)^{-1}$.

When the prior distribution for F is Dirichlet, parameter α , (18) is the unrestricted Bayes rule for $F(x_0)$ and d_0 is $\alpha(\mathbb{R})$, (Ferguson (1973)). (The ratio of the Bayes risk before and after sampling is thus $(\alpha(\mathbb{R})/(\alpha(\mathbb{R})+n))$.) The following extension of Corollary 2 is thus immediate.

COROLLARY 4. For any given x_0 , the Bayes rule for $F(x_0)$ under loss function (17), in the class of linear estimates of $F_n(x_0)$, against any prior distribution P on \mathcal{F} , is the unrestricted Bayes estimate against the Dirichlet prior distribution P' on \mathcal{F} , with parameter α defined by $\alpha(t) = \bar{F}(t)d_0$. There exists a single Dirichlet prior distribution such that the result holds for each x_0 in S, where S is a given subset of the real line, if and only if d_0 is constant on S.

Acknowledgments. I would like to thank my supervisor, Dr. A. F. M. Smith, for many helpful discussions, and the Science Research Council for their financial support. A referee's comments were most useful.

REFERENCES

[1] Ericson, W. A. (1969). A note on the posterior mean of a population mean. J. Roy. Statist. Soc. Ser. B 31 332-334.

- [2] Ferguson, Thomas S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230.
- [3] FINUCAN, H. H. (1971). Posterior precision for non-normal distributions. J. Roy. Statist. Soc. Ser. B 33 95-97.
- [4] GOLDSTEIN, M. (1975). Approximate Bayes solutions to some nonparametric problems. Ann. Statist. 3 512-517.

MATHEMATICAL INSTITUTE UNIVERSITY OF OXFORD 24-29 St. GILES OXFORD OX1 3LB ENGLAND