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EXACT ROBUSTNESS STUDIES OF TESTS OF TWO
MULTIVARIATE HYPOTHESES BASED ON FOUR
CRITERIA AND THEIR DISTRIBUTION
PROBLEMS UNDER VIOLATIONS!

By K. C. S. PILLAI? AND SUDJANA®
Purdue University

This paper deals with robustness studies of tests of two hypotheses (A)
Zy=Zpin N(pi, Zi), i =1,2,and B) g1 = -+- = g in N(pt, 2),i = 1,2, « - -,
1, Z unknown, based on four test criteria (a) Hotelling’s trace, (b) Pillai’s
trace, (c) Wilks’ A and (d) Roy’s largest root. The robustness for (A) is
against non-normality and for (B) against unequal covariance matrices and
is studied in the exact case, unlike the results obtained earlier. In this con-
nection, Pillai’s density of the latent roots of S; S;~! under violations is used
toderive the distributions or the moments of the criteria. Numerical studies
of the tests of the two hypotheses based on the four criteria are made for
the two-roots case.

1. Introduction. Consider a p X n, matrix variate Uand p X n, matrix variate
V, ny, n, = p, where the columns are all independently normally distributed with
covariance matrix Z, for U and Z, for V while E(U) = M and E(V) = 0. It is
well known that the density of S, = UU’ is a non-central Wishart W(p, n,, Z,, Q),
Q = {MM’Z;~* and S, = V'V is a central Wishart W(p, n,, Z,, 0), where S, and
S, are independently distributed. Under the assumption that Z}Z,~'%} is
“random” (see Section 2 for the definitions of the term), Pillai [10, 11] has ob-
tained the joint density of the latent roots r,, - .., r, of S;S,™* in the form

(L) G, A|=[R["[{ + AR|~ [[s; (r, — r,)
X Lk=o Ze () /KJCAAR( + AR)THF,
where F, is defined by

(1.2)  F, = Yoo 23 [{aes Co(— 27 AL R)}/{(3m), CHC(D »
and C, is given by
(1.3) Cc — o TI2, T(3(2m + 2n 4+ p + i + 2)) ,
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618 K. C. S. PILLAI AND SUDJANA

m=m—p—1/2,n=(n,—p—1)/2,v=(n,+ny)/2, A >0, R=diag(ry, - - -,71,),
o< - <r,< oo, A=diag(2, --+,4,),0< 4 < --- <2, < oo being
the latent roots of Z,X,~, C(A) denotes the zonal polynomial expressible in
terms of the latent roots of A (James [6]), L,™(Q), the Laguerre polynomial which
in turn can be expressed as a zonal polynomial series (Constantine [2]), a, , are

constants (Constantine [2], Pillai and Jouris [16]) and (a), = []?-.(a — (i — 1)),
(@), = I'(a + k)/T'(a), where k, are the components of the partition « of k such
that £ = (k;, - - -, k,) into not more than p components withk; = ... =k, =0

andk =k, + .-+ + k,.
Further, let us consider the hypotheses (A) and (B) against respective alter-
natives as follows:

A) Hy,: X%, =X, orequivalently H,:2, =1, i=1,...,p, against
H:i=1, X2, 4>p, and
(B) Hy: Q=0 given X, = ... =2, (unknown) against
H:Q+0 given X = ... =2, (unknown).

Some studies on the tests of these hypotheses have been carried out by Pillai
and Jayachandran [14, 15] for p = 2 based on the powers of four criteria (a)
the criterion U® = }?_, r,, n, times Hotelling’s T,?, (b) Pillai’s trace V» =
2 {r/(1 + )} (c) Wilks® likelihood ratio W = TJ7_, (1 + r,)~*and (d) Roy’s
largest root r,. For p = 2 and p = 3, Pillai and Dotson [13] have studied the
powers of individual latent roots for test of (B) and Pillai and Al-Ani [12] for
test of (A).

In this paper, first the following are derived: (1) the density of T = U, under
a condition, (2) the density of W, (3) the density of Roy’s largest root in two
forms and (4) the distributions of all the above criteria in the two-roots case in
a suitable form for computation. These are achieved by the use of density (1.1)
and the method employed by Pillai [10]. Using the distributions of the criteria
in the two-roots case, an attempt is made to study the exact robustness of the
above four criteria for test of (A) when the assumption of normality is violated
and of (B) when that of common covariance matrix is disturbed. Lower or upper
tail probabilities of the criteria were computed in view of tests of (A) and (B).
A few inferences are drawn on the basis of the tabulations.

2. The density function of 7. In this section the density function of 7 =
AtrS;S,7%, 2 > 0, is derived, where we assume that n;, n, > p so that we have
p nonzero latent roots of S;S,~'. We further assume that Q is partially random
(denoted by “random” hereafter) in the sense that it is diagonalized by an or-
thogonal transformation He 7(p) and integrated with respect to H over or-
thogonal group <(p). This implies putting a Haar prior on H, leaving the
characteristic roots non-random.

THEOREM 2.1. Let S,(p X p) and Sy(p X p) be independently distributed, S, having
W(p, ny, Z,, Q) and S, having W(p, n,, Z,, 0). If T=2trSS,™, 1> 0, and Q is
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“random”, then the density function of T is given by
2.1) AT) = {L,()/T,(3na)}|2A|"tme=raTtrm

X Dm0 Ze [0 =T CL(ATAT)L™Q)/{kL L3 pny + K)CUDY,
where |T/(24,))] < 1.

Proor. From the joint density of S, and S,, after making transformations
A, = 42,718,274, A, = 1Z,71S,2 -t and then B, = ZtA X, B, = Z!A, X}, where
2 = Z}E,7'%F (Z,7% being symmetric positive definite like other matrices of the
form At defined later), we have
2.2) CIZ|4me=1x5a|B,||B, "+ =B F,(4n,; E4QE1B,)
where C = {T' (4n,)T",(3n,)}"e-*2. Now, the Laplace transform of T, after in-
tegrating B, out and then transforming D = Z¢B, X} has the form
(2.3)  9(t) = CT,(3m)|Z[F(12) 74" {pe €7 0| D]~

X L+ (12)7D| =", Fy(R(12)"D(I + (¢4)7'D)~") dD,
where a = 1(p + 1).

Assuming Q “random” and integrating over ¢7(p) using Theorem 1 of Con-
stantine [2] we have
(2.4)  9(1) = CT,(Fm)|Z|t"a(e2) 74" {0 €720 |D]

X 20 2 LMD C— (t)TD)Y/{k! C (D} 4D .
Upon integrating with respect to ¢ and inverting g(r), see page 222 of Constantine
[2], we obtain
(2:5)  AT) = CT,(gm)|Zffraa=temTiomt {7 20D e

X D=0 2 [{LMQC— T2 D)} /{k! T (3 pry + k)C(D}] dD .
Applying the estimate of L,™(Q), Theorem 3 of [2], and finally integrating D

out we obtain the result as stated in the theorem.
Special cases of (2.1) are

(a) For Q = 0 we have formula (9) of Khatri [7], and
(b) For A =T1and 2 = 1, we obtain Theorem 4 of Constantine [2].

3. The density function of W, For the derivation of the density of W' we
consider W® = |I — L|, i.e. we let L = AR(I + AR)~* in (1.1), where now
L =diag(l, --+,1,). From the theorem of Pillai [10, 11], the joint density of
Ly L, -+, 1, is given by
3-1) CIL™I — L|" ITes  (h — 1) Zfeo Ze () Cu(L)/KI}F,
where C = C,e~"9%|2A|"#"1 and F, is as in (1.2).

The hth moment of W is given by

(3:2)  E((W®)) = C {iso LML — L™ 37, 31, {(»).CL)/K}AL)F, .
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Now integrate L out to obtain the Ath moment of W' in the form
(3.3)  E((W®)) = [L,()/T,(Gny)le "% 24|74
X It 5, QA0 DT 46 -,
wherer = 4n, +h — §(p— 1), b, =%(i — 1) and a, = §n, + k,_,,, + b,.
Finally, bysthe inverse Mellin transform we get the density function of W
W) = [Ly()[Ty(§ny)]e 0|24~
(3.4 X 2% 2ie {(0)e(Gm) Co(D)/ kI W)

2ri)~1 (etio (Pimy-r Hg’:l F(r + bz) dr . F .
X @iy gt (W) e dr - F

But the integral in (3.4) is expressible in terms of Meijer’s G-function, [17], so
that we obtain the following:

THEOREM 3.1. Let S, and S, be as in Theorem 2.1 and let R = diag (ry, - - -, r,)
where ry, - - -, r, are the latent roots of S,S,™*. If Z}X,~'Z} is “random”, then the
density function of W = |I + AR|™', 2 > 0, is given by

(3.5)  fF®) = (T,6)/T, (e8] { o)
X Do T (0 3m), CORGES (W

where a, = 4n, + k,_,,, + b, b, = (i — 1).

al"'“p)F ,
b

4
TR 28

The following are special cases of (3.5):

(a) Substituting @ =0, A =Iand 2 =1 into (3.3) and (3.5) we have the
hth moment and the density of W as were obtained by Consul [3].

(b) For Q = 0, formula (3.5) gives the result of Pillai, Al-Ani and Jouris [17]
formula (4.7) for testing the hypothesis H,: A = I, 2 > 0 being given.

(¢) Ifin (3.5) welet A =Tand 2 = 1, then formula (3.2) of Pillai, Al-Ani
and Jouris [17] is obtained.

4. The density function of the largest root. In this section we derive two
expressions for the density function of the largest root r, of S;S,~*. In obtaining
this density we start from the joint density of the roots r,, - - ., r, of S,;S,~* which
is given in [10, 11] by the formula
4.1) CUR|™ T1is; (ri — 73) Srez>o €7 %|Z| 4™

X 27? § ., I + HRH'Z-UZ-}|~ dHdZ,
where W = Q!Z-Q}, U =1 — W and
(4.2) Cy = e |22 T () [{(27,)° T, (3m)} »

and where f = 3p(p — 1), g = 1p(p + 1).
Now use Lemma 2 of Khatri [7] by taking g(F) = r,. Integrating over &7(p),
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the second integral in (4.1) becomes
[77/T,(3p)IIL + Z-HUZr |~ Fy(v; r,” X1 + 2-UZ-tr 7Y, r,I1 — R).

Lety, =r/fr,,i=1,2, .. ~p—land Y = diag(y,, - - *»Yp-1). Further, expand
1Fy in terms of zonal polynomials, and for the integration with respect to Y we
apply Lemma 3 of Khatri [7]. Then we obtain the density function of the largest
root r, in the form

G, rpmt e 31T + 1 )C,)
KT a((m + p + 1), ))C(D)
(4.3) X (Roz>o €7 *|Z|7tM|I 4 Z-HUZ-#r |-~
X C[Z-#UZHr (T + Z-4UZ-#r )Y dZ,
where I,_, is the identity matrix of order p — 1, Lis that of order p and C, =
mC, T, (3(m — )T, 1(3(p — D){=**=5"T,(3p)}). Applying Theorem 1 of
Constantine [1] and taking B = r,Z-3SZ-4, the integral in (4.3) becomes
G4 27T, 0} Bz D A=D1} 5 62« Srozse €7 HZIHm
X (>0 €Xp{—tr r,7'ZB}|B|*~*C,(UB) dB dZ ,
where & = 4(p + 1), g% . are constants and Y'?_, 5, = k + ¢, 6 = (015 +++50,),
0= .-+ =29, = 0. Now, integrate B out, then (4.4) reduces to
(4.3) T, o} Bie D A(=1)Y/11} 5, 68T, (», 0)
X Yrozso €| Z|7MC{U(r, Z-)} dZ .
Assuming (r,27") “random” and integrating over <7(p) and finally applying (17)
of Constantine [2] we obtain the density function of r, as stated in the following:
THEOREM 4.1. Let the hypotheses be as in Theorem 3.1. Then the density func-
tion of r, is given by

X 2o P A(=1)11} 2y 92,[(2)s Corp AL, ™(R)/{(3m), (D}
where the constant C is given by
*7)  C=TEL,ET,(Ep + DATGATEm)T,Gn)T,_(3(n + p + 1))} .
The density in (4.6) may not converge for all r,, 0 < r, < oo.

To obtain the second expression of the density of r,, let us return to formula
(4.4). The second integral in (4.4) can be written as
(4.8) V>0 €xp{—tr [(I + 7,7 Z)B]}e* "[B*~C,(UB) dB .

Expand the first exponent in (4.8) and assume (I + r,”'Z) “random” then
integrate over ¢#(p). Further diagonalize B and integrate out H. After de-
diagonalizing B, the integral in (4.8) now becomes
(#9)  fwso exp{—tr[I + r,"*A)Ble™"}|B]~{C,(B)C,(U)/C,()} dB .

Expand the second exponent and use (27) of Constantine [2].
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Then (4.4) now becomes
{1+ 7, A7=/Ty (v, 0)} 2520 200 {(—1)/5'} 25 92.{C,(D}
(4.10) X {roz>0 €7 #Z|~tMCy(U) dZ
X Tio T (1) T, 04Ty m)CAA + 1,7 M)

Replacing U by I — W, W by Q:Z-'Q* and making use of (17) of Constantine
[2] we finally obtain the following:

THEOREM 4.2. Let S,, S, and r, be as before. If L}Z,~'L} is “random”, then the
density of r, is given by
C . e—trﬂlAl—bnlll + rpA—ll—urps)pnl—l

" o v P DGE =D po s (1) 50 g LE)

@10 X B Dl T p + NG S 2 .0
X Z}’lo Z:r (t!)_l Zﬂ gf;.r(y);t C#{(I + rp_lA)_l} .

Fors=1t=0and Q =0, (4.11) reduces to (16) of Khatri [7].

5. Non-central distribution of the criteria for p = 2. In this section the non-
central distribution of the criteria suitable for computation will be derived for

= 2. The method of derivation is analogous to the one used in Pillai and
Jayachandran [14] except that the results obtained here are more general.

1. Non-central distribution of U®. Putting p =2and 2 =1 in (1.1) and ex-
pressing the zonal polynomials in terms of the latent roots of the matrix involved
there, we have the joint density of , and r, in the form

(5.1) Cye= w1t (4, 4) 74 2170 2oe {(¥)e/K!}

X (rr)™(1 + r)(1 + r)}%(ry — 1) 23 b7, S)a"a’F, ,
where ¢ = m + n + 3, w;, w, are the latent roots of Q, 4,, 4, are those of X, %,1,
F,and C, are obtained from (1.2) and (1.3) for p = 2 respectively, the last sum-
mation is such that r + 2s = k, b,(r, 5) are constants whose values upto k = 6
are tabulated in Sudjana [18] and given in Appendix A, and g, (i = 1, 2) is the
ith elementary symmetric function inr,/(1 4 r;). Taking x = U® =r, 4 r,and
y = rr, and integrating y from 0 to x?/4, the density of U® is expressible in
terms of the integral &, ,(x) = (& {y™**/(1 + x + y)***dy, where a and b depend
on k.

The cdf of U® involyes the double integral

xiy'nH-i
(1 + x4 p)r*t
where j = r + s — i, | = r + s and the above double integral is expressible in
terms of the expression

(53) B,,(wy=(@n+b—a+ 1)'{2B,2(m+a+1),2(n+b—a+ 1)+ 1)
— (1l +uwetBm+a+1l,n+b—a+2)},

(5:2) H,(U?) = i, ()2~ {7 §5™ dy dx,
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where the incomplete beta function B,(p, g) = (& y*»~%(1 — y)*-'dy, and where
w = u/(2 4 u), z = w* and a and b depend on k. Summarizing the above, we
have the following:

THEOREM 5.1. Let the assumptions be as stated in Theorem 3.1. Then the exact
non-central distribution of U® is given by
(5‘4) C Z?:O Zx {(V)‘/k!} Z bx(r’ S)Hn(U(Z))FZ > 0 < U(Z) < oo ,
where
(5.5) C = Cye~"1t2(4, A;)~t™, with C, as obtained from (1.3) for p = 2, the last
summation is such that r + 2s = k and the meanings of other symbols are as explained
above.

The expression up to the sixth order has the form
(3-5) FU®) = C Xieo Ll (=)D H,(U),
where H,;(U®) is as described in (5.2), and the coefficients D,;’s are available
in an unpublished thesis by Sudjana [18] and given in Appendix B.

II. Non-central distribution of V®. From (3.1), we have the joint density of
[, and /; as
(5.6) C X0 2 @) /KM L D)™ T (1 — Iy(l; — L) X b(r, s)a"a’F,,
where the summation is such that » 4 25 = k, a, and q, are the first and the
second esf in /;, (i = 1, 2) and F, is as discussed earlier. As in I, starting from
the joint density of x = V® =1, 4+ [, and y = [,/,, the cdf of V® will involve
the integral
(5.7) F (V®) = {§® (@4 x7ym+s(1 — x 4 y)*dy dx .
This integral is expressible in terms of incomplete beta function as follows: for
0< V<1,
(5.8) F, (V®) ={27Y(m + s+ 1)} X (—1)R;B(a + 4 + 2,b — 4i — 2),
and for 1 < V® < 2,

r+1 . . .
(5.9) F(V®) = r'n—-}-zsﬁ 2= (—1)R;By (@ + 4i + 2, b — 4i — 2)
Y7 smis (Z1)P[B,(a, b b
+ n+ 1 =0 (_ ) z[ ’v( ’ )_ 0.5(0’ )] ’

where v = LV®, a=2m+2s —2i +r + 1, b =2n 4 2i 4+ 3,

(5.10) R, =Tlici{(n + 1 4+ )j(m + s+ 1 +))}, R, =1 and
Pi=TIlic{(m +s+1—p)/n+1+j)}, P=1.

In view of the above, we state the following:

THEOREM 5.2. Let S,, S, and Z,}%,7'X,* be as before and V' be as defined above.
Then the exact non-central distribution of V® is expressible in terms of incomplete



624 K. C. S. PILLAI AND SUDJANA

beta functions and is given by
(5-11) C 20 Ze {0/ K} 2 bu(rs )F, (V) F,
where the meanings of all symbols are as before, and F, (V®) is as in (5.8) and (5.9).

Upon expanding the series in (5.11) up to the sixth order and combining the
like terms, we obtain the cdf of V® in the form

(5'12) F( Vm) =C. Zg+2j=k=o EijFij( Vm) ’

where in the summation, only integral solutions (i, j) of i + 2j = k are taken
and the coefficients E,;’s are available in Sudjana [18] and given in Appendix C.

III. Non-central distribution of W®. Using [, and [,, the Wilks’ criterion W®
is given by W® = (1 — L)(1 — [,). As in the previous sections, to obtain the
cdf of W, we shall use the joint density of x = W*® = (1 — [})(1 — ;) and
y = L1,. After making substitutions in (5.6) and integrating y out first and then
x, the cdf of W® involves integrals of the form

(5.13) G"(W‘z)) — S:)V(Z) Sé1-zb)2 xnym+x(1 —x+ y)'r dy dx,
which is expressible in terms of incomplete beta function as
p P
1Yyr—i+1
(5.14) G, (w®) = :zo%QiB,(zn +2,2m 2 b r it 3),

where Q, = [[ic, {(r + 1 — )/(m + s + 1 + )}, Qo = 1 and z = (WP)1.
Note that (5.14) is obtained easily from (5.13) by integration by parts. Now we
have the following:

THEOREM 5.3. Let S,, S, and ZtZ,~'Z .t be as in Theorem 5.2 and W be as
defined above. Then the exact non-central cdf of W' is expressible in terms of in-
complete beta function and is given by

(5.15) C im0 o AOWKY) T by )G, (WOVF,, 0K WO < 1,
where the meanings of all symbols are as explained above.
The cdf of W™ using up to k = 6 is given by
(5.16) F(W®) = C- X%smm0 By Guy( W)
where E,;’s are as discussed in II.

REMARK. If w, = w, = 0, the distributions (5.5), (5.12) and (5.16) reduce to
the results of Pillai and Jayachandran [15].

IV. Non-central distribution of the individual root. To obtain the distribution
of the largest root [, we will start from the joint density of /; and /,, 0 < [, <
I, < 1, which is described in (5.6). Integrating/, out from 0 < I, < [,, we easily
obtain the density of the largest root /, in the form

(5-17) C Lo ZeA()/k!} Z b, )Pl F 5 0<L<1,
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where

(5-18) Proll) = 20 () Zie (=1 (a(a@ + DL — Ly,

witha=m+ i+ 1+s+tandb=2(m+ s+ 1) +r+ i
To get the cdf of the largest root, we integrate (5.17) with respect to /,. From
(5.18) we have

(5:19)  P(l) = 20 () Dimo (1) Ha(@ + DB (6 + Ln 4+ 1),
where B,(p, q) is the incomplete beta function. From the above we have
THEOREM 5.4. Let S,, S, and X }X,~'Z} be as stated in Theorem 5.2 and 1, be

the largest root of S(S, + S,)~'. Then the non-central distribution of l, is expressible
in terms of incomplete beta function and has the form

(5.20) C Yo D {) [k} 33 b.(r, 5P, (I)F, , o<1,
where P, (l,) is as stated in (5.19) and the other symbols are interpreted as before.

Again, expanding the series up to the sixth order we have the cdf of [, as
follows:

(5'21) F(lz) =C. Zg+2,7‘=k=0 EijPij(IZ) ’

where E,;’s are as explained earlier.

Note that for w, = w, = 0, the cdf of [, up to the sixth order has been obtained
by Pillai and Al-Ani [12] using a different method. Their expression is not as
simple as the one that can be obtained from (5.21) with w, = w, = 0.

Using an approach similar to the above we can obtain the following:

THEOREM 5.5. Under the assumptions of Theorem 5.4, the non-central cdf of
smallest root 1, is given by

(5.22) C X vo e {@)/k1Y 23 b(rs 9)Q,(L)F, , o<k,

where the meaning of the symbols are as before, and

(3:23) Q. () = Zin () Do (=D + i+ )7H(n + i 4 2)7'By(a, ),

witha=m+r+s+1,b=2n+i+3andg=m+r+s—1t.
Its expansion up to the sixth order for the cdf of [, is

(5-24) F(l) = C- Zlsjmi=0 Ei;Qii(k) -

It may be pointed out here that (5.22) cannot be obtained from (5.20) by trans-
formations. However, if w, = w, = 0 and 4, = 1, = 1, i.e. in the central case,
we can obtain (5.22) from (5.20) by performing transformation /, — (1 — ;) and
m — n as was done in Pillai [8].

6. Numerical study of robustness based on four criteria. Let us now use the
distributions obtained in Section 5 to study the robustness of the tests concerning
the two hypotheses stated earlier, namely: (A) equality of covariance matrices
in two p-variate normal populations, and (B) equality of p-dimensional mean
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vectors in [ p-variate normal populations having common unknown covariance
matrix. First observe that in case (A), if @ = 0 we are testing X, = X, assuming
the two populations are normal. However, for Q = 0 implies the violation of
normality for the test of (A). For (B) when A = I the violation occurs. Some
numerical values of upper tail probabilities of U®, V® and the largest root r,
and lower tail probabilities of W® have been calculated. The tail probabilities
of U™, V®, W and the largest root are computed using respectively (5.5),
(5.12), (5.16) and (5.21). They involve zonal polynomials of degree 0 to 6. In
these calculations, the upper/lower 5percent points of the respective criteria
under the null hypotheses of (A) and (B) have been used and were taken from
the tables prepared by Pillai and Jayachandran [14] and Pillai and Al-Ani [12].
All computations were carried out on the CDC 6500 Computer at the Purdue
University Computing Center. Before computing the tail probability for specific
values of the parameters, the total probability in that case over the whole range
of the respective statistics for all the terms included in the formula was calculated
and the number of decimals included in the tables was determined depending
on the number of places of accuracy obtained in the total probability, at least
as many decimal places as in the table. Moreover, the total probability was
computed by cumulating successively the probability contribution for each term
for k = 0 to 6 and noting the successive reduction in the contribution for each
term. It may be pointed out that the convergence of (1.1) has been discussed
in [10]. In that paper it was shown that (1.1) is dominated termwise by the
series given by Khatri [7] for the joint density of the latent roots of S;S,~* which
was used by Pillai and Jayachandran [15] for power comparisons of tests of
equality of two covariance matrices based on four criteria.

For various values of w,, w, (i.e. the latent roots of Q for p = 2) and 2, 2,
(i.e. the latent roots of X, Z,~* for p = 2) these upper/lower tail probabilities are
tabulated using different values of m = (n, — p — 1)/2 and n = (n, — p — 1)/2.
Table 1 presents those probabilities for m = 0 and Table 2 for m = 2. In both
cases the values of n = 5, 15 and 40. In both tables the powers of the test of
(A) assuming Q = 0 and those of the test of (B) assuming X, = Z, are also
presented.

From the tabulations it appears that

(1) For hypothesis (A), the powers of tests based on all four criteria show
considerable change even for small deviations of (w,, w,) from (0, 0) and the
difference in the respective powers remains approximately of the same magnitude
irrespective of the values of (4,, 4,) for a given (m, n). The changes of powers
become larger for bigger deviations of (w,, w,). This probably is indicative that
the tests are not robust against non-normality.

(2) For hypothesis (B), the powers of tests based on all four criteria show
modest changes for small deviations of (4,, 4,;) from (1, 1) but changes become
pronounced as (4,, 4,) deviate more from (1, 1).

(3) Tabulations do not reveal any advantage of one test statistic over the
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others in regard to either hypothesis from the point of view of robustness. It is
likely that tabulations for larger deviations may bring more light on this problem.

It may be pointed out that Itd [4] and Itd and Schull [5] have also studied
similar cases but their results are based on the large sample theory. The results
obtained here are of an exact nature except for some of the assumptions made
in the model.

TABLE 1
Upper|lower tail probabilities of four criteria, m = 0 and a = 0.05
w1 w2 A1 A2 U@ |4 wia Largest Root
n=35
0 0.001 1 1.001 0.050106 0.050112 0.050109 0.050100

0.050079  0.050084  0.050082 0.050073
0.050026  0.050028  0.050027 0.050026
1 1.01 0.050823  0.050869  0.050852 0.050769
0.050796  0.050840  0.050824 0.050744
1.025 1.025  0.054066  0.054301 0.054213 0.053783
0.054038  0.054272  0.054184 0.053757

1 1.1 0.058328 0.058646 0.058571 0.057811
0.058298 0.058614 0.058538 0.05778
n=15
0 0.001 1 1.001 0.050133 0.050134 0.050134 0.050121

0.050099  0.050100  0.050100 0.050093
0.050033  0.050033  0.050033 0.050027
1 1.01 0.051035  0.051043  0.051041 0.050967
0.051001  0.051009  0.051007 0.050935
1.025 1.025  0.055132  0.055179  0.055165 0.054795
0.055096  0.055143  0.055130 0.054762

1 1.1 0.060585 0.060604 0.060619 0.060013
0.060546  0.060565  0.060580 0.05998
n =40
0 0.001 1 1.001 0.050145 0.050145 0.050145 0.050132

0.050108  0.050109  0.050109 0.050102
0.050036  0.050036  0.050036 0.050029
1 1.01 0.051131  0.051132  0.051132 0.051063
0.051094  0.051095  0.051095 0.051028
1.025 1.025  0.055617  0.055625  0.055623 0.055285
0.055577  0.055586  0.055584 0.055248

1 1.1 0.061617  0.061601 0.061613 0.061087
0.061574 0.061558  0.061571 0.06105
n=>5
0 0.01 1 1.001 0.050344  0.050364  0.050356 0.050322

0.050079  0.050084  0.050082 0.050073
0.050264  0.050280  0.050274 0.050248
1 1.01 0.051064  0.051123  0.051101 0.050993
1.025 1.025  0.054319  0.054569  0.054475 0.054018
1 1.1 0.058596  0.058930  0.058849 0.058060
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TABLE 1—Continued

wy w2 A A2 U@ v w Largest Root
n=15
0 0.01 1 1.001 0.050432 0.050436 0.050435 0.050401
0.050099 0.050100 0.050100 0.050093
0.050332 0.050335 0.050334 0.050307
1 1.01 0.051338 0.051349 0.051346 0.051251
1.025 1.025 0.055453 0.055503 0.055489 0.055095
1 1.1 0.050928 0.060951 0.060965 0.060333
n=40
0 0.01 1 1.001 0.050472 0.050473 0.050472 0.050440
0.050108 0.050109 0.050109 0.050102
0.050363 0.050363 0.050363 0.050337
1 1.01 0.051462 0.051464 0.051464 0.051376
1.025 1.025 0.055969 0.055978 0.055975 0.055616
1 1.1 0.061995 0.061980 0.061993 0.061442
n=>5
0 0.1 1 1.001 0.052750 0.052897 0.052844 0.052567
0.050079 0.050084 0.050082 0.050073
0.052667 0.052809 0.052758 0.052490
1 1.01 0.053497 0.053686 0.053618 0.053262
1.025 1.025 0.056874 0.057262 0.057120 0.056394
1 1.1 0.06131 0.06178 0.06166 0.06057
n=15
0 0.1 1 1.001 0.053462 0.053488 0.053482 0.053246
0.050099 0.050100 0.050100 0.050093
0.053357 0.053383 0.053377 0.053149
1 1.01 0.054408 0.054442 0.054434 0.054132
1.025 1.025 0.058703 0.058778 0.058757 0.058135
1 1.1 0.06440 0.06445 0.06446 0.06358
n=40
0 0.1 1 1.001 0.053785 0.053788 0.053788 0.053575
0.050108 0.050109 0.050109 0.050102
0.053670 0.053673 0.053673 0.053467
1 1.01 0.054821 0.054826 0.054826 0.054552
1.025 1.025 0.059536 0.059548 0.059546 0.058980
1 1.1 0.06582 0.06581 0.06582 0.06504
n=>5
0 1 1 1.001 0.07899 0.07958 0.07967 0.07733
0.050079 0.050084 0.050082 0.050073
0.078873 0.079463 0.079538 0.077229
1 1.01 0.08001 0.08066 0.08074 0.07828
1.025 1.025 0.0846 0.0855 0.0855 0.0825
1 1.1 0.091 0.091 0.091 0.088
n=15
0 1 1 1.01 0.08723 0.08706 0.08725 0.08554
0.050099 0.050100 0.050100 0.050093
0.087084 0.086913 0.087101 0.085403
1 1.01 0.08859 0.08843 0.08862 0.08679
1.025 1.025 0.0947 0.0946 0.0948 0.0924
1 1.1 0.103 0.103 0.103 0.100
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TABLE 1—Continued

w1 w2 A A2 [l v we Largest Root
n=40
0 1 1 1.001 0.09104 0.09088 0.09098 0.08958

0.050108  0.050109  0.050109 0.050102
0.090873  0.090717  0.090823 0.089426

1 1.01 0.09255 0.09239 0.09249 0.09099
1.025 1.025 0.0994 0.0992 0.0993 0.0973
1 1.1 0.108 0.108 0.108 0.106
n=>5
1 1 1 1.001 0.1124 0.1203 0.1164 0.1049
0.0501 0.0501 0.0501 0.0501
0.1122 0.1201 0.1164 0.1048
1 1.01 0.1138 0.1217 0.1178 0.1062
1.025 1.025 0.120 0.128 0.124 0.112
1 1.1 0.128 0.138 0.132 0.119
n=15
1 1 1 1.001 0.1314 0.1341 0.1327 0.1214
0.0501 0.0501 0.0501 0.0501
0.1312 0.1339 0.1326 0.1213
1 1.01 0.1332 0.1359 0.1345 0.1231
1.025 1.025 0.141 0.144 0.143 0.130
1 1.1 0.152 0.153 0.153 0.140
n=40
1 1 1 1.001 0.1402 0.1412 0.1406 0.1295
0.0501 0.0501 0.0501 0.0501
0.1400 0.1409 0.1405 0.1293
1 1.01 0.1422 0.1432 0.1426 0.1314
1.025 1.025 0.151 0.152 0.152 0.140
1 1.1 0.163 0.163 0.163 0.151

Entries in 2nd row denote powers of the test Hy: Z; = Z; assuming 2 = 0
Entries in 3rd row denote powers of the test Hy: Q = 0 assuming X, = Z;

TABLE 2
Upper/lower tail probabilities of four criteria, m = 2, a = 0.05
@1 2 A A2 U@ Ve w2 Largest Root
n=>5
0 0.001 1 1.001 0.050109 0.050122 0.050118 0.050100

0.050095  0.050107  0.050103 0.050084
0.050014  0.050015  0.050015 0.050012
1 1.01 0.050970  0.051089  0.051048 0.050862
0.050956  0.051074  0.051033 0.050850
1.025 1.025  0.054894  0.055526  0.055306 0.054310
0.054879  0.055510  0.055290 0.054297
1 1.1 0.06012 0.06106 0.06082 0.05904
0.060100  0.061036  0.060793 0.05901
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TABLE 2—Continued

o o A A2 U2 y w Largest Root
n=15
0 0.001 1 1.001 0.050150 0.050153 0.050152 0.050137
0.050130 0.050134 0.050133 0.050115
0.050019 0.050019 0.050019 0.050017
1 1.01 0.051339 0.051368 0.051360 0.051192
0.051320 0.051349 0.051341 0.051175
1.025 1.025 0.056812 0.056980 0.056931 0.056005
0.056791 0.056958 0.056910 0.055987
1 1.1 0.06424 0.06433 0.06437 0.06287
0.064218 0.064302 0.064347 0.06284
n=40
0 0.001 1 1.001 0.050171 0.050172 0.050171 0.050160
0.050149 0.050150 0.050150 0.050134
0.050021 0.050021 0.050021 0.050019
1 1.01 0.051530 0.051535 0.051534 0.051383
0.051508 0.051513 0.051512 0.051363
1.025 1.025 0.057816 0.057850 0.057841 0.056983
0.057792 0.057826 0.057817 0.056962
1 1.1 0.06643 0.06636 0.06641 0.06513
0.066400 0.066336 0.066388 0.06509
n=>5
0 0.01 1 0.001 0.050231 0.050260 0.050250 0.050208
0.050095 0.050107 0.050103 0.050084
0.050136 0.050153 0.050147 0.050124
1 1.01 0.051094 0.051229 0.051183 0.050971
1.025 1.025 0.055026 0.05567 0.055449 0.054426
1 1.1 0.06026 0.06122 0.06097 0.05916
n=15
0 0.01 1 1.001 0.050318 0.050326 0.050324 0.050287
0.050130 0.050134 0.050133 0.050115
0.050187 0.050192 0.050190 0.050170
1 1.01 0.051510 0.051544 0.051535 0.051344
1.025 1.025 0.056998 0.057170 0.057120 0.056168
1 1.1 0.06445 0.06454 0.06458 0.06305
n=40
0 0.01 1 1.001 0.050363 0.050365 0.050356 0.050333
0.050149 0.050150 0.050150 0.050134
0.050214 0.050214 0.050214 0.050199
1 1.01 0.051726 0.051732 0.051731 0.051559
1.025 1.025 0.058030 0.058065 0.058056 0.057173
1 1.1 0.06664 0.06660 0.06665 0.06534
n=>5
0 0.1 1 1.001 0.051464 0.051644 0.051582 0.051299
0.050095 0.050107 0.050103 0.050084
0.051367 0.051534 0.051477 0.051213
1 1.01 0.052345 0.052634 0.052535 0.052076
1.025 1.025 0.05636 0.05718 0.05689 0.05559
1 1.1 0.0616 0.0628 0.0625 0.0604
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TABLE 2—Continued

w2 A A2 [ Ve we Largest Root
n=15
0.1 1 1.001 0.052022 0.052066 0.052054 0.051798
0.050130 0.050134 0.050133 0.050115
0.051887 0.051928 0.051917 0.051679
1 1.01 0.053245 0.053317 0.053298 0.052881
1.025 1.025 0.05887 0.05909 0.05903 0.05782
1 1.1 0.0665 0.0666 0.0667 0.0648
n=40
0.1 1 1.001 0.052311 0.052318 0.052317 0.052085
0.050149 0.050150  0.050150 0.050134
0.052157 0.052164 0.052162 0.051947
1 1.01 0.053713 0.053725 0.053724 0.053343
1.025 1.025 0.05019 0.06024 0.06023 0.05910
1 1.1 0.0691 0.0690 0.0690 0.0675
n=>5
1 1 1.001 0.06464 0.06596 0.06564 0.06309
0.05010 0.05011 0.05010 0.05008
0.064523 0.065823 0.065504 0.06299
1 1.01 0.06570 0.06716 0.06680 0.06401
1.025 1.025 0.0705 0.0727 0.0721 0.0682
1 1.1 0.077 0.080 0.079 0.074
n=15
1 1 1.001 0.07067 0.07075 0.07084 0.06870
0.05013 0.05013 0.05013 0.05012
0.070496 0.070579 0.070666 0.06855
1 1.01 0.07221 0.07233 0.07241 0.07004
1.025 1.025 0.0793 0.0796 0.0796 0.0763
1 1.1 0.089 0.089 0.089 0.085
n=40
1 1 1.001 0.07387 0.07375 0.07384 0.07203
0.05012 0.05015 0.05015 0.05013
0.073667 0.073556 0.073641 0.07185
1 1.01 0.07568 0.07556 0.07565 0.07362
1.025 1.025 0.0840 0.0839 0.0840 0.0809
1 1.1 0.095 0.095 0.095 0.091
n=>5
1 1 1.001 0.0809 0.0861 0.0840 0.0764
0.0501 0.0501 0.0501 0.0501
0.0808 0.0858 0.0839 0.0763
1 1.01 0.0822 0.0875 0.0854 0.0775
1.025 1.025 0.088 0.094 0.092 0.083
1 1.05 0.088 0.094 0.092 0.083
1 1.1 0.096 0.099 0.099 0.090
n=15
1 1 1.001 0.0947 0.0964 0.0957 0.0878
0.0501 0.0501 0.0501 0.0501
0.0944 0.0961 0.0955 0.0876
1.01 0.0966 0.0984 0.0976 0.0895
1.025 1.025 0.105 0.107 0.106 0.097
1.1 0.117 0.117 0.117 0.108
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TABLE 2—Continued

w1 w2 A A2 U ye we Largest Root
n=40
1 1 1 1.001 0.1021 0.1026 0.1023 0.0946
0.0501 0.0502 0.0502 0.0501
0.1018 0.1023 0.1021 0.0944
1 1.01 0.1044 0.1049 0.1046 0.0966
1.025 1.025 0.115 0.115 0.115 0.106
1 1.1 0.129 0.129 0.120 0.118

Entries in 2nd row denote powers of the test Ho: %, = Z, assuming Q =0
Entries in 3rd row denote powers of the test Hy: @ = 0 assuming Z; = Z;

APPENDIX A

The constants b(r, s) up to k = 6 for the cdf of the criteria in the two-roots
case:

TABLE 3
bi(r, 5) constants
K K
K r K r
0 1 2 0 1 2 3
€] 1 1 5) 5 1
@ 2 1 3 —49
0 - 1 #
12 0 2 41 3 k4
3) 3 1 1 —32
1 - @3 1 4
@1 1 12 (6) 6 1
2 % 2 #
0 1 0 ~ 3¢
(31 2 % (51 4 #®
0 — 372 2 1 4;0
@ o ¥ 0 i
42) 2 b
0 — %
., 6y 0 %
APPENDIX B

The coefficients D,; for the cdf of the criteria in the two-roots case:

Dy =1+ Ay + 34, + 54, + 354, + 634, + 2314,,;

Dy = Ay + 64, + 154, + 1404, + 3154, + 13864, ;

Dy = Ay + 24y + Ay + 34y + Ay 4 204, + 34, + 3545 + 545,
+ 1264, + 354,,;

Dy = 34, + 154, + 2104, + 6304, + 34654,, ;
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Dy, = 64, + 184, + A, + 1804, + 6A4,, + 4204, + 154, + 18904,,
+ 1404, ;

Dy = 34, + 34, + Ay + 184, + 2A4,, + A,y + 304, + 34, + Ay
+ 1054, + 20A4,, + 3445

Dy, = 54;, + 1404,; + 6304, + 46204,, ;

Dy, = 154, + 3004,, + 34,, + 10504,, + 154,, + 63004, + 2104,,;

D,, = 154, + 180A4,, + 64,, + 4504, + 184, + Ay, + 21004, + 1804,
+ 64 ;

Dy = 54 + 20A4,; + 3A,, + 304, + 34, + Ay + 1004, + 184, + 24,4
+ A

Dy, = 354, + 3154, + 34654, ;

D,, = 1404,, + 980A4,, + 54, + 88204, + 1404, ;

D,, = 2104,, + 10504, + 154, + 73504, + 300A4,, + 34, ;

D,, = 1404,, + 420A4,, + 154, + 21004, + 1804, + 64, ;

D, = 354, + 354y + S5Ay, + 10545 + 20Ag, + 3Ag ;s

Dy, = 634, + 13864, ; Dy, = 3154, + 56704, + 3544;

D,; = 6304;, + 88204, + 1404,,; Dy, = Dy = 2314, ;

Dy, = 6304, + 63004, + 2104, ; D, = Dy, = 13864, ;

D, = 3154, + 18904 + 1404, ; Dy = D,; = 34654, ;

Dy, = 634, + 1264y + 35A4,,; Dy, = 46204, ;

where the coefficients 4,; are given by (after letting m, = v 4 2iand n/ = v — i)

Ay =4my(l 4+ By); Ay = ”';Z’* (1 + 2B, + By)

’
Ay = ﬁ(,”_ (1 + 2B, + By); Ay = %ﬂ(l + 3By + 3By + By)

Ay =M (| 4 3B 4 4B 4 5B, + By);

Ay = —’"01"3”14 ’Z:)’"s (1 4 4B, 4 6B, 4 4By, + B,);

Ay = TBIUII (1 - 4By, + By + 3B + §Bu + ¥Bu + Bu);
g =TI D) (1 4 4B, + §Bn + By + 4Ba + B

Ay = %’ﬂ (1 + 5B, + 10B,, + 10B,, + 5B, + By);

Ay = %ﬂ (1 + 5By + 1By + 3By + %8By, + %7 By + 8B,

+ % By + By);



634

Ay =

61 —

62 —

Ay =

Ay =

K. C. S. PILLAI AND SUDJANA

mom Mt ( + 2) (1 4 5B, 4 9By, + '#By + $Bu + ¥Bu + 3B

560

+ %BAZ + B53) ;

"™ (1 4 6B, + 158, -+ 20B,, + 15B,, + 6By, + By ;

(14784)(720)

UMY (1 4 6By + 4By + B + $Bu + 4By + YB.

295680
+ 66343 + lOB“ + 44B64 + B65)

Moy My M+ 2) (1 4 6B, + 9By + 6By + ¥By + ¥

12096

+ %%Bu + 676343 + 251B42 + 1152354 + 1§8B53 + Bﬂ) ;
mym,m,n,'(n + 2)(n, + 4)

(1 + 6B11 '+' 8B22 + 7321 + 1—56333 + 8-54B32

5040

+ 8B, + 7B, + 6By + By) ;

while the values of B,; are given by (after letting r, = n, + 2iand s, = n, — i)

=z
[l

1——1-)—>’ Bzzz%l(l—zgl“i'-—bm);

7, T, 2r,r,

= Qg <1 — e it 4b22> B, = — <1 — __3b_1 + 3by _ by );
0

A 16 T, 2r,ry 2r,ryr,
36 20b,,  4by, ) .
r, 3r0 r1 37,8, rory Sy
_ﬂ+§%_ 26y, by );
7, rory INAA 8ror 1yt
4by 11b, | 28b,,  3by _ 56by 2b,, ) .
r, 6r0r1 3r,s, Srorir, Srory s, Folyla8,/
a43<1 _ 4, - 40b,, 165, 16b,, )
7, 3ros1 3r,s, rorysy  rorysy(s, + 2)
ISy shy | Sha  Sh by ),
r, ror rorit, 8roriryrs  8rgry - r,
Sby 7by, 12b,,  23b,  108b, 4 b,
r, 2r,ry roS; 107,77, Srory s, UNANA
54b,  2by > ]
7r0r1r2s1 Fol Pyts s, ’
Ll 56b,  4b, _ 168b, 4 16b,,
7, 3r0r1 3r,s, Srorit, Sror, s, 3r,rr, s,
1125,, 16b,, >
3rorysy(s; + 2) rory7aSy(sy + 2)
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ag 6b, , 15b, 105, 155, 3b;,
By, = 1 — =4 — —
1024 r, 2r,r, INAA Brorryry  4rgry -1,
b61 > .
T 16r, - - - rg ’
B, = g (1 _ 65 i 176, | 44b,,  28b;,  176b, 39b,,
128 7, 3ror,  3rgs, Srorir, Srorys; 56r,r ryr,
1326, 5b,, _ 8Bby, be, ) .
Trorirys,  36ryr, ---r, Or,riryrs s, 2r 1 1y, s, )
B — a_,,3< _ 65, 9b,, |, 24b,  14b,  288b, 6b,,
. 8 7, 2r,r, 7o, Sroryr, Srory s, 35r,r 1,1y
1325, 3365,, . 24b, 288b,,
Troryrys, — Srorysy(s, + 2) Sror,r,r,s, Sroryrysi(s; + 2)
85,
+ 2 ) ;
Fori sty si(8 + 2)
By, = a“<1 _ 65, 4 4b, n 28b,,  8by  336b, n 165,,
7, rory oS, Sror, 7, Srory s, rolity S,
1125, _ 96b,, 4 64b,, > .
rorysi(s; + 2) rrrysi(s, 4+ 2) 0 roryrs(s, + 2)(s; + 4) ’

with @, = 4,7' + 4,7, a, = (4,4,)"%, and

— 2 . _ . _ 3 . _ .
ay = 3a’ — 4a,; Gy = Ay ay = 5a,° — 12a,a,; A3y = 414,
a,, = 35a;* — 120a%a, + 48a,?; a, = 3ata, — 4a;’; a, = a};
a;, = 63a® — 280aa, + 240a,a,’ ; ay, = Sata, — 12a;a;? ; a;, = a,a’;

ay = 231a® — 1260a'a, + 1680a,%a;? — 3204, ;

ag = 35ata, — 120a,%a;? + 48a; ; ag = 3ata? — 4a; a,, = a;;

and b, = w, + w,, b, = w;w, and b,;’s are obtained from corresponding a,;’s by

replacing a, and a, by b, and b, respectively.

APPENDIX C
E,; coefficients:
Ey,=1 Ey, = Ay, — 44,
E,= A, E, = Ay — 124,
E, = 34, E, =34, — 1204,
E,, = 54, E, = 5A4, — 2804,
E,, =354, E, = 354, — 12604,
E,, = 634, E,= A, — 44,, } 484,
Ey, = 2314, E, = A;; — 124, + 2404,

E, = 3Ag — 1204, + 16804, and  E, — A, — 44, -+ 484, — 3204,,,

where the 4,,’s are given in Appendix B.
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