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TERMINATION, MOMENTS AND EXPONENTIAL BOUNDEDNESS
OF THE STOPPING RULE FOR CERTAIN INVARIANT
SEQUENTIAL PROBABILITY RATIO TESTS!

By Tze LEUNG LAl

Columbia University

It is well known that Wald’s SPRT terminates with probability one
and in fact the stopping time is exponentially bounded for every distribu-
tion P except in the trivial case where the log likelihood ratio vanishes
with probability one. The results in the literature for invariant SPRT’s,
however, have been considerably less complete. In all the parametric prob-
lems studied, moment conditions of certain random. variables have been
assumed to prove termination, and the finiteness of their moment generat-
ing function has also been assumed to prove the exponential boundedness
of the stopping rule. In this paper, we try to remove or weaken these con-
ditions for certain invariant SPRT’s. In particular, we show that like the
Wald SPRT, the sequential #- and F-tests always terminate with probability
one for any distribution P except in trivial cases. However, the stopping
rules may fail to be exponentially bounded, and obstructive distributions
are also exhibited. Sufficient conditions for exponential boundedness and
finiteness of moments of the stopping rule are studied, and asymptotic ex-
pressions for the moments of the stopping rule are also given.

1. Introduction. Let Z,, Z,, . . . be independent, identically distributed (i.i.d.)
random variables with a common distribution P. The joint distribution of the
Z’s will also be denoted by P. To test sequentially the simple hypothesis
H,: P = P, versus the simple alternative H,: P = P,, Wald’s sequential proba-
bility ratio test (SPRT) stops sampling as soon as R, ¢ (4, B), where R, denotes
the likelihood ratio ]2, p«(Z,)/p«(Z;), p; being the density of P, with respect to
some common dominating measure x (i = 0, 1). If we put Y, = log [ p:(Z)/p(Z:)]
and L, = }#Y,, then the stopping rule for the SPRT is simply the first time
N when the random walk {L,, n > 1} exits from the interval (a, b), where a =
log 4 and b = log B. In [20], Wald proved that P[N < oco] = 1 for every P
except if P[Y, = 0] = 1, and under the same assumption P[Y; = 0] < 1, Stein
[17] showed that

(1) 3¢>0 and 0< p< 1 forwhich PIN>n]<cp*, n=12,....

The property P[N < oo] = 1 is commonly referred to as “termination with
probability one”, while the property (1) of a stopping rule N is referred to as
“exponential boundedness” by Berk [1] and Wijsman [21], [22].
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If the hypotheses to be tested are composite, it may be possible to reduce the
the composite hypotheses to simple ones by using the principle of invariance.
The resulting test is called an invariant SPRT (cf. [5]). Here we again stop as
soon as R, exits an interval (4, B), where R, is the likelihood ratio of the
maximal invariant (with respect to a given group of invariance transformations)
at stage n. If we let L, = log R, as before, then unlike the case of Wald’s
SPRT, the sequence (L,, n > 1) does not have to be a random walk since we
take R, to be the likelihood ratio of the maximal invariant as stage n instead of
the likelihood ratio for the original data sequence Z,, --., Z,. The questions
of termination with probability one and of exponential boundedness of the stop-
ping rule N for an invariant SPRT turn out to be much harder to answer than
in the case of Wald’s SPRT. In fact, Stein’s result for the Wald SPRT does not
always carry over to an invariant SPRT. Relative to a given invariant SPRT,
a distribution P is called obstructive if (1) is not satisfied. This terminology is
due to Wijsman who exhibited certain obstructive distributions for several in-
variant SPRT’s, including the sequential ¢-test (cf. [22], [23], [24]).

Wijsman’s proof of the termination and exponential boundedness of the stop-
ping rules for a wide class of invariant SPRT’s relies on the demonstration of
the following approximation for the log likelihood ratio L, of the maximal in-
variant at stage n:

Foreach £éeR*, 3¢ >0 together with a neighborhood
2) V. of & and a continuous function ® on ¥V such
that |L, — n®(X,)| < c if X,eV, n=1,2....

The random variable X, in (2) denotes n~! 37_, X;, where X, is some vector-
valued function of Z,, i.e., for some function s from the range of Z, into R%,
we have

(3) X, =5(Zy) » i=12,....

The property (3) implies that X, X, ... are i.i.d. random vectors and so under
the assumption that EX, = £ exists and is finite, the strong law of large numbers
yields that P[lim,_, X, = £] = 1.

For the sequential z-test, Wijsman’s results (cf. [23]) show that P[N < o] =1
if co > EZ? > 0 and if P is not one of the family of two-point distributions
defined by:

4) P[Z, = (o + OPLH(o" + &) £ o]]

=31 Fo(+ ), ¢>0,(+0.
Furthermore, N is exponentially bounded if E exp(tZ;?) < oo for all small t and
if P does not satisfy (4). As the function s in (3) reduces to X, = s(Z;) =
(Z,, Z) in the present case, it is conceivable why Wijsman’s argument requires
the assumption of the finiteness of EZ? for termination with probability one
and the assumption of finite mgf of Z; for the exponential boundedness of the
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stopping rule. Berk [1], by a different method, obtained essentially the same
conclusions, and Wijsman in [24] has also shown that the two-point distribu-
tions defined by (4) are indeed obstructive (see Section 3 below). The question
of whether P[N < co] is always one if P[Z, = 0] < 1 still remains open, and
so does the question of whether there are other obstructive distributions than
those defined by (4). In this paper, we shall study both of these problems.

As mentioned above, Wijsman’s approach is to approximate the log likelihood
ratio L, by n®(X,) in (3), so that we still have cumulative averages of i.i.d.
random vectors X, X,, - -. to work with. The approach we shall take is that
instead of viewing ®(X,) as a function of the cumulative average X,, we shall
re-write ®(X,) as a function of T,, say ®(X,) = W(T,), where T, is a suitably
chosen invariantly sufficient sequence. To prove termination with probability
one, we need only show that

(5) 1 = P[lim sup,_., ["%(T,)| = o] = P[limsup,_., |L,| = oo] .

We shall show how this can be done for the sequential r-test in Section 2. In
this case, we can take T, = n~* 317 Z,/(n™* Y7 Z?)*. Instead of handling the
two random walks 1 Z;, >17 Z? separately, we here work directly with the
sequence T, which, though not a random walk, has some nice limiting behavior.
For example, it will be shown in Section 2 that if P[Z, = 0] < 1, then

©) P[lim sup,.... |51 Z,| /(_’11_ > zg)* = ooj| =1.

Other interesting properties of the limiting behavior of the sequence T, are also
given in Section 2.

In Section 3, again by directly analyzing the sequence T,, we shall exhibit
other obstructive distributions for the sequential s-test. Conditions for the ex-
ponential boundedness of the stopping rule N are also studied. In Section 4,
conditions for the finiteness of moments of the stopping rule are given, and we
also find asymptotic expressions for these moments and generalize a theorem of
Sacks [14]. Though we specialize for definiteness our discussion in Sections 2,
3, 4 to the sequential #-test, the ideas used in the analysis are of a fairly general
nature and can be used to handle other invariant SPRT’s. In Section 5, we
extend our results to other classical invariant SPRT’s such as the sequential F
and the sequential T tests.

2. Limiting behavior of the invariantly sufficient sequence 7', and termination
with probability one for the sequential r-test. Let Z,, Z,, . .- be i.i.d. random
variables with a common distribution P. We want to test the null hypothesis
H, that P is N({, ¢*) with (/o = 7, versus the alternative H, that P is N({, ¢%)
with /o = ,, where 7, and 7, are two distinct real numbers. The problem is
invariant under the transformations Z, — ¢Z,, ¢ > 0, and the group G of in-
variance transformations is isomorphic to the multiplicative group of positive
reals. At stage n, a maximal invariant under the group G is (x,/|x,|, « - -5 X,/|x,])
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and the likelihood ratio R, of the maximal invariant can be written as R, =
U”(rl)/Ufn(ro)s where

(™) Un(r) = §¢ u™"exp[nf(u, T,; 1)) du ,

in which T,, = (n=* 12, Z,))/{n™" 332, Z}} is an invariantly sufficient sequence
(we define T, to be 0 when the denominator vanishes), and

®) f,ys1) = =30 + pyu + logu — &7°

(cf. [23], page 1866). The sequential t-test stops sampling at stage N =
inf{n: R, ¢ (4, B)} and accepts H, or H, according as R, < 4 or R, = B, with
0 < A< 1< B. David and Kruskal [4] have shown that P[N < oo] = 1 for
P in the normal model. As mentioned in Section 1, Berk and Wijsman have
shown P[N < o] =1 for P outside the parametric model such that 0 <
EZ?! < oo and P is not one of the family of two-point distributions defined by
(4). In this section, we shall prove that P[N < co] = 1 for any distribution P
such that P[Z, = 0] < 1. To do this, we shall show that (5) holds. We first
study the limiting behavior of the sequence T, in the following lemmas.

LeEMMA 1. Suppose Z,, Z,, - - - arei.i.d. random variables such that P[Z, = 0] < 1.
Let S, =Z,+ -+ + Z,,v, =n" 37, Z}. Then
) lim sup, . |S,|/v, = oo a.s.

Proor. If EZ? < oo, then by the strong law of large numbers, v,* — EZ?
a.s. Furthermore, since P[Z; = 0] < 1, itis well known that lim sup,,_, |S,| = o

a.s., and so (9) holds. Now assume that E|Z,| < co and EZ;* = co. Then by
the converse to the law of the iterated logarithm (cf. [19]),

lim sup, .., |S,|/(n log log n)t = co a.s.

Also it follows from Lemma 2 below together with Kronecker’s lemma that
lim,_ ,n"? Y2, Z?=0a.s., and so lim,_, n~* v, = 0 a.s. Therefore (9) holds.
Now consider the case E|Z;| = co. By a theorem of Kesten [9], we have

(10) lim sup, .. |Z,|/(|1Z)] + -+ + |Zpa|]) = 00 a.s.
From (10), it follows that
(11) limsup,_. [S, /X, Z =1 as.,
and so (9) holds.
LeEMMA 2. Suppose Z,, Z,, - - - are i.i.d. random variables such that E|Z,| < oo.

Then the series Y.=_, n=%|Z,|* converges a.s. for any a > 1.

Proor. Obviously 3} P[n~¢|Z,|* = 1] = } P[|Z,| = n] < co. Also for any
B>1,
(12) e W PE|Z, P g o S Dea KPP[k — 1 < |Z)| S K] D5 nf

<14+ (8- 1) T kPlk — 1 < |Z S A].
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Hence 3} E(n~*|Z,|*]p-a|z,esn) < oo and 3} Var (n=%|Z,|*I;y-az,jesny) < o0. The
desired conclusion then follows from Kolmogorov’s three-series theorem (cf.
[12], page 237).

LEMMA. 3. Suppose Z,, Z,, - - - arei.i.d. random variables with E|Z,| = co. Let
Z,=n?*yr Z,v2=ntYr, Z2 Then
(13) liminf,_ ., |Z,|/v, =0 a.s.

Proor. If follows from (10) that with probability one, 1 is an accumulation
point of the sequence (|S,|/{ >y Z}, n = 1). Therefore

liminf, ., |Z,|/v, = liminf,_, n=}S,|{3r, Z ) =0 a.s.
LEMMA 4. With the same assumptions and notation as ;'n Lemma 1, for any real
number 2,
(14) lim sup, ., |S, — 4nv,| = o  a.s.
except in the case where Z, is degenerate and 2 = sgn (EZ)).

Proor. Since (14) is trivial in the case 2 = 0, we shall assume below that
A+ 0. If E|Z| = oo, it is easy to see from Lemma 3 that (14) holds. If
E|Z|| < oo and EZ? = oo, then v, — oo a.s. while S,/n — EZ, a.s., and so (14)
is obvious.

We now assume EZ? < co. Let EZ, =, EZ? =% VarZ, = o* = 7 — (%
Since S,/n — { a.s. and v, — 7 a.s., (14) is obvious in the case { ++ ir. Now
consider the case { = Ar. If EZ* = oo, then by the law of the iterated loga-
rithm and its converse,

(15) lim sup, .. S, — n{|/(2nloglogn)t = ¢ a.s.
(16) lim sup, .. |2F Z? — nt?|/(nlog log n)t = co a.s.

Since 2 # 0 and { = 1r, it is easy to see from (15) and (16) that (14) holds.

We now consider the case { = ir and EZ* < co. By Taylor’s theorem, we
can write x! — ¢ = (x — t)((1/27) + u(x)), x > 0, where lim, ;u(x) = 0.
Therefore

o= (4 ) = (s o (522 )

where u, = u(n™* 3,7 Z?) — 0 a.s. as n — oco. Hence
17) S, — A, =8, — (A X, Z2[2t) — nl[2 — (Lr, Z — ntd)iu,
= (XD X, — nEX)) — (N1 Z — ne’)Au, ,

where X, = Z, — (2/27)Z? and so EX, = {/2. Inthe case P[X, = EX|] < 1, we
have Var X, > 0 and it follows from the law of the iterated logarithm that

(18) lim sup, ., | 27, X; — nEX,|/(2nloglog n)} = (Var X,)! a.s.
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On the other hand, since EZ,* < oo and lim,_, #, = 0 a.s., we have
(19) lim, ., | 2%, Z; — n7?||u,|/(nloglogn)! =0 a.s.
From (17), (18) and (19), we obtain (14).

It remains to consider the case P[X; = EX,] = 1. First assume that Z, is
nondegenerate so that ¢ > 0. Since 2EX, = { = ir and " = * + a?, this case
is equivalent to the situation where Z, has the two-point distribution defined
by (4). To prove (14) holds in this case, we can without loss of generality as-
sume that * = {* 4+ ¢? = 1, so that (4) reduces to

P[Z, = (Y1 £ ¢)] = (1 F o).
Let p=31+0), ¢g=31—-0), pa=1"Tklzc0-0p =

=t Yt Iigmc-104my-  FOT n > 3, define e, by p, = p + &,{(2pq log log n)/n}}.
Obviously, this implies that ¢, = g — ¢,{(2pq log log n)/n}}. We note that

(20) S, =np, (1 — o) + ng,7'(1 4 9)
= n{ — o¢,(2n loglog n)t .

The last relation in (20) follows from the fact that 1 — o = ¢* and pg =
(1 — ¢®) = 1. We also note that

inv, = Cnv, = Cnl‘(Zf Ziz)’}
(21) = {ntnp, (1 — o) + ng,L7¥(1 4 o)’}
= {n{l — 4L 0¢,(log log n/2n)}}t .
Since lim sup,_,,, |¢,| = 1 a.s., it is easy to see from (20) and (21) that
lim sup, ., |S, — Anv,|/(2{"'¢e* loglogn) =1 a.s.

The only remaining case now is when Z, is degenerate, say Z; = ¢ (+ 0) a.s.
In this case, v, = |¢| a.s. and since 2 = sgn ¢, (14) obviously holds.

THEOREM 1. The sequential t-test (as described in the beginning of the present
section) terminates with probability one under any distribution P for which
P[Z, =0] < 1.

ProoF. We first observe that |T,| < 1. Using Laplace’s asymptotic formula
(cf. [23]), for 7, # 7,

(22)  log{{y u~*exp[nf(u, y; 1,)] du} — log {\5" u~* exp[nf(u, y; 7o)] du}
= n{B(r1y) — B(roy) — #r* + 31} +0(1) as n—> oo,

with the O(1) term being uniform for |y| < 1, where the function f'is as defined
in (8) and the function 8 is defined by

(23) B(u) = Sua(u) + log a(u), setting a(u) = 3u + (@ + 4)}]
(cf. [23], page 1867). It then follows from (22) that there exists a positive
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constant ¢ for which

(24) |log R, — n¥(T,)| < c, n=1,2,...,
where we define

(25) ¥(y) = B(r1y) — B(roy) — 311" + 314* -

In view of (24), we need only show that P[lim sup [n¥(T,)| = o] = 1.

The function ¥ is continuously differentiable, and since §'(¥) = a(u), we have
U'(y) = na(r1y) — r0@(7,y). Since the function ua(u) is strictly increasing, it
follows that W’(y) = O for all y. In the case ¥(0) = 0, or equivalently y, = —7,,
this implies that there exists ¢ > 0 such that |¥(x)| = c|x| for [x] < 1. Then by
Lemma 1,

lim sup,_,, [n¥(T,)| = limsup,_, c|nT,| = climsup,_, |S,/v,| = oo a.s.

Now consider the case W(0) + 0. If E|Z| = oo, then by Lemma 3,
liminf,_ |T,| = 0a.s. If E|Z| < co and EZ’ = o, then lim, T, =0 a.s.
Hence in either case, lim sup, ., [n¥(T,)| = o a.s.

The only remaining case is ¥(0) + 0 and EZ;* < oo. Define k(y, y) = B(ry) —
17* and note that (d/dy)h(r, 1) = a(y) — r > 0 and (d/dy)h(y, —1) = —a(—71)—
7 < 0 for all real y. Now W(y) = h(y,, ¥) — h(y0» y) and 7, # 7,, and so it follows
that

(26) Y1) +0, ¥(—1)=+0,
() and W¥(—1) are of opposite signs.

Since EZ? < oo, lim,_, T, = 2 a.s., where 2 = EZ,[(EZ?)}. If W(Z) + 0, then
obviously limsup,_., [n¥(T,)| = oo a.s. Now suppose W(2) =0. Then 2¢
{—1,0, 1}. Since ¥’ vanishes nowhere, we can find a constant ¢ > 0 such that
T)| = |¥(y) — ¥@A)| = c|y — 4| for |y| < 1. Using Lemma 4 (with 1¢
{—1,0, 1}), we then obtain that

lim sup, ., [n¥(T,)| = lim sup,_., (¢/v,)|S, — ndv,| = co a.s.

3. Obstructive distributions and exponential boundedness of the stopping rule
for the sequential r-test. In the case 7,® # 7,?, Wijsman [24] has shown that the
two-point distributions defined by (4) are obstructive for the sequential s-test if
the stopping bounds are such that B is sufficiently large while A is sufficiently
small. These two-point distributions are not obstructive in the case 7, = —7;
(see Theorem 2 below), and it is interesting to ask whether there are indeed any
obstructive distributions in this case. The answer turns out to be affirmative. Since
¥(0) = 0 in this case and since ¥ is continuously differentiable, we can find
d > 0 such that |¥(x)| < d|x| for |x| < 1. Therefore in view of (24), if B and
A~ are sufficiently large, then there exists @ > 1 such that N = M, where N =
inf{n > 1: R, ¢ (4, B)} and

27 M=inf{n=1:nT,|=Za}=inf{n = 1:1S,| = av,}.
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In the following lemma, we shall construct distributions P under which all
the higher moments of M (and therefore of N) are infinite. Hence such distri-
butions are obstructive.

LemMA 5. Let{z;:i = 1,2, - - -} be aset of positive numbers withlim,_, z, = co.
Suppose Z,, Z,, - - - are i.i.d. symmetric random variables taking values in the set
{0 =2 —2,2,,2,, .-} Let p,=P[Z,=2], S, =Z,+ -+ + Z,, v, =

n~t 3. Z72, and define M by (27) with a > 1. If Y7 p,z;> < oo for some 0 <
0 < 2and 37 plz,f = oo for some B > 8, then EMP@+9/% — oo,

Proor. By Lemma 1, P[M < oo] = 1. Since ¥©°p,z,° < co implies that
E|Z\|° < oo, it follows from the Marcinkiewicz-Zygmund strong law of large
numbers ([12], page 243) that lim,_.,n~"’ 7., Z, = 0 a.s. Hence letting T =
sup{n = 3: |27, Z,| = n'’} (putting T = 3 when the above set is empty), we
have P[T < o] = 1. We note that in the event [Z, + Z, = 0, M > T],

oL ZMP < |5 Z)| = |5 Z| < M2,

and so @® 3 ¥ Z2? < M©@+3/5, Therefore
(28) @P|Z\|Pl 7 1 gpmo s>y = MPETOA
For x =z 0, define L(x) = inf{n = 3: | T Z,| = a[n~(x + 37 Z})]}}.
Since a > 1, we have M = 2 and

2,4+ Z,=0,M>T|=[Z,4+2Z,=0,L(Z* + Z*) > T].
It then follows from (28) that
(29) aﬂElZl|ﬁ1[zl+zz=o,L(zzlz)>T] = EMP+A
We note that

E(1Z Lz 1 5ym0, 02501 | £0 = 2) = |2|PP[Z, = —2]P[L(27%) > T].
Therefore using (29), we obtain that
EMPO+O2 > 2gf 570 p 2z FP[L(22%) > T] = oo,

since 3] p,*zf = oo and P[L(x) > T]1 P[T < o] = 1 as x ] co.

The above example shows that if the distribution of Z, does not have a suf-
ficiently small tail, then N may fail to be exponentially bounded, and in fact it
may not even have finite moments.

The following theorem gives sufficient conditions for the exponential bound-
edness of N.

THEOREM 2. In the case y, = —7, the stopping rule N of the sequential t-test is
exponentially bounded if any one of the following conditions is satisfied.

(i) 0 < EZ, < oo and Eexp(tZ,") < oo for some t > 0.
(i) 0 > EZ, > — oo and Eexp(tZ,*) < oo for some t > 0.
(iliy EZ, =0, E|Z,| > 0 and E exp(tZ,’) < oo for some t > 0.
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Proor. Since y, = —7, is equivalent to the case where ¥(0) = 0, and since
we have shown that there exists ¢ > 0 for which |¥(x)| = c|x| whenever |x| < 1,
it follows from (24) that we need only show that M is exponentially bounded
for any a > 0, where M is defined by (27).

We first prove the theorem under condition (i). Since EZ, > 0, we can choose
b > 0 such that EZ’ > 0, where Z/ = Zilz gy Let Z) =2, -2/, S, =
Xtz S = xrZ”. Define T, =sup{n =1:8,’ < nEZ/[2} (sup @ = 0).
Since Ee!%1'l < oo for some ¢ > 0 and EZ,’ > 0, it follows from a theorem of
Chernoff [2] (see also Lemma 3.3 of [21]) that T, is exponentially bounded.
Noting that Z,” > 0, we obtain that S,” > a*(Y7 (Z,”")*/n) if n = a®. Since for
nzd, S zant N (Z)V] and N Z2 = 30 (Z/)) + N1 (Z/), we ob-
tain that
(30) M < inf{n = max (T, + 1, a®): nEZ'|2 = a[n~' 3.7 (Z,")]}} .
Noting that [ 312 (Z/)*]* < 337 |Z/|, (30) implies that

MST, +ad+2+4supf{n=1: 31|Z/| > nEZ!/(2a)}
=T +a+2+ L, say.

Obviously, by Chernoff’s theorem, L is exponentially bounded. Hence M is
exponentially bounded. Replacing Z, by —Z, in the above argument, we ob-
tain the theorem also under condition (ii). The situation under condition (iii)
is an immediate consequence of the results of Wijsman [23].

Theorem 3 below considers the situation 7, = —7,. In this case, ¥(0) 0.

By (26) and the continuity and monotonicity of ¥, there exists unique 2¢ (—1, 1)
such that ¥(2) = 0. We shall use this fact in Theorem 3.

THEOREM 3. Let y,*  r,% and let 2 be the unique number in (—1, 1) such that
W(2) = 0. Then 2 + 0, and the stopping time N of the sequential t-test is exponen-
tially bounded if any one of the following conditions is satisfied:

(i) 4> 0, P[Z, < 0] > 0 and E exp(tZ,*) < oo for some t > 0.

(i) 4< 0, P[Z, > 0] > 0 and Eexp(tZ,”) < oo for some t > 0.

(iii) 2> 0, Eexp(tZ,*) < oo for somet > 0and —oo < EZ, < AEZ3)} < oo.

(iv) 4<0,Eexp(tZ,7) < oo forsomet > 0and co = EZ, > (EZ?)} = —co.

(v) Eexp(tZ*) < oo for some t > 0 and the distribution of Z, is not a member
of the family of two-point distributions defined by (4).

Proor. Since there exists d > 0 such that |¥(x)| = d|x — 4| for |x| < 1, it
follows from (24) that we need only show that M, is exponentially bounded
for any a > 0, where

M,=inf{n =z 1:n|T, — 2| Z a} =inf{n > 1: S, ¢ (nd — ayv,, (n2 + a),)}.

First assume condition (i). There exist d > 0, ¢ > 0and 0 < p < 1 such that
P[S, > on] < cp”, n =1,2, -... This can be proved by truncating Z; from
below and then applying Chernoff’s theorem. Take a > 4 a /2 and choose a
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positive integer r such that P[Z, + ... 4+ Z, < —a] = p > 0. We observe that
(31) P[M, > (r + )]  PC, + D3 P[Spysy > 3(n + ir)]
S PC+ ¢ Lo o™,
where we define the event C, by
C,=[vi=0,1,...,n,8,,,;,, < 0(n -+ ir) and
(A(n +ir) — @)V, < Sppir < (A1 + i) + @),y ] -
For n = n,, we have A(n + ir) — a > A(n + ir)/2,i = 0,1, ..., nandsov,,,;, <
2d/2 on C,. Since jv; is nondecreasing in j, we have for n = n, and i = 0,
L ..,n—1,
(2)  {A(n + i) + a}vppy, — {4 + ( + D) — @V
S AUy + AUy, < 4a0/2 on C,.

Therefore forn > nyand i = 0,1, ..., n — 1, we have on C, n [X;" < —a],

where we set X, = Z, ...+ -« + Z, iinm
Sn+(i+1)r = Ontir + Xi(m < (Z(n + ir) + a)vn+ir —a
(33) < (A(n + ir) + a)v,,,;, — (4ad[2)

<A{An 4 (i 4+ 1)r) — aPuyiny -
From (33), we see that C, n [X; < —a] = @, and so for n = n,,
C,cl[X™=—a for i=0,1,.--,n—1].

This implies that PC, < (1 — p)* and in view of (31), M, is exponentially
bounded.

Now assume condition (iii). Choose{ > 0and 0 < 7 < Asuch that y(EZ}?)} >
&€ >EZ,. Define T=sup{n>=1:S8,=én}. By a suitable truncation and
Chernoff’s theorem, it can be shown that T is exponentially bounded. For
n = n;, we have nd — a = yn, and so

M

a

inf{n = max{T + 1,n): (ndA — a)yv, = S,}

inf{n = nax (T + 1, n,): ynv, = én}

T4+n +2+sup{n=1:72 01722 < &n}.

By truncating Z? suitably from above and applying Chernoff’s theorem, it is

easy to see from (34) that M, is exponentially bounded. The situation under
condition (v) has been considered by Wijsman [23].

(34)

IA A A

4. Moments of the stopping rule for the sequential ¢-test. In Section 3, we
have given examples to show that moments of the stopping rule N for the se-
quential ¢-test may be infinite. Theorems 4 and 5 below give some conditions
for the finiteness of moments of N.

THEOREM 4. Let 8> 0. In the case y, = —7,, EN? < oo if any one of the
following conditions is satisfied.
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(i) 0< EZ, < o and E(Z;")**! < co.
(i) 0 > EZ, = — oo and E(Z,*)**' < co.
(ilf) EZ, =0and 0 < E|Z,***) £ .

THEOREM 5. Let y* < 1.’ and let'2 be the unique solution of W(2) = 0. Then
forany B> 0, EN* < oo if any one of the following conditions is satisfied:

(i) 2> 0, P[Z, < 0] > 0 and E(Z;*)*+ < oo.
(i) 2< 0, P[Z, > 0] > 0 and E(Z,")*** < .
(i) 2> 0, E(Z;*)*' < o0 and —o0 < EZ; < (EZP) < oo.
(iv) 2<0, E(Z)*' < oo and oo = EZ; > (EZ?)} = —co.
(V) E|Z,[***D < oo and the distribution of Z, is not a member of the family of
two-point distributions defined by (4).

The above two theorems can be proved by using similar ideas as the proof
of Theorems 2 and 3 and replacing Chernoff’s theorem by the following lemma
(cf. [3] and [10]).

LEMMA 6. Suppose Z,, Z,, - - - are i.i.d. random variables and § is a real number.
Let S, =Z,+ --- + Z,, > 0.

iy If 0 > EZ, = —oco and E(Z*)*' < oo, then nf=1P[sup,., k7S, >
Pr= k

0] < oo.
(i) If 0<EZ < oo and E(Z")*'< oo, then Y, nf-'P[inf,,, k1S, <

0] < oo.

In [14], Sacks has proved that for the sequential r-test, if y, = 0, 7, = 1 and
the stopping bounds 4(< 1) < B are such that 4 = B-!, then
(35) : EN ~ 2log Bflog 2 as B— oo,

under the assumption that Z,, Z,, . .. are i.i.d. N(1, 1) random variables. Here
we give a simple proof of a general form of this theorem where our conclusion
still holds outside the normal parametric model.

THEOREM 6. Suppose Z,, Z,, --- are i.i.d. random variables such that 0 <
E|Z[***D < oo for some f > 0. Let N=inf{n>1:R,¢ (4, B)}, where R, =
U.(r1)/Un(ro) With 1, # 1, and U,(y) defined by (7). Let a = log A, b = log B and
A= EZ|[(EZ")}. Defining ¥ by (25), we have as min (—a, b) — oo,

(36) EN' ~ (b/¥()y  if () >0;
ENF ~ (a|¥(2))? if ¥2)<0.

Proor. In view of (24), it suffices to show that the asymptotic relation (36)

as min (—a, b) — oo is satisfied by the stopping time M defined by
M =inf{n = 1: n¥(T,) ¢ (a, b)} .

Since lim,_,, T,, = 4a.s., it is easy to see that with probability one, MW (2)/b — 1
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if ¥(2) >0 and M¥(2)/a — 1 if ¥(2) < 0 as min (—a, b)) » co. Hence by

Fatou’s lemma,

37) liminf, ;. _, 4 0 (¥(2)/B)PEM? = 1 if ¥) >0,
lHminf,;, g p-e (FQA)/a))EME =1 if ¥(A)<O0.

For definiteness, consider the case ¥(4) > 0. Then M < M(b) = inf{n > 1:
n¥(T,) = b}. Given any small ¢ > 0, let

L=SUP{”21:I-’172i'Zi—EZ1 >e}.

>¢ or l_rlf SrZP— EZ?

Since E(Z2)**! < oo, it follows from Lemma 6 that EL? < oco. Let p(c) =
min {¥(u/v): |u — EZ,| < ¢, |v* — EZ| < ¢}. Then p(e)y > 0 if ¢ is sufficiently
small. We note that
(38) M) = (L + Dlpyizuen + MO iyay>z4n

< L+ (5p(e) + 2.
The second inequality in (38) follows from the fact that on [M(b) > L + 1],
we have ’

(39) (M(6) — 1p(e) = (M(5) — DY (Tyay-1) < b
Hence if 0 < 8 < 1, then it follows from (38) that
(40) EM#(8) < EL* + (b[p(e)* + 2.

Therefore lim sup, ., EM#(b)/b* < 1/(p(¢))?, and since ¢ is arbitrary, we have
established (36) in the case 0 < 8 < 1.
Next consider the case where § is a positive integer. Then it follows from
(38) that
M#B) < (L + 2) + (6]0(e))" -

Applying the binomial expansion to the right-hand side of the above inequality,
we then obtain using induction that lim sup, ., EM?#(b)/b* < 1/(p(¢))?, and so
(36) is also established in this case.

Finally for any real number 8 > 1, we write § = k + d, where k is a positive
integer and 0 < § < 1. It then follows from (38) that

(A1) M) < (L +2) + (Ble@ENL + 2)° + (L + 2) + (6/0()))*(5]0(e))’ -
It is easy to see from (41) that lim sup, ., EM#(6)/b* < 1/(p(¢))?, and the desired
conclusion then follows upon letting ¢ | 0. The case ¥(4) < 0 can be handled
similarly.

In the case y, =0, 7, =1, we have ¥(1/2%) = $log2. Thus if EZ, =1,
Var Z, = 1 and EZ;* < oo, then EZ? = 2 and (36) with 8 = 1 reduces to the
result (35) obtained by Sacks.

5. Other invariant sequential probability ratio tests. In this section, we shall
extend our method to study other invariant SPRT’s. First we consider the
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sequential F-test studied by Ifram [6]. Here Z, are i.i.d. k-dimensional random
vectors with Z, = (Z,,, -+, Z,;), where {Z,,:n=1,2,...;i=1, ...k} is
a family of independent random variables. The parametric model assumes that
Z,; is N(§;, o) and that for some given s < k, {;, = 0 if i > 5. For some given
1 <9< s, letting 0 = 317, {’/ke®, we want to test H,: § = 0, against the al-
ternative H,: ¢ = 6, with 6, + 6,, 6, =0, 6, = 0. By a procedure similar to
that on page 267 in [11], sufficiency and invariance under some group of trans-
formations reduce the data to the sequence (W,), where

W= (210 22)(+ D3 (Bt (Zi — 22 + Do 230)

Zy=DhaZyln. :
We can write the likelihood ratio R, = pj, (W.)/ps, (W), Where

(42) Poa(X) = (1/B(¢c, 2 — a — ¢))x*Y(1 4 x)~4-*
X e~% . F (2 — a, ¢; 20x/(1 + x))
with 2a = 5 — ¢, 2c = g and 22 = kn. The function ,F(a, $; z) in (42) denotes
Kummer’s confluent hypergeometric function (cf. [7], [16]). Letting Y, =
w,/(1 + W,), we have
(43) log R, = —3}kn(0, — 6,) + log ,F\(—a + %kn, c; 1kn6,Y,)
— log ,F\(—a + %kn, c; 1kn6,Y,) .

The sequential F-test stops sampling at stage N = inf {n: R, ¢ (4, B)} and ac-
cepts H, or H, according as Ry < 4 or Ry, > B. The particularcasek = ¢ = 1
corresponds to the sequential #*-test (or the two-sided sequential #-test) studied
by Rushton [13] and Schneiderman and Armitage [15]. We now consider the
problem of termination with probability one under any distribution P. First
we generalize Kesten’s theorem to the case of several populations in the following
lemma. The proof of Lemma 7 makes use of similar ideas as Kesten’s proof and
is omitted here.

LemMmA 7. Suppose{Z,;:n=1,2,...,i=1, ..., k}isa family of independent
random variables such that for each fixed i, Z,,, Z,;, - - - have the same distribution.
Let S,;, =Zy; + -+ + Z,;- If max,,, E|Z,| = oo, then

lim sup,, ., Max, g, | Z,;|/max, ;. |S, 1] = 00 a.s.

LemMa 8 (cf. [18]). With the same notation as in Lemma 7, assume that
EZ,=0,EZ} =0 < oofori: 1, ..., k.

() Ifo* = X}k 02> 0, then

limsup, .. |25, S,l/(2nloglogn)t = ¢ a.s.

(ii) Ife® >0 fori =1, ..., k, then with probability one, the set of limit points
of the sequence of random vectors (S,,/(20, n log log n)t, ..., S,,/(20, n log log n)}),
n = 3, coincides with the unit ball {(x,, - - -, x,): 2k, x? < 1} in R*.
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We now define a function G as follows:

(44) G(y) = KH(y, 0,) — H(y, 0,)}
H(y, 0) = —30 + 0y + (09)*(0y + 4] + log () + Oy + 4)) .
This function plays the same role for the sequential F-test as that played by the

function ¥ defined by (25) for the sequential ¢-test. We note that G is continuous
on [0, o) and its derivative is continuous and is nowhere zero on (0, co). In fact

G'0) = %0, + (02 + 40,y — b, — @2 + 40y}, ¥ >0.

Suppose 0, > 6,. Then G(0) = —(k/2)(6, — 6,) < 0. Also for all ¢ > 0,

d_‘Z-H(l, 0) = (1 + 46-% — 1} >0
and so G(1) = k{H(1, 6,) — H(1, 6,)} > 0. In the case 0, < 6,, then G(0) >0
and G(1) < 0. Hence in either case there exists a unique g e (0, 1) such that
G(p) = 0.

THEOREM 7. Letfe (0, 1) be the unique solution of G(8) =0. If ¢ =1 or if
0y, 0, are both nonzero, then the sequential F-test terminates with probability one
under any distribution P for which the following statement does not hold:

PlZ,=p, for i=1,...,q¢;Z% =<2 for i=s+1,.---, k] =1
(45) with 28 p® = B(Xia 1 + Db 7)o and
Z,, isdegenerate for i=¢q+1,...,5.

In the case where q = 2 and one of 0,, 0, vanishes, the sequential F-test terminates
with probability one under any distribution P for which the following statement does
not hold:

(46) P[Z, =0 fori=1,.--,k]=1.
Proor. We first note that

= 1 1
Yn = Zg=1 an/{Y Z?:l Zg=1 Z?‘i + 7 Z?=1 Z§=q+1 (Zji - ni)2

1
+7Z%§mﬁﬂ-

(We take Y, to be 0 if the denominator in the above expression vanishes.) If
E|\Z,;| = oo for some i =1, ..., k, then it is easy to see from Lemma 7 that
liminf, . Y, = 0a.s. Now assume that max, ., E|Z,;| < oo but max,_,, EZ}, =
co. Then the strong law of large numbers implies that lim, ., Y, = O a.s. In the
case max, g, EZ}, < oo and EZ, =0 for all i=1,...,9, we also have
lim,_, Y, = 0 a.s. But using the limiting behavior of Kummer’s function (cf.
[7], [16]), iflim, ., Y, = Oa.s., then it follows from (43) that lim,_, n~"|log R,| =
(k/2)|0, — 6,| a.s., while if lim inf, ., Y, = 0 a.s., then lim sup,_., n~*|log R,| =
(k/2)|0, — 6,| a.s. Hence in all the above cases, lim sup, _,, [log R,| = oo a.s.
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We shall now assume that max,_,., EZ} < oo and EZ,; # 0 for some i =
I, ..., ¢q. In this case, setting
(47) v.=EZ,, t2=EZ,, o}=VarZ,,

7= (Dl Dt + Dicgaod + Db v}

we obtain from the strong law of large numbers that lim,_, Y, = 7 (> 0) a.s.
From the uniform asymptotic expansion of Kummer’s function (cf. [7], [16],
[25]), we can choose § > O such that y — d > 0 and p > 0 such that for y —
ify<r+dandn=12,...,
(48) |{—%kn(0, — 0,) + log ,F,(—a + %kn, c; Lknb,y)

— log Fy(—a + kn, ¢; $knf,y)} — (nG(y) + vlogn)| < p
where v = 0 if 6, and 6, are both positive, while in the case when one of 4,, 4,
vanishes, we have y = 4 — cif 6, + 0 and v = ¢ — 1 if 6, # 0. (This is due to
the fact that ,F,(4, {; 0) = 1. Also note that when ¢ = 1, we always havey = 0.)
Hence if G(r) + 0, then (43) and (48) imply that lim sup,_,., |log R,| = oo a.s.

Now assume that G(y) = 0, i.e., y = 8. Then there exist positive constants
¢, > ¢, such that «

(49) aly =Bl 2|6 z aly — Bl 0=y=1.
If max,_;., EZ}, = oo, then as in the proof of Lemma 4, we can show that
lim sup,_, |log R,| = o a.s. Now suppose that max,,, EZ4 < co. Fori=
1, ..., s, we can write x* — p* = (x — p;)(2¢t; + v(x)) with lim,_, v,(x) = 0.
Therefore :
nYia 2y — BN X3 2+ Diegn i (L — Z,)
+ Zien 25 25}

(50) = 2 (U3 Xy — nEXy) — B Xt (X7 (Zs — ) — nof)

— B Xten (D31 25 — n7f)

+ D1 (D31 Zjo — npt)Vas + 1B Niegin (Zoy — 1)
where X;, = 2u,Z;, — BZ% and v,, = v(Z,;), i =1, - - -, g. In the case where
2iaVar (Xy) + i Var (Zy — p)’) + 2k, Var (Z3;) >0, we can use
(43), (48), (49), (50) and Lemma 8 to show that lim sup,_., |log R,| = oo a.s.
by a similar argument as in the proof of Lemma 4.

It remains only to consider the case y =8 and > 2, Var(X,) +
Dicgs Var (Zy, — 1)) + Xk, . Var(Z3) =0. Then for i=s5+41,...,k,
Z3, is degenerate, while for 1 =1, ..., s, the distribution of Z,; is either de-
generate or puts its mass only to two points. Fori =1, ..., g, let P[Z; = a;] =
p.and P[Z,, = b]] = q, with p, + ¢, = 1 (a, and b, need not be distinct). Set

d; = (p:9)H(2ap; + 2a;6,9, + Pb?) — (2b7q; + 2a,b,p, + Pa?)};
1
Pui = " 2i1lizymay =pi + €.:{(2p:9; log log n)/n}t ;

9ui = 1 — pos = 4; — €,{(2p;q; log log n)/n}t .
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Then it can be shown that
51y nZ2, — B ¥r,Z% = np? — nBc? + de,,(2n log log n)t

+ 2p;q:€h(a; — b’ loglogn, i=1,...,q.
Fori=q+ 1, ...,s, since Var ((Z,, — p,)*) = 0, we have P[Z,; = y, + 0,] =
P[Z,, = p; — 0;] and this probability is 1 or 4 according as ¢, is zero or not.
In the case o, = 0, obviously *_, (Z,;; — Z,;)* = Oa.s. Inthecase g, = 0, letting
ntyn, Lz mpirog = % + €ai(log log n/2n)t, we have
(52) Tt (Zy — 2, = ne? — 20%,;loglogn .
Therefore if max,;, |d,| > 0, then (51), (52) together with Lemma 8 imply
(53)  limsup, o |n 31, 2% — B B3 { Xl Z5 + Xicon (Zis — Za)’

+ Nk, Z%)/(nloglogn)t = ¢ a.s.

for some finite positive constant {, and so it follows from (43), (48) and (53)
that lim sup,_, |log R,| = oo a.s. In the case where max,_,_, |d,| = 0, if 6, and
6, are both positive or if ¢ = 1, then (45) cannot hold and there must exist

some i =1, ..., s such that Z;;, is nondegenerate, and so we have from (51),
(52) and Lemma 8 that
(54) limsup, ., [n X1 Z3; — B 23X Z% + Diegin (£ — Z,0)

+ Lk ZiJl/(loglogn) = & ass.
for some positive number &. It is then obvious from (43), (48) and (54) that
lim sup, ., |log R,| = co. The same result obviously still holds when § = 0 in
(54) and v 0, and that is why we do not have to exclude the case (45) when
g = 2 and one of 6,, 6, vanishes, provided that (46) does not hold.

It is clear from the above proof that in the case where (45) is satisfied and
0y, 0, are both nonzero, then the sequential F-test fails to have the property of
termination with probability one when the stopping bounds 4, B are such that
B is sufficiently large and A is sufficiently small. The function G defined by
(44) which plays a central role in the termination problem also gives us the
asymptotic behavior of moments of the stopping rule for the sequential F-test.
Using (43), (48) and a similar argument as in the proof of Theorem 6, we can
prove the following theorem.

THEOREM 8. Suppose {Z,,:n=1,2, ...;i=1,...,k} is a family of inde-
pendent random variables such that for each fixed i, Z,;, Z,;, - - - have the same dis-
tribution. Let N = inf{n = 1: log R, ¢ (a, b)}, where log R,, is defined by (43) with
0, 0, 6, =0, 0,=0. Assume that for some n > 0, E|Z,|*"*? < oo for i =
L ook Lety = (D p ) {0017 + Dicgin 07 + Dicera v’} where p; = EZ,y,
v} = EZ%, ¢ = Var Z,; and define G by (44). Suppose that y > 0 and G(r) + 0.
Then EN? < oo and as min (—a, b) — oo,

EN' ~ (b/G@)Y  if G(r) > 0;
EN" ~ @Gy if G() < 0.
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The function H(y, ) defined by (44) also gives us the asymptotic behavior
of moments of the stopping rule for the sequential T-test. Suppose Z, are i.i.d.
k-dimensional random vectors with Z, = (Z,,, - - -, Z,;). The parametric model
assumes that Z, is normal with mean vector { and positive definite covariance
matrix £. We want to test the null hypothesis H,: {’2-( = 6, versus the alter-
native H,: {'Z-{ = 6, with 6, # 0,, 0, = 0,0, = 0. Let Z,and S, be the sample
mean vector and the sample covariance matrix (at stage n) respectively, and let
Q,=Z2,/S,7'Z,. The sequential T*-test stops sampling at stage N = inf{n >
2: R, ¢(4, B)}, and accepts H, or H, according as R, < A4 or R, = B, where
the likelihood ratio R, in the present case is given by:

(55)  logR, = —4n(6, — 0,) + log ,F, (_;.. %; n0,0,/2(1 + Q”)>

— log ,F, (_;_ %; n0,0,/2(1 + Q,,))

(cf. [S], [8]). The following theorem gives the asymptotic behavior of the mo-
ments of the stopping rule N.

THEOREM 9. Let y > 0 and suppose Z, = (Z,,, - -+, Z,,) are i.i.d. k-dimen-
sional random vectors such that E|Z,|*"*Y < oo fori =1, ..., k. Suppose Z, has
a positive definite covariance matrix X and mean vector {. Let N = inf{n > 2:
log R, ¢ (a, b)} where log R, is defined by (55) and 6, + 0,, 6, = 0,0, = 0. Define
H(y, 0) as in (44) and let G(y) = H(y, 0,) — H(y, 6,). Suppose 2 > 0 and G,(2) + 0,
where 2 = ({’Z-')[(1 + {'2-%). Then EN” < oo and Gs min (—a, b) — oo,

EN" ~ (b[GR)y  if Gy(2)>0;
EN" ~ Gy if G2 < 0.
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