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A NOTE ON THE CONSISTENCY OF MAXIMUM LIKELIHOOD
ESTIMATES FOR FINITE FAMILIES OF
STOCHASTIC PROCESSES

By P. E. CaInEs!
Stanford University

We consider families of stochastic processes indexed by a finite number
of alternative parameter values. For general classes of stochastic processes
it is shown that maximum likelihood estimates converge almost surely to
the correct parameter value. This is established by use of a submartingale
property of the sequence of maximized likelihood ratios together with a
technique first employed by Wald [24] in the case of independent identically’
distributed random variables.

1. Introduction, notation and assumptions. The maximum likelihood tech-
nique has been one of the principal large sample methods of statistics since its
invention by Fisher [14], [15]. Much of the extensive literature on this technique
is concerned with the convergence properties of the maximum likelihood estimate
(MLE). Ina classical paper in 1949 Wald [24] proved the strong consistency of
the MLE in the case of independent identically distributed random variables. He
used no differentiability assumptions on the density functions involved. This
was a considerable contribution since such assumptions were common in the
literature, especially in that part of it concerned with the closely related likeli-
hood equation technique (see for example [10], [16]).

Most of the identification problems occurring in system theory involve pro-
cesses with dependent observations. The particular problem of parameter esti-
mation for finite dimensional linear systems has naturally been of great interest
to engineers and statisticians. (See for instance the survey article [4].) Partly
following Wald, ahd Stuart and Kendall [22], many authors have attempted to
use the laws of large numbers to establish weak and strong consistency results
for linear systems. (See for example [1]—[3], [5]—[7], [12], [23].) The latter
result has, in fact, recently been established [8], [19] by using the ergodic
theorem, as suggested by Astrom and Bohlin [3].

The extension of consistency results to various classes of general, in particular
nonlinear, stochastic processes has been studied by several authors (see for
instance [17], [18]). Unfortunately the conditions required for the application
of these results are frequently difficult to‘verify in practice. In an elegant paper
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in 1965, however, Roussas [20] proved the consistency of the maximum likeli-
hood estimate for stationary ergodic Markov processes. He also established in
another paper [21] the asymptotic normality of the MLE. The first result em-
ployed Birkhoff’s ergodic theorem and the second a martingale property of the
differential of the log-likelihood function.

In this note we treat the highly restricted situation where there exist only a
finite, albeit arbitrarily large, number of alternative parameter values (including
the true value ) in the set ©. This finiteness restriction enables us to prove
the strong consistency of the MLE for a general class of families of processes.
(Namely those satisfying (A1) and (A2) below.) From a theoretical point of
view substantial generality in one direction has been purchased by corresponding
restrictions in the other. We believe our result has practical significance because
implementation of identification algorithms takes place upon computers, and
mathematically speaking these are finite objects.

It has long been well known that a sequence of likelihood functions forms a
martingale and that this allows one to employ the martingale convergence
theorem to study the MLE (see for instance Doob [11] pages 348-350 and Feller
[13] pages 211-212). Despite this, the observation that the maximized likelihood
ratio (MLR) sequence forms a positive submartingale appears to be new. (In-
deed, Doob’s assumptions make the sequence of likelihood ratios a positive
supermartingale.) Once this property is invoked an extension of Wald’s tech-
nique to general dependent sample processes is almost immediate. Un fortunately
this proof technique cannot be applied directly to families of processes indexed
by an infinite number of parameters. This is due to the fact that one of the
bounds employed in Section 2 below may fail to hold in such cases.

Consider a measurable space (Q, %) and a finite abstract set of parameters of
cardinality N + 1. Without loss of generality we shall take this set to be the
collection of integers {0, 1, - -, N}. Let {P,; 0 < k < N} be a family of prob-
ability measures on 7. It is assumed that for every ke {0, ---, N} {Y,,n = 0}
is an R™-valued stochastic process defined on the probability space (Q, %, P,).
Without loss of generality we may assume (Q, %) is the infinite Cartesian pro-
duct ]2, (R™, <#) where <7 is the m-dimensional Borel field in R™ and P, is
the probability measure induced in % by a set of (consistent) probability dis-
tributions {p, ,(+), n = 0} on {[] 7, (R™, &%), n = 0} according to Kolmogorov’s
consistency theorem.

Let P, , denote the restriction of P, to the o-field %7, = Z(Y,, 1y, - -+, Y,),
n = 0. Throughout the remainder of this note we hold the following

AssuMPTION (Al). For each n > 0 the members of the family {P, ,.(+), k€

{0, - - -, N}} are mutually absolutely continuous.
As a consequence, outside P;, null sets for all je{0, 1, ..., N}, we have
[P, oJdP; ] = fr,;(Ye Yy, - -+, ¥,) for any k,je{0, .., N} where f, i(+) is a

specified version of a Radon-Nikodym derivative of the measure P, , with respect
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to the measure P;,,. We shall arbitrarily assume that 0 is the true parameter in
the set {0, - - -, N}; in other words the process {Y,,, n = 0} is generated according
to the measures {P,,; n = 0} or equivalently the distributions {p, ,(+); n = O}.
By forming each of the likelihoods with respect to, say, {dPy ,, n = 0} we may
simplify the notation f, ,(+) to read fi(+).

We also need the following definitions. Any mapping k,=k(Y, Yy, -, Y,)
on Q into a subset _.#Z {0, - - -, N} which is .9, measurable will be called an
estimate. An estimate such that f; (Y*) = max {f,(Y"); j € .2} is called a maxi-
mum likelihood estimate (MLE), where Y denotes (Y,, Y}, - - -, Y,). (This integer-
valued MLE is obviously the finite parameter specialization of the usual ®-valued
estimate, where © is some infinite subset of R* for some v.)

We also need to define the notion of likelihood ratio. This is the ratio fi,(Y")/
fi(Y™); it has the property that it takes its maximum value at the same subset of
_# as does the likelihood function. Let _# = {0, ---, N}. Then we shall call
the estimates {k,, n = 0} (strongly) consistent if k, # O infinitely often with P,-
probability 0, i.e. Pw|k,(0) = 0,n¢e {n}) = 1 and Py(w|k,(0) = j,ne{n}) =0
for je{l, ..., N}, where {n?}, je{0, --., N} denote subsequences of {n} =
0,1, -}

The family {P, ,; n = 0} will be the only family of measures that governs the
observed process {Y,;n = 0}. The extent to which we require the measures
{P,.;n =0}, 1 <k < N, to differ from the true family {P, ,; n = 0} is given by

ASSUMPTION (A2). Given e > 0 there exists a(¢) > 1 such that for any integer
Nthe event [0 < A _ (Y, | Y"™") < a, for all n > N] when _Z = {1, ..., N}is
of P, probability less than ¢ where

h(Y, | Y7 A flYu | Y fol(Ya ] Y77)
SlXa | Y27 = YY) and
[ilYo] Y7 = filYo) = ful(Y?) -
By definition

fil(Y") = [dP, ,[dPy ] = T15-0 fu(Y; Y77 -

Consequently we may write

[T = Tl (Y5 | YIS Y3 = h(Yo| Y770 - A )f(YY)
for the kth likelihood ratio at the nth sample. We see that {#(Y,|Y"");1 <
k < N} compares the true conditional probability measure of the next observa-
tion with that given by each of the measures {P, ,(+|.%,;), | <k < N}, for
n > 0. Analogous “prediction conditions” are to be found elsewhere in the
literature on maximum likelihood estimation. See for instance [23] for the case
of linear systems. Clearly it would be of interest to have a general characteri-
zation of the classes of processes satisfying such prediction conditions.

2. Main result. Using the notions defined in the previous section we shall
prove the following result.



542 P. E. CAINES

THEOREM. Under assumptions (Al) and (A2) maximum likelihood estimates are
strongly consistent.

Proor. Let us denote the maximized likelihood ratio of the kth probability
density over the Oth probability density with respect to any subset _# C
{0, - -+, N} by x#(Y™). When no confusion is likely to occur we shall abbreviate
this to x(Y™) or x,,.

Then it is clear that

0 <k, (Yol Y- x(Y"7) = fi, _(Y)fl(Y") = f3,(Y")f(Y")

Further

x(Y") = fo, (Y)f(Y") = kg (Yo | Y70) - f3, (Y7 D[fo(Y"7)
< A (Yo | Y270 - x(Y"7)

The latter inequality is included for completeness since we shall only be con-
cerned with the first inequality in the sequel. However, the two inequalities taken
together yield the following basic inequality for maximized likelihood ratios:

n—1 =

(1) 0<hy (Y |Y") . x, S x, < b (V,| V") x, ;.

It should be noticed that an analogous inequality holds in the case of a con-
tinuum of parameter values ® under mild conditions e.g. f,(Y™) continuous in
# with ® a compact metric space (using an obvious modification of the notion
established before).

We shall demonstrate that the MLR inequality above shows the process
{x#(Y™); n = 0} to be a positive submartingale. Let E, denote expectation with
respect to P, measure. Then clearly x, = 0 for n = 0 and the submartingale
property follows from

Ey(x,| 1) Z Eo(, (Yol Y"7)%0os | S7500)
(2) =as. Xna Ey(hp,_ (Yo | Y"7) [ )
= x,,E, <f’?n_l( Y”' Y_n—l) ‘Mn—1>
(Y| Y7
a5 Xn-1 fO( Yn_l) Eo (f;;”_l( Yn)
fr, ("7 fo(Y™)

M,H) .

Next, by setting,

ety _ g [ Sia(Y™) e
I(Y*") = E, (7(K—Yn) Mn—l) s A4; = kur =17) 5
one has
-1y — fi(Y")
(3) ](Y ) —a.s. Zj IAon <70—(*}7) Mn—l) .
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N = g (LA P |
“) (MEW“WWB ”Q
m DT g (LYY o Y S0
R N )T T e

[ _ fo ()
[ f(Ym)
and the desired result then follows from (2).

Now the inequality

E(x(Y") = L= E(ful(Y")f(Y")) = N+ 1

shows that for any subset _#Z C {0, - - -, N} the sequence of expectations of the
positive submartingale {x,; n = 0} is uniformly bounded. (It is this bound which
may fail when the parameter set is infinite.) It immediately follows from the
submartingale convergence theorem ([11], pages 324-328, [9], pages 307-308)
that {x,; n = 0} converges almost surely to a limiting random variable which
shall be denoted by x*. Although this is true for any subset _# of {0, - .., N},
it is convenient to assume _# = {1, ..., N} from this point on in the proof.
The notation {x,; n = 0} should be interpreted accordingly.

We now employ a technique originally developed by Wald [24] to obtain the
main result. Suppose it was not the case that I%n with range {0, - .., N} took only
the value O infinitely often with P, probability 1. Then the event [max {f,(Y™);
jef{l, .-, N}} =z max {f;(Y"); je{0,- .-, N}}, infinitely often] would have some
nonzero probability with respect to the measure P,. Notice that one possible
value of the MLR with respect to {0, - --, N} is 1 for each n. Consequently if
the MLE £, is not consistent the event [max {f,(Y*)/f(Y*); je(l, ---, N} = 1,
infinitely often] would have nonzero P, measure. It follows that the consistency
of k, would be established by contradiction if the event [x, > 1, infinitely often]
had P, probability 0. In fact we now prove the stronger statement that under
assumptions (Al) and (A2) x, — x* = 0, as n — oo, almost surely [P,].

Assume x* = 0 with P, probability 1 — 3¢, ¢ > 0. Then referring to assump-
tion (A2) choose a(¢) > 1 sufficiently small that for some M, the event [0 <
by (Y, |Y*™) < a, for all n > M,] is of P, probability less than .

Now by the continuity of probability measures there exists d(¢) > 0 such that

Po[x*> "Y"'} 5]>2€'

oA —

fj n
=iy

Then (3) gives
I(Yn—l) =a.s. Zj IAJ-

The convergence of {x,} to x* implies the existence of N(d(¢), ¢) = M,, denoted
N,, such that

Po[supnz],,e |x, —x¥| <] >1—c¢.
Hence

Po[supngm |x, — x*| < d; x* > a+ i 5] >e.
o —
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Together with the left-hand side of (1) this statement implies the event

l:OSh,; (Ynlyn—1)s_3_5,,_sx*+5
- T X, x*—0

<a, foral n> NEJ

is of P, probability greater than ¢. This contradicts assumption (A2), given our
choice of @, and we conclude x* = 0 almost surely [P,]. Consequently we have
proved the main theorem.

3. Example. Consider the real-valued scalar process {Y,; n = 1} generated by
the recurrence equation

(4) Yn+l = n(Yn) + Wn+1 n g O

where Y” denotes (Y,, Yy, - -+, Y,), Y,is given, {W,;n = 1}isa real-valued i.i.d.
process and {F,(+); n = 0} is a family of measurable functions from R"*! to R
for each n. Let W, take the set of values {w,; i = 1} with probabilities {p,°; i = 1}
with respect to the true measure P, and with probabilities {p;'; i = 1} with respect
to an alternative measure P,. We assume that 0 < p® < 1 and 0 < p;! < 1 for
all i and that p° + p,! for at least one i.

We remark that the process generated by the recurrence relation (4) is clearly
not Gaussian nor necessarily Markovian.

Assumption (Al) is immediately satisfied in this example. If the prediction
condition (A2) is also satisfied we are assured by the theorem in Section 2 that
the maximum likelihood estimate k, is strongly consistent at the true parameter
0. This is straightforward to verify. The set of parameters excluding 0 consists
only of the parameter 1. Then

(Y, | Y") = %}; = El; when Y, — F(Y*) =w,
ol Yau | Y7 P1

1
=P when Y, — F(Y" ™) =w,
) 2% !

Since at least one p,® differ from p,! there exists a partition (P, P’) of the integers
{1, 2, ...} such that p,}/p® > 1 for i e P and p;/p < 1 for i e P’ with neither P

nor P’ empty. Now choose a so that
1

I<a< supie,,%;
then there exists at least one i, denoted i,suchthat 1 < a < pipy.
Writing i.0. as an abbreviation for infinitely often, we have

Pk, _(Y,|Y*) > a, i.0.] = P[A(Y,|Y"™") > a, i.0.]
= P[W,=w;, io]=1..

It follows that condition (A2) holds for this example and consequently the
maximum likelihood estimate is strongly consistent.
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4. Conclusion. An analysis of maximum likelihood estimates may be viewed
as an examination of infinite products of conditional densities. The example
above showed that the prediction condition can reduce this problem to simpler
and more amenable tasks.

As far as extensions are concerned, it obviously remains to find simple sufficient
conditions for (A2) which may be employed in various large classes of problems.
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