The Annals of Statistics
1975, Vol. 3, No. 2, 267-284

ADAPTIVE MAXIMUM LIKELIHOOD ESTIMATORS
OF A LOCATION PARAMETER!

By CHARLES J. STONE
University of California, Los Angeles

Consider estimators 6, of the location parameter § based on a sample
of size n from @ + X, where the random variable X has an unknown dis-
tribution F which is symmetric about the origin but otherwise arbitrary.
Let # denote the Fisher information on 6 contained in § + X. We show
that there is a nonrandomized translation and scale invariant adaptive
‘maximum likelihood estimator 6, of ¢ which does not depend on F such
that .S’(ni(én — 6)) — N(0, 1/#) as n — co for all symmetric F.

1. Introduction and summary of results. Let X be a random variable having
distribution F. Let .# denote the Fisher information on # contained in 6 + X.
If X has an absolutely continuous density f such that { (f’/f)’fdx < co, then
& =\ (f'[f)fdx. Otherwise # = co.

Suppose we observe a sample  + X, - - -, § 4 X, of size n from 6 4 X and
wish to estimate the unknown location parameter ¢ from this sample. A possibly
randomized estimator 9n of 6 can be written as 9,, =90+ X, -+, 0 + X,, W),
where the random variable W is independent of X;, - .., X,. Such an estimator
is translation invariant if ¢(6 4 x;, -+, 0 + x,, w) =0 + (x,, - -+, X, w) and
scale invariant if ¢(ax,, - - -, ax,, w) = ad(x,, - - -, x,, w) for a > 0.

In Stone [18] we verified the existence under no regularity conditions of a
nonrandomized translation invariant estimator 4, such that

(1.1) A(n¥(@, — 0)) > NO,1/.#) as n—oo.

If _# < oo the existence of such an estimator also follows from Proposition 6 of
Le Cam [11]. If ¥ = oo, then (1.1) is of course equivalent to

(1.2) ni, — 6) — 0 in probability as n— oo .

It follows from [18] or from Hajek [6] that, in various respects, it is impos-
sible to improve upon (1.1). For example, if 6, is a translation invariant estima-
tor of @ such that < (n¥(d, — 6)) — N(0, %), then ¢* = 1/.7.

The estimators 8, constructed in [18] and [11] that satisfy (1.1) depend on the
shape of F. It is obviously desirable to find an estimator of ¢ that satisfies (1.1)
but is independent of F. Unless F is somehow restricted this is impossible, since
we can change ¢ and F simultaneously so as to leave the distribution of § + X
unaltered. To avoid this difficulty we make the usual assumption that F is
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268 CHARLES J. STONE

symmetric about the origin, i.e., that Xand — X have the same distribution. In
this paper we will show that no restrictions other than symmetry need be placed
on F. Specifically we will verify the following result.

THEOREM 1.1. There is a nonrandomized translation and scale invariant estimator
0., of 0 which does not depend on F and which satisfies (1.1) for all symmetric F.

The need for the estimator §, of # to be translation and scale invariant is easily
seen. Suppose, for example, that we want to estimate the true temperature based
on n temperature measurements. If our estimator yields a value §, when applied
to measurements # 4+ X,, 1 < i < n, in Fahrenheit degrees it should yield the value
(§)(, — 32) when applied to the corresponding measurements (§)(0 + X; — 32),
1 £ i < n, in centigrade degrees.

Stein [17] first suggested that results along the lines of Theorem 1.1 might
hold. Under a variety of further regularity conditions on F such results have
previously been achieved by using rank estimators (van Eeden [21], Beran [2]),
linear combination of order statistics (Takeuchi [20], Johns [10], Sacks [16]),
and stochastic approximation (Fabian [4]). Corresponding results in the two-
sample problem have been obtained by Bhattacharya [3], van Eeden [21], and
Beran [2]. Weiss and Wolfowitz [22] considered simultaneous estimators of
location and scale parameters in the two-sample problem and Wolfowitz [23]
continued this work for scale parameters. (Further research involving these and
other parameters appears quite promising.) There are of course many other
approaches to the problem of estimating a location parameter (see, for example,
Andrews et al., [1], Miké [12] and [13], Huber [9], and Switzer [19]).

Beran’s elegant paper [2], which appeared after the present paper was origi-
nally written, contains a result which is close to Theorem 1.1. He showed that
there is a nonrandomized translation invariant adaptive rank estimator which
satisfies (1.1) for all symmetric F which have finite Fisher information. His
estimator appears not to be scale invariant. He obtained a similar result for the
two-sample problem. Undoubtedly the appropriate analogy of Theorem 1.1 also
holds for the two-sample problem.

Pfanzagl [14] obtained some interesting negative results. He showed that in
the one-sample problem without any assumptions of symmetry one cannot expect
asymptotically to improve upon the sample median in estimating the true median
of a distribution of unknown shape.

We will now describe the adaptive maximum likelihood estimators that will
be shown to satisfy (1.1). Firstly, it is easy to construct nonrandomized trans-
lation and scale invariant estimators 6, of 6 which do not depend on F and which
satisfy

(1.3) ni@, — 0) = 0,(1) as n— oo,

provided of course that F is symmetric. For example, let J be a fixed continuously
differentiable probability density having compact support in (0, 1) and such that
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J(1 — x) = J(x). Set §, =J,~* I J(i/(n + 1))@ + X,;), where 6 4+ X,,, 1 <
i < n, are the order statistics from the sample and J, = Y7 J(i/(n 4+ 1)). In
Chapter III of Huber [8] it is shown that (8, — 6)) — N(O, %) as n — oo
for some ¢. This implies that (1.3) holds.

In order to motivate our adaptive estimators, let us briefly look at maximum
likelihood estimators. Suppose that F has a known density f that satisfies ap-
propriate regularity conditions which guarantee, in particular, that _* < oo.
Set L(x) = f'(x)/f(x). We can find an estimator 4, satisfying (1.1) by solving
the maximum likelihood equation

(1.4) Tra L@+ X, —6,)=0.

Alternatively we can think of , as an approximate solution to (1.4) and, using
a Newton-Raphson approach, define a better approximation by

1 ~

. n 2it= L(‘9 + X, —0,)
(1.5) 6,=20, + i .
— DL L0+ X, — 0,

We would expect that the denominator in (1.5) converges to EL'(X) = —.7 in
probability as n — co. Thus we are led from (1.5) to the estimator

A -

(1.6) @:@_uigz%Lw+X¢-@y

We can modify this estimator to control for poor behavior of the tails of L. Let
g be a twice continuously differentiable symmetric function having support
in [—1,1] and such that 0 < g <1 and g(0) = 1. For ¢ > 0 set A(c) =
{ L*(x)g(x/c)f(x) dx. Then an appropriate modification to (1.6) is

A

- 1 " = A

where ¢, — oo slowly as n — co.

In actuality F need not have a smooth density. To take care of this possibility
let W be a standard normal random variable having density ¢(x) = (2x)~te~="2,
For r > 0 set ¢(x, r) = r~'¢(x/r). Suppose that ¥ is independent of X. Then
X + rW has a smooth density f(+; r) given by f(x; r) = § ¢o(x — y; r)F(dy). Set
£ 1) = @fax)f(x; 1), L(x; 1) = f'(x5 P)[f(x; 1), and A(r, ¢) = § L(x; r)g(x/e) X
f(x; rydx. Let Wy, ..., W, be independent standard normal random variables
which also are independent of the X,’s. Let r, be positive numbers that approach
zero slowly as n — co. Then an appropriate modification to (1.7) is
(1-8) b, =0,— T L0+ X W~ 1)

nA(r,, c,) .
X 9((0 + X, + r, W, — 0,)]c,) .

This estimator is randomized since it depends on the W,’s. We can get a better



270 CHARLES J, STONE

nonrandomized estimator by taking the conditional expectation with respect to
the X,’s, obtaining
A - 1 -
1.9 0,=0, — —— > SLO+ X, +x—10,
( ) n n nA(rn, cn) Zz—l S ( + 4 + n r'n)

X 9((0 + X; + x — 8,)[c,)p(x; r,) dx .

It is interesting to note that if we take g = 1 (or equivalently ¢, = co) in
(1.9), then when the X;’s are normally distributed with mean zero (1.9) reduces
tof, = n7' 37 (6 + X;), which is the maximum likelihood estimator in this case.

The estimator in (1.9) depends through L on knowledge of F. To eliminate
this dependence we need to estimate f(x; r). There is a very large literature on
nonparametric estimators of densities (the bibliography in Good and Gaskins
[5] contains 100 items). The estimator we will use, based upon the assumed
symmetry of F, is

Fueir) = 5 Spalplc 4+ 0, = 0 = X+ p(—x + 6, — 0 — X; ).

Observe that f,(-;r) is a symmetric probability density. Set flsr) =
@) x5 1), Luxs 1) = f/x5 1)]fulxs 1), and
(1.10) A, (r; ¢) = § L (x; Ng(x[e)f(x; r) dx .
The appropriate modification of (1.9) is
1) b=0,— L TR LEO+ X +x— 0
nAn(rn’ cn)
X g((o + "Yz + x — én)/cn)go(x; r'n) dx .

To choose r, and ¢, we first ~hoose s, to be positive random variables depending
only on X,, ..., X, (and not on F). We will need to assume that

(1.12) nt <.S; — 1) —0,1) as n—oo,

where the nonrandom positive number s can depend on F. Let 7, and d, be
positive constants that approach zero and infinity respectively as n — oo. Set
r, = s,t,and ¢, = s,d,. Then the estimator given by (1.11) is nonrandomized,
translation invariant, and does not depend on F.

According to Theorem 5.3, if
d,’

e o(1) as n— oo forsome ¢ >0,

(1.13)

then the estimator 0, given by (1.11) satisfies (1.1).

In order to complete the proof of Theorem 1.1 we need to seée how 6, can be
chosen to be scale invariant. For theoretical reasons it is convenient to separate
continuous distributions F from those that are discontinuous. If the values of
0+ X, -+, 0 + X, are not all distinct, we know that F has a discontinuous
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distribution. It is easy to find a nonrandomized translation and scale invariant
estimator 6, of # which does not depend on F and which is such that P(6, # ) — 0
as n — oo whenever F is a symmetric discontinuous distribution. Such an esti-
mator clearly satisfies (1.2) and hence (1.1) since . = oo whenever F is dis-
continuous. If the valuesof  + X, ..., 6 4+ X, are all distinct, we assume that
F has a continuous distribution. The probability of our being wrong in this
respect approaches zero as n — oo regardless of F.

Thus in verifying the conclusion of Theorem 1.1 we can assume that F hasa
continuous distribution. We can also assume that n = 2 (take 6, =0 + X).
Write the random variable s, as s, = ¢(0 + X, - -+, 6 + X,). It is not hard to
choose ¢ such that ¢(x,, - - -, x,) > 0 whenever x,, - - -, x, are all distinct, ¢(¢ +
Xpy ooy 04 x,)=0 4+ P(xy, - -+, X,), Plaxy, - -+, ax,) = ad(x,, « -+, Xx,) fora > 0,
and (1.12) holds whenever F has a continuous distribution. With this choice
of s, the estimator given by (1.11) is scale invariant. Thus Theorem 1.1 follows
from Theorem 5.3.

In Section 2 we discuss properties of f(x; r). In Section 3 we discuss properties
of

1
[ r) = Dt plx = X5 1)
This is relevant for two reasons. Firstly

Fuleir) = 3(fulx + 0, — 051) + fu(—x + 0, — 05 1)) .

Secondly, the estimators given by (1.9) and (1.11) can be rewritten respectively
as
5 1

(1‘14) énz n_msl‘('x’ rn)g(x/cn)fn(x_l—én—a’ rn)dx
and
(L1S) 6, =0, — ' (L5 r)a(efefulx + G, — 05 ) dx.

In Sections 4 and 5 it is assumed that §, satisfies (1.3) and that s, satisfies
(1.12). We denote the estimator given by (1.9) or (1.14) as 6, (the definition
of #, is actually modified in Section 4 to cover the asymmetric case). In Theorem
4.2 we show that if (1.13) holds, then Z(n¥(d, — 6)) — N(0, 1/#) as n — oo.
In Theorem 5.2 we show that if (1.13) holds, then n#(d, — ,) — 0 in probability
as n — oo. In Theorem 5.3 we put these two facts together to conclude that if
(1.13) holds, then 4, satisfies (1.1).

In order to get some feeling for the actual variance of the estimator given
by (1.11) for specific values of n and F a small scale Monte Carlo study was
performed. (Random numbers were generated as suggested in [1] and 3000 trials
were made.) We used n = 40 and five densities. They were '
normal:

J) = ¢(x) .
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contaminated normal:

1) = 99) + 5 0 (3).

double exponential:

f(x) = ge7t.
Cauchy:
1
=i
rectangular:
foy=4, —l=x<1,
=0, |x] > 1.

Note that the rectangular density has infinite Fisher information.

After some preliminary experimentation it seemed appropriate to set 6, =
median (6 + X,, - - -, 0 + X,) and 5, = median (|0 + X, — 8,|, - - -, |0 + X, — G,|).
We used 7, = .6. The function g was chosen as

g(x) =1, —-1<x<d,
=0, x| > 1.

For the distributions studied the variances seemed to be constant (slightly de-
creasing for the Cauchy distribution) in d,, for 10 < d,, < 20, so we chose
d, = 20. The integrals in (1.10) and (1.11) were satisfactorily evaluated by
dividing the range into 60 intervals of equal length and calculating the cor-
responding Riemann sums.

The efficiency of the estimator is obtained by comparing its variance to that
of the Pitman estimator P, for the given distribution. The Pitman estimator in
the normal case is the sample mean. In the rectangular case it is the average
of the minimum value and the maximum value in the sample. In the three other
cases it was readily computed numerically. Since P, and §, — P, are orthogonal
random variables,

_ Var P,

» VarP, 4 Var(§, — P,)

Eft;

The resulting efficiencies along with those of the median, midmean (average of
the middle n/2 observations), and mean are as follows:

Estimator Normal C.N. Dexp. Cauchy Rect.
0, .93 .91 .89 .86 .15
median .67 .73 .96 .82 .05
midmean .85 91 .93 .17 .07
mean 1.00 71 .59 .00 .14

The observation following (1.9) explains why the estimator §, should work
particularly well for nearly normal distributions even if 7, is not small.

2. Properties of the smoothed density. Let r,, n = 1, be positive random
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variables that approach zero in probability as n — co. We write g(x; r,,) = O,(1)
if sup, |9(x; 7,)| = O,(1)-

Let ¢(x; r) and f(x; r) be as in the Introduction. Let ¢®(x;r) and f*(x; r)
denote differentiation with respect to x. Then ¢®(x; r) = r=**Y¢®(x/r) and
fO(x; r) = § (x — y; r)F(dy). By Schwarz’s inequality

(fP0s ) = § (9™ (x — y; N F(dY) -

Consequently

2.1 § (fx; 1)) dx = O(1)r, =40,
It is easily seen that

(2.2) % e(x;5 1) = re¥ (x5 1) .
Consequently

23) ;;f‘”’(x; r) =rfetx;r).

It follows from Holder’s inequality that
(2.4 §o ffo(x; r)dx < (2¢), c>0and 0<e <1
PROPOSITION 2.1. For0 < g <r

q2/r2
£ fs.9) = o1 < L5 (s )
Proor. The first inequality is immediate and the second one follows from
Holder’s inequality.
PROPOSITION 2.2. For ¢ > 0 and v a positive integer
[0 1) = 0= *0(fxs 1) + f174(x5 1)) -

Proor. Observe that ¢*(x) = P, (x)¢(x), where P, is a polynomial of degree
v with leading coefficient (—1)*. There is an L, > 0 such that for L > L,

l® ()| = le™ (L) » xzL,
lo® ()| < le(=L)], x=s—L,
and
|P,(x)| < 2L*, x| < L.
We conclude that for L = L,
o) = 2L*(e(x) + (L)) , —oo Jx <L oo
Consequently there is a d, > 0 such that for 0 < 9 < 9,
|9 ()] < 267(p(x) + ¢(67)) - —oo {x< o

We can assume that ¢(07%*) < 62 for 0 < 6 < 6,. Then for 0 < 0 < 9,
lo" ()] = 207(p(x) + ), —0 <x< o,



274 CHARLES J. STONE

and hence

lo™(x; r,)| < 2r,7 07 (p(x; r,) + 0%r,7Y), —co << x <L .
Thus for 0 < 0 < 9,

|f&0s )| < 2r,707¢(f(x; 1) + o'r,™), —o < x< oo,

If r, < 6,, we can take = min (745 f(x; 1,)) in the preceding inequality to con-
clude that

[f90s )l = 4n= s n)(n + [~ ), —co <x< oo
The conclusion of Proposition 2.2 now follows easily.
PROPOSITION. 2.3. Suppose that 1/nr,®> = O,(1). Then fore > 0 and M > 0
MaX ygim—4 fX + 5 1.) = O(D)(f(x; 1) + f17(x; 1)) -
ProoF. Seta, = r'ntM='. If L > 1, |f| < Mn~* and |x| < a, log L, then
p(x +81,) _ exp[_th + zz] < exp[
P65 1) 2’
We conclude that for L > 1

—Zc_t’jl < exp[logL]=1L.
T,

n

MaX, <un-y (X + 61,) < Lo(x;1,),  |x| < a,logL,
and hence
fx+6r) = o(x 4t — y; r,)F(dy)
é Lf(x; rn) + Slw—ylzanlogL {P(X + r— y; r'n)F(dy) *

Choose d > 0 and L, > 1. Then for n sufficiently large, except on a set having
probability at most 4,

p(x + 1t —y;r) < L™ for L= L,
|x —y| = a,log L, and |t < Mn—t,
Thus for n sufficiently large, except on a set having probability at most 9,
max, o3 f(x + ;1) < Lf(x; r,) + L™V, L>=L, and —co < x < 0.

By setting L = max (f~*(x; r,), 2°), we conclude that for n sufficiently large,
except on a set having probability at most J,

MaXysun-s fX + 85 1,) < 2070 1) + (14 29f(x;7,)
Thus the conclusion of the proposition holds.

3. Properties of the empirical smoothed density. Let X, X, -+ be inde-
pendent random variables each having distribution F. Let F, be the empirical
distribution given by

1
F,(x) = " 2 I(Xigav) .
Let f,(+; r) be the random density defined by

Jalisr) = — Z (X — X 1) = §o(x — y; r)F(dy) -
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Then
50 = L B e = Xan = § e — i DE)

It follows from Holder’s inequality that
3.1 $o, ol ) dx < (2¢)°, c>0and 0e 1.
It follows from (2.2) that

3.2) %fn(”(X; r) = rf, (s 7).

It follows as in the proof of Proposition 2.1 that
q2/r2
(3.3) L) <fusn =L —(fux ) for 0<g=<r.
r r

It follows as in the probf of Proposition 2.2 that for ¢ > 0 and v a positive integer

(3-4) [0k 1) = O,()r,= 0 o(fu(xs 1) + [l (x5 1)) -

It follows as in the proof of Proposition 2.3 that if 1/nr,* = O,(1), thenfore > 0
and M >0

(35) maxlﬂéMn—%fn(x + t; rn) = Op(l)(fn(x; rn) +fn1_s(x; rn)) .

Let r be a nonrandom positive number. Then Ef,*(x; r) = f*(x; r). Also
(3.6) Var f,(x; r) = 1 var p(x — X3r) £ _I_E(go‘”’(x — X;; ).
n n

Let K, be the maximum value of (¢*'(x))*/¢(x). Then

: K
(3.7) (¢ M) S 5 s 1) -
It follows from (3.6) and (3.7) that
K, f(x;
(3.8) E(fir) — [ ny = KL
We conclude from (3.8) that
o v . v . Kl‘
(39 E{= ([0 1) = [ (s )y dx < -
and that
(3.10) Ege, (L) = [ D) g o 2KC
- fix;ry = vl
Since K, = (2x)~ it follows from (3.8) that
2(yo
3.11 By, LoD g <1 4 2
(3.11) e i ans 14



276 CHARLES J. STONE
It also follows from (3.8) that for y = 0

o Jul(x37) < 1.1 >
(3.12) Efz, W Liarpasmen 4% < 2¢ or + )
It follows from (3.11) and Holder’s inequality that for 0 < ¢ < 2,0 = 0, and
r=0

¢ fn2—s(x; r) N ¢ 2¢
(3.13) Efe, W Liarpamzy dx < nr0*7em(2c)2 (1 4 ey
If follows from (3.1), (3.11), and Holder’s inequality that for e > 0, 6 = 0, and
0421

o(x; 2¢
3.14 By L D e < oy (14 26).
(3.14) ey = @ (14
It follows from (3.12) and HOolder’s inequality that for ¢ > 0, d > 0, and
0+2 <1
e JoTN (x5 r 2¢ nr
(3‘15) E Sﬂf_f‘?x;—r)) l{an(a;;r)<1) dx é m <1 + ;;) .

Let s,, n > 1, be positive random variables such that s,/s = 1 + o,(1) for some
positive nonrandom number s. Suppose that r, = 5,1, where 7, are positive con-
stants that approach zero as n — oo. Set g, = st,. Suppose also that ¢, = s,4d,,
where d, are positive constants that approach + oo as n — oo.

ProrosiTION 3.1. Suppose that c,/nr, = O,(1). Then for0 < e <2

X T ‘
_iﬁ Liusstairyan % = O, (L .
Proor. This result follows from Proposition 2.1 and Equations (3.3) and
(3.13).

ProrosiTION 3.2. Suppose that c,/nr, = O,(1). Then for ¢ 20, 6 =0, and
042 <1
o S22 4 0 (1)n2eo+er
—¢y fe(x; rn) P
Proor. This result follows from Proposition 2.1 and Equations (3.3) and
(3.14).

ProrosiTioN 3.3. Suppose that c,[nr, = O,(1). Then for e 20, 6 = 0, and
042 <1

1-¢ X r
{en _"_(’__Q l‘nzm;wm dx =

e )
Proor. This result follows from Proposition 2.1 and Equations (3.3) and
(3.15).

Og(l)cn pietd) )
nr,

n
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PRrOPOSITION 3.4. For v a nonnegative integer

= (S5 1) — [0 r)yrdx = 240

nrn2u+1

Proor. It follows from (2.3) and (3.2) that
(Fu25 7) = £ 7)) = (£ 4) = 05 4,))
+ Y r(ft 20 1) — [0 (x; 1)) ds

We conclude from Schwarz’s inequality that

(055 r) = [0 r)?
(3.16) = 2% 4u) — x5 q0))
+ 2(§5 P dr (o (a0 1) — [0 ) drf
The desired result now follows from (3.9).

PROPOSITION 3.5. Suppose that 1/nr, = O,(1). Then for v a nonnegative integer
ande >0

jen (Sa2(X51a) — [ )
" flx; r,)

Proor. It follows from (3.10) that for 0 < ¢ < 1

(B.17) e [ v, (o125 1) = [*42(x; 1)) d’] dax = 91)en
n n f(x, r) nrn2u+4

The desired result now follows from (3.10), (3.16), (3.17), and Proposition 2.1.

o,(1)c,n

nrn2y+l

dx =

(nzf(x;rn)zl)

PRroPOSITION 3.6. Suppose that c,[nr, = O,(1). Then for v a nonnegative integer
ande =0

oo, (a2 1) = [0 1) g Oy
" fi(x;r) nr,2+1

Proor. By Proposition 3.4 we can assume that ¢ > 0. This result then fol-
lows from (2.4), (3.8), (3.16), and Proposition 2.1.

4. Nonadaptive estimators. Let g(x), —co < x < co, be a twice continuously
differentiable function vanishing outside [ —1, 1] and such that 0 < g < 1 and
9(0) = 1. Let .7, L(x; r), and A(r, c) be as in the Introduction.

THEOREM 4.1.
lim, .o A(r, ¢) = S .

Proor. Since A(r, ¢) < 7 (see Port and Stone [15]), we need only show that
4.1) lim_,, .o liminf ¢ L(x; r)f(x; r)dx = 7.
According to Huber [7]

= sup, EL
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where the sup extends over all ¢ € C.* such that E¢*(X) > 0. Suppose first that
# < oo. Choose ¢ > 0. Then we can find a ¢ e C.* such that { ¢*(x)F(dx) > 0
and

(§ ¢'()F(dx)) =2 (1 — )7 § P (x)F(dx) .
Thus for r sufficiently small
(§ ¢ COfx; r) dx) = (1 — 2¢).7 § P(0)f(x; r) dx .
Choose ¢ > 0 such that ¢(x) = 0 for |x| = c. Then by Schwarz’s inequality
(§ ¢ C)f(x; r) dx)* = (§ P(x)f"(x; r) dx)*
< § P)f(xs rydx §o, Li(x; r)f(x; r)dx .
Thus for r sufficiently small
§o, LAx; r)f(x; r)dx = (1 — 2e).7

and hence (4.1) holds.

Suppose instead that _# = co. Choose M > 0. By arguing as before we can
find a ¢ > 0 such that for r sufficient]y small

§o o L2(x; )f(x; rydx = %{ .
Thus (4.1) holds in this case also. This completes the proof of the theorem.

We now study the translation invariant nonrandomized estimator 4, given by
(see the motivation in the Introduction)

§ L(x; r)g(x/ea)(fulx + O, — 05 1,) — f(x; 1,)) dx

6,=0, —
A( w3 Cn)

where 6, r,, and c, are chosen as described in the Introduction, so that (1.3)
and (1.12) hold.

THEOREM 4.2. Suppose that

4.2) S = 0,1)  forsome ¢>0.

nl——er 6
Then A(n¥@, — 0)) — N(O, 1/_#) as n — oo.

Proor. It follows from Propositions 2.2 and 3.6 and Schwarz’s inequality
that

4.3) § (s r)g(x[e)(f (x5 1) — f1(x5 ) dx = o,(1).
It follows from (3.4), (3.5) and Propositions 2.2 and 3.2 that

(44) LG RlaCe/es) suPus, - |0k + 5 )l dx = P — o (1ym

We conclude from (4.3) and (4.4) that

@5 6,—0=— § L r)gCefe,)(fu(xi 1) — fxs r))ax + XD

" ‘i( n? n)
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We can write

L r)(falxs 1) — f(x5 1))
(4.6) = L(x; 4u)(f(*5 9a) — SX5 40))

o $ia L [LGs Pl ) — fos )] dr,

where ¢, is as in Section 3. The indicated differentiation with respect to r can
be obtained by using (2.2) and (3.2). We then substitute (4.6) into (4.5) and in-
tegrate first with respect to x and then with respect to . By using Propositions
2.2 and 3.6 we conclude that for ¢ > 0

S L(x’ r’n)g(x/cn)(fn(x’ r’n) - f(x’ rn)) dx
(4.7) = § L(x; gu)9(x/c)(fu(X; 4a) — [(X; ¢,)) dx

e S ) (=2

We conclude from (1.12), (4.2), (4.5), and (4.7) that

48 0,—0= A(r 3§ EO5 4031e (/55 0) — i ) + ).
By a similar argument we conclude from (4.2) and (4.8) that
(49) B =0 = e LG5 OI)(5 42) — fixs 4. o )

where b, = sd,. Again we can use (4.2) to conclude that
(4.10) A(r,, ¢,) = A(q,, b,) + 0,(1).
The random variable
§ LCx5 4u)9(x/0u)(fulX5 ) — f(X5 qa)) dx

has mean zero and variance

% Var § L(x; .)9(x/b,)o(x — X;; q,) dx

< 1§ Lk g)o(x/b)olx — X q,) d
= L0 OB 42) d = - A(gur b,)
Thus
1
@10 B( et VL0 0I5 ) = s g dx) S e

It follows from (4. 9)—(4.11) that

(@12) 0, = 0= o S L0 g5 ) — 5 )+ 22
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We conclude from (4.11), (4.12), and Theorem 4.1 that the asymptotic second
moment of n}(f, — 0) is at most 1/_#. The conclusion of Theorem 4.2 now
follows either from Theorem 4.1 of Hajek [6] or Proposition 2.1 of Stone [18].

5. Adaptive estimators. We assume in this section that F is symmetric about
the origin, that 4, satisfies (1.3), and that s, satisfies (1.12).
We estimate f(x; r) based on the sample 6 4 X,, - - -, § + X, by f,(x, r), where

Floi vy = 0 Bgalole + 0, — 0 = X3 1) + p(—x + 0, — 0 — X3 1))
= Hfulx + 0, = O:1) + fu(—x + 0, — 6; 7)) .

Clearly f,(+; r) is a symmetric probability density function. It follows as in the
proof of Proposition 2.2 that for ¢ > 0

7 v . — 0 (1) 7 . 7 —€ .
(5.1 Ful(x5 1) = r—:’y;( Fulxs 1) + flmi(x; 1)) -
ProrosiTiON 5.1. If 1/nr,* = O,(1), then
= (s ) = s ry s = O]
The proof of this proposition is based on the next result.

LeEMMA 5.1. If f is twice continuously dz’ﬁ”erentiable then
§ G+ 1) = fix — 1) = 2f(a)dx < 2§ (.

Proor oF LEMMA. We can assume that ¢t > 0. Observe that

fo 40+ flx — 1) = 2(x) = §2, f"(x + 5)(1 — |s]) ds .

We conclude from Schwarz’s inequality that
218 ,
(f(x + 0+ fix — 1) = 2f(x)) < 5 §2(f"(x + ) ds,
from which the conclusion of the lemma follows easily.
ProoF oF ProposiTION. It follows from (2.1) and Lemma 5.1 that

§(fx o+ B = 05 4 [0 = B, + 03 1) — 205 7 e = OolD)

nir v+ ‘

We now conclude from Proposition 3.4 and the symmetry of f(+; r) that

§ (o) = s ry e = 0,00 (ks LY,

nrﬂ2u+1

from which the conclusion of Proposition 5.1 follows.
Let L,(x; r) and 4,(r, c) be as defined in the Introduction. We conclude from
(5.1) that for ¢ > 0
1
(5.2) Lxry =20 (1 4 7-x; .

1+e
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Similarly we conclude from Proposition 2.2 that for ¢ > 0

(5.3) Lz ry =20 (1 4 fxs )

1+s

We assume throughout the remainder of this section that g is symmetric about
the origin.

THEOREM 5.1. Suppose that

(5.4) lir =0,(1) forsome ¢>0.

Then A,(1,, ¢,)]Au(Tas €,) — 1 in probability as n — co.
Proor. Choose ¢ > 0. By (5.2)

A o,(1)
(5’5) S an(x; rn)g(x/c'n)f'n(x; rqp)l(nf’,n(ac;'rn)<l) dx = n+££;)Tn *
By (5.3)
0,1,
(5’6) S an(X; rn)g(x/cn)f x5 rﬂ)l(ﬂf(x;r”)d) dx = nzl{e: 2’

Choose 0 > 0. By (5.2), Proposition 5.1, and Schwarz’s inequality

(5'7) S f,,f(x; r'n)g(x/cn)fn(X; r, )1(nf,,,(x'r,n);l,lfﬂ(ac;r”)—f(x;rn)laﬁf',n(x;rn)) dx

1
= 0”(1)(n“5r ) '
Similarly

(5.8) § L2(x; 1)9(X[€)f(X5 Fa)linsiainyyzid ywsrg—fiasrpzs sy 4X

b3
= 0,(1) (n"er > '
Moreover

(5.9 § L,2(x; r)g(xfe,)fu(x; Pl in} iz iF wiry) = £ @201 Fy e 1) GX

= (1)<n1 —¢r,p )i
and

(5.10) § LA(x; r)9(x/c,)f(xX5 1)1 g g 21,1 g (i) = £ (@31 ) |21 (37} dx
3
- 0”(1)<n‘ —ep 5 > '

The conclusion of the theorem follows from (5.5)—(5.10).
Let d, be the estimator defined by (1.9) or (1.15). We can rewrite this esti-
mator as .
5 _ 5 _ 1
" Are )

§ Lo(x; r)g(xfe)(fulx 4 O, — 05 1) — f(x; 1)) dx .
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THEOREM 5.2. Suppose that (1.13) holds. Then n¥(, — 6,) — O in probability

as n — oo.

ProofF. We need to show that

1) 3 (G L) e 4 0. = 05— s ) d

= %)
nt

Choose ¢ > 0. Let I, denote the contribution to this integral for x’s such that
n”f,,(x; r,) <landf(x;r,) = f',,(x; r,). Sincef,(x + 0, — 0;r,) < Zf,,(x; r,), we
conclude from (5.2), (5.3) and symmetry that
(5.12) =90,

n“"°r,
Let 1, denote the contribution to the integral for x’s such that r’f(x; r,) < 1 and
ftxsr) <f,,(x; r,). From (3.5), (5.2), (5.3), Proposition 3.3 and symmetry we
see that
(5.13) 1, =920,

nt-er,

Let I, denote the contribution to the integral for x’s such that n*f,(x; r,) = 1

and n’f(x;r,) = 1. We can write I, = I, + I, where I, corresponds to the
integrand

A r)(fulxs 1) — (x5 7)) 5o
f,,(x; r)f(x; 1) (fulx + 0, — 05 1) — f(x; 1n))9(x/c,)

and I, corresponds to the integrand

A }’zl?r,{}"’“ ) (fulx + B — 85 1) — f5 r)aele,)

It follows from (3.4), (3.5), and Propositions 3.1 and 3.5 that

. x4+ 8, — 0;r) — f(x; 1)) 0,(l)c,n"
(5-14) S-"cﬂ (fulx + 70x; rn)) I ) 1(n2f(x;'r,n)21) dx = —p(n)r”Tn‘
and
’ a . . €
(5‘15) Sc-”cn (f” (x + 0” ;(ﬁ.’ :”)) —f’(x’ rn))z 1{n2f(ac;rq,)21} dx = Op(l)c:;n /2. .
’ nr,
We conclude from (5.14) and (5.15) respectively that
P y
c. A'nX;rn — x;r'n ? O 1cn </2
(5'16) S—nc,,, (f( f()x; r’{)‘( )) 1(n2f(ac;r,n)zl) dx = J‘%}L
and
¢ A'n,,x;r'n'— ’x;r'n,2 0 1 ”5/2
(5.17) fon, (f'( f()x; rf)( ) 1wm;%)gl,dx=_p%_”_.
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We conclude from (5.2), (5.14), (5.16) and Schwarz’s inequality that

_ 0,(L)cy
(5.18) 1= 20

We conclude from (5.14), (5.17), and Schwarz’s inequality that

— 0,(1)cn
(5.19) = S

The conclusion of the theorem follows from (5.12), (5.13), (5.18), and (5.19).
THEOREM 5.3. Suppose that (1.13) holds. Then A (n¥(@, — 6)) — N(0, 1/_#)

as n-— oo.

Proor. This result follows immediately from Theorems 4.2 and 5.2.
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