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TESTING HYPOTHESES IN UNBALANCED VARIANCE
COMPONENTS MODELS FOR TWO-WAY LAYOUTS

By IB THOMSEN

Socio-Demographic Research Unit, Central

Bureau of Statistics of Norway
Consider the model equation yijr = g+ ai + B; + rij + esje (i =
L2, .ee,rj=1,2,--,5k=1,2, -, ni;), where p is a constant and a;,
Bis 144, €sji are distributed independently and normally with zero means
and variances ¢ .2, 0% 0% g, 0%, respectively. In this paper procedures for
testing hypotheses on ¢ ,2/op% 0%/0?, and ¢% p/o® are given. The test pro-
cedure for ¢% /g2 is compared with the corresponding test procedures when

@i, Bj, and r;; are fixed effects instead of being random.

1. Introduction. The analysis of the variance method of estimating variance
components from balanced data is based on equating mean squares of analyses
of variance to their expected values. Futhermore, expected values of mean
squares will suggest which mean squares are the appropriate denominators for
testing hypotheses concerning the variance components (Searle (1971), pages
411-15). However, with unbalanced data no unique set of sums of squares or
quadratic forms in the observations can be optimally used for estimating variance
components.

In this paper we shall find some exact tests concerning the variance com-
ponents in an unbalanced, random two-way layout by modifying an approach
suggested by Graybill and Hultquist (1961), who describe a variance components
model as follows:

A (n x 1) vector of observations Y is assumed to be a linear sum of k + 2

quantities,
(1'1) Y =J.6 + Zi"=1 Biﬂi + .Bk+1 .

Here §, is a fixed unknown constant. B, isa (p; x 1) vector of multinormally
distributed random variables with mean 0 and covariance matrix o’L,. (I
denotes a k-dimensional identity matrix and 0 a null matrix.) The vectors 3,
By - -+, Biy. are stochastically independent. J, is a (k X 1) vector with all ele-
ments equal to 1. B, (i=1,2, --., k) a (n X p,) matrix of known constants.

Some general theorems concerning this model have been derived by Graybill
and Hultquist (1961) under one or both of the following assumptions:

(i) A;and A; commute, where A, = B,B/ (i,j = 1,2, ..., k),
(ii) The matrix B, is such that J 'B, = rJ;, and B,J, =J,, where r; isa
positive integer.
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The assumptions (i) are not satisfied in most unbalanced models.

In this paper we will consider a special case of model (1.1) without as-
sumptions (i), viz. the common variance components model for a complete
two-way layout. Spjgtvoll (1968) has treated the same model in a different
manner. Bush and Anderson (1963) suggest a similar procedure as proposed in
this paper, but they are primarily concerned with estimation.

In Section 2 we shall transform our model to a “semi-canonical” form and
find a method for obtaining confidence intervals and testing hypotheses con-
cerning the ¢,>. In Section 3 these tests are compared with the corresponding
tests in a fixed effects model. In Section 4 the test statistics are expressed in
terms of the original observations. In Sections 2-4 we assume that there is at
least one observation in each cell. This assumption is removed in Section 5.

2. Modification of the model of Graybill and Hultquist. We consider the
following model:

2.1 Yigg =+ &+ B+ 1+ €

i=11,2,...,n5j=12,-.-,5, and k =1,2, ..., n;. Here p is a constant,
while a;, 8;, 7,;» and e,;, are independent normally distributed random variables
with means 0 and variances ¢ ,% 0% 0%, and ¢*, respectively.

Define y,; = (1/n;) X2 yips i = 1,2, --+,r;j=1,2,---,5. Then

(2.2) Ji=p+ o+ B+ ri; + &y

with &;; = (1/n,;) 2354 e,

For any set of variables a,; (i=1,2, .--,r;j=1,2, ---,5), let a be the
VeCtor (@, @y, + -+ +» @y, Gy, - - -5 a,,)’. Then with this ordering € is multivariate
normally distributed with mean 0 and covariance matrix Z(€) = Ko?, where

(2.3) K = Diag (n3', n3', ---, n7}) .
Formula (2.2) may be written in matrix forms as

(2.4) V=Jd,p+Ba+BS+ Byt ¢
with

Bl, = Dlag (Js’ tt Ja) ’ BZ, = [Is’ ] Is]

and B, = I,,, which is of the same form as (1.1). The covariance matrix for y
turns out as
2(y) = BB/ + B,B,/o* + 1,,0%; + Ko .

As B,B, and B,B, commute, it follows that there exists an orthogonal matrix
P with the property that PA,P’ and PA,P’ are diagonal matrices with the
eigenvalues on the diagonal (Herbach, 1959). P may be chosen so that the first
row in P is (rs)"¥ (1, 1, --., 1). (A, = B,B/; A, = B,B)).

If Z = Py, the covariance matrix for Z is

2(Z) = PA,P's? + PA,P's,? + I,,0%, + PKP'a?.
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LeEMMA 1.

(i) rank (B)) = r;
(ii) rank (B,) = s;
(iii) rank (B,iBy) =r+ s — 1;
(iv) rank (A, + A,) = rank (B,;|B,).
PRrOOF. (i), (ii), and (iii) are seen from (2.4). (iv) follows from the proof of
Graybill and Hultquist’s (1961) Theorem 1. [J

From the fact that rank (A,) = rank (B,) = r and because A, has the eigen-
values s of multiplicity r and 0 of multiplicity (rs — r) = r(s — 1), it follows
that PA’P’ has r diagonal elements all equal to s and the rest equal to 0. In the
same way it is seen that PA,P’ has s diagonal elements all equal to r and the
other elements equal to 0.

From (iii) and (iv) it is seen that the matrix (PA, P’ 4+ PA,P’) has (r 4+ s — 1)
diagonal elements different from zero. Thus when the diagonal element in
PA,P’ is different from zero, the corresponding element in PA,P’ is equal to
zero except in one place (in the first row).

We now partition Z in the following way:

(i) Z, = (rs)ty ---, which is the first element in Z.
(ii) Z, consists of the (r — 1) elements in Z whose covariance matrix is

independent of 0,2
(iii) Zj consists of the (s — 1) elements in Z whose covariance matrix is

independent of ¢ 2.
(iv) Z,p consists of the (r — 1)(s — 1) elements in Z whose covariance matrix

is independent of ¢, and ¢4
LEMMA 2. EZA = EZB = EZAB =0.

Proor. This follows from the fact that P is orthogonal with a first row which

is (r)7%(1, .-+, 1). [

We have
(2.5) 2(Z,) =sl,_02+ 1, _,06% + Ko,
z(ZB) =105+ 1,_,0% + K,0?,
and

L(Z45) = Ly 1)y 0hus + Kyo®
Here K, K, and K, are the corresponding submatrices of PKP’.

In what follows, Z,, Z, and Z,, will be used for testing hypotheses concerning
0 2lo% a5%[o?, and ¢% /0.

2.a. Test for o%p/o*. Z(Z,) may be written as (I,_,,,_,,A,; + K;)o?, where
A,z = o%3/o®. Then

(2.6) Qus/0* = Zlyps(Lp_1yo-1y) B an + K;)'Z 5/0*
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has a y2-distribution with (r — 1)(s — 1) degrees of freedom. There exists an
orthogonal matrix A such that AK,A’ = D, is a diagonal matrix. Introduce
Z*, = AZ,,. The covariance matrix for Z%, is (I,,_;,,_,,A,5 + D,) and

Z, (L _1yenyDan + K)Zyy = Z53(1 o _1yo-1y Dup + D)2,
— Z(T —1)(s-1) (Z;!(AB)Z/(AAB _|_ dj) .

Here d,, - - -, d,,_;,,_1, are the diagonal elements of D,. We see that Q,/0” is a
decreasing function of A ;.

Define Q = 3, ;& (Jise — Ji;.)* Then Q/o® has a y*-distribution with (n — rs)
degrees of freedom. Q is stochastically independent of Q5. Thus F(A,;) =
(n — r5)Q45/(r — 1)(s — 1) Q has an F-distribution. Since Q,;/o* decreases with
A,,, F(A,;) decreases with A,,. Hence a confidence interval can be obtained
in the usual way.

When testing the hypothesis

A, <A, against A, > A,
we reject when F(A,) is larger than the upper a-quantile, f,_,, of the cor-
responding F-distribution. The power function is
B(A4s) = P{(n — rs)[ Nia Zias/(Bo + d))/[(r — (s — DO > fidl
= P{(n — rs)[ X1 (Aup + )R/ (B + d))/[(r — D)(s — DI > fi-a} >
where R,, - - -, R ,_;,,_;, are independent y*-distributed random variables with 1

degree of freedom. S(A,;) increases with A, ;. The test is unbiased, size «, but
with no established optimality properties.

2.b. Test for o *|o* assuming ¢, = 0. When g, = 0 the covariance matrix
for {74,} is equal to

Z{Z“ }: {sl(,_l) 0} o+ {K K}a ’

Z,; 0 0 K, K
where E{Z, Z';} = K,. {'%V o} is positive semi-definite, and {§1 X} is positive
definite, so we can ﬁnd a non-smgu1a1 matrlx H such that H{z1 g4H' =1, and
H{sl(r—l) O}HI _ 2 — dlag {21, . r—p 0}

Define U = {U4,} = H{Z4,}. If A, a;/o2 Q,/0* = U/(AA, + 1,_,))""U,/o?
has a y*-distribution with (r— 1) degreesof freedom, and Q%, = U/, 31, _1,,-1,Uz/0"
has a y2-distribution with (r — 1)(s — 1) degrees of freedom. Q,, Q%, and Q are
stochastically independent.

To test the hypothesis A, < A, against A, > A,, we reject when

27 G(A,) = Quf(n — rs) + (r — (s — DI(@Q + Qip)(r — 1)
is larger than the upper a-quantile, f,_,, of the corresponding F-distribution.
This test is not the same as the test given by Spjgtvoll (1968).

In the same way as above it may be proved that the test is unbiased.

A corresponding test exists concerning o5*/”.
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3. Comparison with corresponding tests in fixed effects models. A two-way
layout in fixed effects models may be described as

Yise =+ &+ B+ 1ii + i

i=14L2,.-.,r5j=1,2,--+,8;k=1,2, ..., n;, where y, a,, 8;, and 7r,; are
unknown constants such that

3.1) 20 = 2B =21 =2i75=0,
and the e,;, have a joint normal distribution with mean 0 and covariance matrix
I, 0%

The null hypothesis y,; =0(@=1,2,---,r; j=1,2,.--,5) is tested by
minimizing the sum of squares Q = >3, ;. (yi;x — # — &; — B; — r,;)* under the
null hypothesis and under the a priori specifications. Let the two minima of Q
be Q, and Q,, respectively. The null hypothesis is rejected when

(3-2) (Qo — Qo)(n — 15)[Qa(r — 1)(s — 1)

is larger than the upper a-quantile f;_, of the corresponding F-distribution.
The reader is referred to Scheffé (1959).

We will prove that the quantity in (3.2) is equal to the test-statistic F(0) in
Section 2a.

If, as in Section 2, we introduce ¥, we have that

(3.3) y=J,+Ba-+BB+1,7+¢.

The only difference from the random effects model (2.4) is that a,, §8;, and 7,;
here are fixed constants with the side conditions (3.1).
(3.3) may be written in the form

(3.4) ¥ = (J, B,A, B,B, C)(, a*, B*, 7*)' + €,

where a* = (a'v Agy =y ar—l)’; ﬂ* = (.81’ Bas -+ s .Bc—l)” 7= > T(r—l)(a—l))"
and A, B, and C are defined such that

5k

(Cl'l, Uyy v vy ar)’ — AUrX@r-1))g*
(‘31’ .82, teey ﬁa)' = B(‘X(’—lnﬂ* , and
(Tu, ey T")’ — C(rax(r—l)(u—l))r* .

(It is possible to write (3.3) in several other ways. This will lead to formally
different A, B, and C matrices, and formally different @*, 8* and y* in (3.4)

and (3.5).)
Denote BA = W,, BBB=W, C =W, and (J, B,A, B,B,C) = W. Then
3.5) ¥ = W(y, a*, B*, r*) +e.

Define V = K1y, then
(3.6) V = K- tW(g, a*, B*, r*) + e*,

where e* is normally distributed with mean 0 and covariance matrix I,,¢>. We
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have that
37 Q = Ziju g — Fu)' + (V — EV)'(V — EV).

Define Q, = (V — EV)(V — EV), and let Q,, and Q,, denote the minima of
Q, under the null hypothesis and under the a priori specifications, respectively.

Then it follows that Q, — Qg = Q,, — Q-
From the general theory for linear models it is known that

(3'8) Qpa) - Qpﬂ = ?*'(24)_1f* )

where #* is the least squares estimate of 7*, and Z, is the covariance matrix for

A

#*. The least squares estimate of (x, @*, B*, r*)' is
(1, @*, B*, 7*) = (WK-IK-*W)"'WK-}V = W-'y .

The reader is referred to Searle (1971, page 120).

To prove that 6=%Q,, — Q,q) = Q4 When A, = 0, where Q,; is defined as
in Section 2, we introduce the transformation P, where P is the orthogonal
matrix with which the cell mean values were transformed in the random effects
model. The following lemma is useful.

LEMMA 3. Partition P into submatrices corresponding to the partitioning of W,
P = [Pl(lxrs)l, Pz((r—l)xn)l, Pa((s—l)x'rs)l’ P4((r—1)(s—l)xrs)l] .
For any choice of W we have that

(i) The rows of P, are orthogonal to the columns of W,.
(ii) The rows of P, are orthogonal to the columns of W,.
(iii) The rows of P, are orthogonal to the columns of W, and W,.

ProoF. From the results in Section 2 we have that P,B,B,’P,’ = 0, then
P,B, = 0, and thus P,W, = 0 because W, = B,B. The rest of the lemma now
follows by treating P, and P, in a similar way. []

From Lemma 3 and from the facts that P, W, = P, W, = P,W, = 0 it follows
that PW has the form

0 0 0
0 PW, 0 PW,
0 0 PW, PW,[’
0 0 0 P,W,

(3.9) PW =

Now #* is the (r — 1)(s — 1) lower element of W-'y = (PW)~'Py. From
(3.9) it follows that (PW)~ is a triangular matrix with zeroes to the left of the
diagonal, from which follows that

?* = (PAWA)_1P4§’ .
From (3.9) it also follows that the covariance matrix for #*, Z,, is

24 = (P4 W4)_1(PKP,)4(P4W4)_1 ’
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where (PKP”), is the (r — 1)(s — 1) X (r — 1)(s — 1) submatrix in the lower
right-hand corner of PKP’ in Section 2.
(3.8) may then be written in the form
yP/)(P,W,),/~Y(P,W,)(PKP"),~{(P,W,)(P,W,)~'P, yo*
= y'P,/(PKP’),"'P,yo? .
This quadratic form is independent of W, a*, 8%, and 7*, and is equal to Q,,
in (2.6) when A, = 0, because Z,, = P,y and K, = (PKP”),.

4. The test statistics expressed by the original observations.

LeEMMA 4. With the choice of W made in Section 3, the least Squares estimates
for (u, a*, B*, 7*) are fp =y -, {&*} = {yin. — Yootk {F*} = (Joje — y.u)o and
(5 = Wie = Ve =Yg F0ude (=127 = L= 1,2, 00 s — 1),

Proor. If we insert 2, {&,*}, {,*} and {7%} for p, {a;}, {8,} and {y,,} in (3.7),
Q reduces t0 33, ; 4 (Vije — Yizo)™ [

When testing the null hypothesis A,, < 0 against A,, > 0, we reject when

(4.1) (n = )P )P Diie Gizw — Yigo)r — (s — 1)
is larger than the upper a-quantile of the corresponding F-distribution. This
test is the same as the one suggested by Spjgtvoll (1968).

It should be noted that the test statistic reduces to the usual one when the
model is balanced.

5. Empty cells. In Sections 1-4 we have assumed that there is at least one
observation per cell. In this section we shall remove this assumption. We
shall show that the results in Sections 2a and 3 are not affected by empty cells
(except that the number of degrees of freedom has to be adjusted), while the
test given in 2b has to be modified.

As in Section 2 we define y,; = (1/n,;) 3. y,;, for all cells with n;; > 0. Then
we have that

(5’1) ;’:J(rs—p)#'i_cla'l'C2ﬁ+car+éa
where p is the number of empty cells. (5.1) is of the same form as (2.4), but
C.,C/ (i = 1, 2) do not commute as did B,B,’ in Section 2. We still have that
(i) rank(C) =r
(5.2) (i) rank (C,) = s
(iii) rank (C,C,) =r+ s — 1
(iv) rank (D, + D,) = rank (C,|C,),
where D, = C,C/ (i = 1, 2).
Instead of applying the transformation P as in Section 2, we now apply the
matrix of contrast vectors, C, suggested by Bush and Anderson (1963).
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Define Z = Cy. Then .
(5.3) 2Z = CD,C's? + CD,C'¢,* 4 CC'¢% 5 4 CKC'o®.
As in Section 2, Z may be partitioned such that

(i) Z,, has a variance dependent of ¢ % ¢5* d%5 and ¢*.
(i) Z, consists of the (r — 1) elements whose covariance matrix is in-
dependent of ¢;°.
(iii) Z, consists of the (s — 1) elements whose covariance matrix is in-
dependent of ¢ ,°.
(iv) Z,, consists of the ((r — 1)(s — 1) — p) elements whose covariance
matrix is independent of ¢,* and ¢ ,’.

The only difference from Section 2 is that CD,C’ (i =1, 2) is not diagonal as
in Section 2.
The covariance matrix of Z,,, X, Z ,, is of the form

27,5 = Do’y + Eo* = (DAAB + E)d*,

where D and E are matrices of known constants.
In the same way as in Section 2 it is seen that

F(A ) = Z,z(DA, 5 + E)7Z,5(n — (rs — p))/Q((r — (s —1) —p)
has an F-distribution. When testing the hypothesis A, < A, against A,; > A,
we reject when F(A,) is larger than the upper a-quantile, f,_,, of the cor-
responding f-distribution.

For A, = O this test is the same as the corresponding test in a fixed effects
model, which is seen by applying C instead of P in the discussion in Section 3.

Assuming o, = 0, the covariance matrix of Z, can be written

2Z, = [Lo 2 + Fo?] = [LA? 4 Flo?,
where L and F are matrices of known constants. Then Z,'(LA* + F)™'Z,/o®
has a y-distribution and is independent of Q.

When testing the hypothesis A, < A, against A, > A, we reject when K(4,) is
larger than the upper a-quantile, f,_,, of the corresponding F-distribution,
where

K(Ay) = Z,/(LA, + F)7'Z(n — (rs — p)/Q(r — 1) -

It should be noted that this test is not the same as the test given in Section 2b.

If n;; = m for all nonempty cells it is possible to test hypotheses concerning
0 ,*/o? and 6 ,/¢* without assuming ¢%; = 0 because the factors of ¢%; and ¢? are
proportional matrices in (5.3).

The tests suggested in this section are the same as the tests suggested by
Spjstvoll (1968).
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