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SPECIAL CASE OF THE DISTRIBUTION
OF THE MEDIAN!

By. S. R. PARANJAPE AND HERMAN RUBIN
University of Poona, India and Purdue University

Let ¢ be the translation parameter of a process X(t), —co <t < oo.
The likelihood ratio of the process X{(f) at ¢ against ¢ = 0 can be written as
exp [W(1) — 4lt]], —co < t < oo, where W(t) is a standard Wiener process.
For the absolute error-loss function the best invariant estimator of the
translation parameter is the median of the posterior distribution. The dis-
tribution of the median for the posterior distribution is obtained, when the
prior distribution for ¢ is the Lebesgue measure on the real line.

1. Introduction. Let X(f), —oco < t < oo, be a stochastic process with ¢ as
the non-stationarity point. Let the origin be the true non-stationarity point and
let L(¢) be the likelihood ratio of the process at ¢ against ¢+ = 0. L(f) can be
treated as proportional to the a posteriori distribution of ¢, if the Lebesgue
measure on the real line is assumed to be the a priori distribution on the non-
stationarity point of X(¢). It is well known that the median of the a posteriori
distribution is the best invariant estimator of the parameter ¢ for an absolute
error loss function. We shall treat a special case of L(), which has the follow-
ing representation.

(1) L(t) = exp[W(1) — 3], —o0 <t < oo
where W(t) is a Gaussian process with independent increments and with
(i) wO0)y=0,
(iiy EW(t)=0 for all .
(2) (iiiy Cov [W(t), W(t,)] = 0(t;, t,) min (|&,], |1,])
where (s, 1) =1 1,4, >0
=0141,<0,

i.e., W(¢) is a standard Wiener process. It should be noted that the class of
stochastic processes satisfying condition (1) is not empty. In fact Rao and Rubin
[2] gave a necessary and sufficient condition for a Gaussian process to be the
log-likelihood process of a Gaussian process. We shall obtain an expression for
the distribution of the median of L(¢).

2. Notation and some results. We introduce further notations in terms of
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L(t), where L(t) is defined by (1) and (2). Let for T > 0,
(i) X~ =, L(ydr,

3) (ily X+ =X= 3 L(r)dt,

(iliy Y = §7 L(r)dt, and

(iv) Z =Sz L(t)dr.
We can express P[median > T'] as follows.
4) P[median > T] = §=. P[X~ + Y < Z| W(T) — 4T = u]

1 1
X o eXp — | — lT2:|d .
(2xT)t P [ZT (4 3T |du

The case T < 0 follows from symmetry.

Let
%) G(T,uy=P[X-+YZZ|W(T) — LT =u].

We shall derive a computable expression for G(T, u).

Let us first quote some well-known properties of W(f), defined by (1) and (2),
which we shall use in the derivation and which are given in any standard text-
book on stochastic processes.

Extrapolation property.

(6) W(t, + t;) = W(t) + W*(t,), for 11,20,
where W(t,) and W*(1,) are independent Wiener processes with the same structure
as W(r). In fact W(t,) is the same as W(t, + t,) on the left side.

Interpolation property. The conditional density of W(r), t, < t < t, 1, = 0,
given W(t,) = A and W(t,) = B is a normal density with mean

B — A4

Q) (i) 4+ (1 —1)

t, —
and the variance
(i) (. — 0@ —n)/(ty— 1)
We shall now state a result which is not well known. Rubin [3] proved a related
result. Later Fox and Rubin [1] proved the same result for general stochastic
processes. The following result can be proved by the techniques used in the
latter part of this paper.

RESULT 1. Let X be as defined in (3-ii). Then, the distribution of 1/X is an
exponential distribution with a scale factor two, that is, the Laplace transform
of 1/X is given by
(8) E[exp(—4/X)] = 2/(2 +2), 120.

REesULT 2. Let X and X~ be as defined in (3). Then X/(X 4 X~) (or X~/(X +
X~)) is uniformly distributed over [0, 1] and is independent of X 4 X~.
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3. Derivation. Let us start by looking back to the definition of the random
variables Y and Z. Note, we could replace W(r) — 4t = V(t), where V(¢) is a
Wiener process with mean —1¢, + > 0 and same variance-covariance structure
as W(t). Then

Y = sg' ev® dr, 7 = s; e’ dr — "7
where V(T) and Z’ are independent and Z’, X are identically distributed. Now

let us condition V(T) = u. Therefore, by using the interpolation property (7),
we have

%) E{(V(t)} =t-u/T, 0t T,
Var {V(1)} = (T — 1) - ¢|T, . 0st<T.

Let

(10) Fa, T, u) = P[Y < a| T, W(T) = u], =0,

(11) fa, Tr u) = %F(a, T, u), a20.

LemMA 1. F(a, T, u), defined by (10), satisfies the following partial differential
equation,

(12) <_1_%’a+%a)Fa_FT_%‘Fu_l_?l?asz""aFau_l_%Fuu:O

where the subscripts stand for the corresponding partial differentiations of F(a, T, u).
Proor. Let us write
Y=(e'®dt + (Te"Vdt, e>0,
~ ¢+ VP
where V(¢) and V* are independent.
F(a, T,u) ~ EP[V* < aeV® — ¢|T — ¢, V(T — ¢) = u — V(e)]
= EF(ae™"® — ¢, T — ¢, u — V(e)),

where the expectation is with respect to the random variable V().
Using the Taylor’s series expansion, omitting all the terms of order equal or
higher than ¢?, and taking expectations, one can arrive at expression (12).

LEMMA 2. F(a, T, u) also satisfies the following backward partial differential
equation

(13) —e*F, — F, _%Fu+%Fuu=o.

Proor. The only difference in this proof from the previous proof is that we

write
Y=\l e"Pdt  {L_ e dt

and proceed as before to get (13).
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If (13) is subtracted from (12) we get the following corollary.
CoROLLARY 1. F(a, T, u) satisfies the following partial differential equation

(14) (=1 = L+ 4a) F, + JaF,, + aF,, = 0.
The above equation can be written in f(a, T, u) as
(15) (e"—1—%a+%a>f+%a“’fa+afu:0.
LemMA 3. The general solution of the partial differential equation (15) is

+ glaes) |

1 4 cosh {u

16 s Tou) =exp| — = — in — 222" 2%
(16 flaTou)=exp| - o — gn— TN
where ¢ depends on a and u only through aet*.

Proor. Let A(a, T, u) = In f(a, u); then (15) is the same as
(17 (e"—l—%a+%a)+%a2ha-|—ahu=0.
The general solution of the homogeneous equation of (17) is ¢y(ae~*). A particular
solution of (17) is obtained by inspection. Note if (§)(u*/T) — (3)u is included
in k then a - h, will cancel out the term a(3 — u/T). Now consider the equation

(e* — 1) + $a*h, + ah, = 0.

Observe that K(u)/a is a solution of this equation if K(u) satisfies the following
differential equation.

(e* — 1)+ K'(u) — 4Ku) = 0
where K'(u) stands for the differentiation of K(u). The proof of Lemma 3 is
completed by observing that —4 cosh Ju/e~#* is a solution of the above differen-
tial equation.

COROLLARY 2. The density function, f(a, T, u), is given by (16) where ¢ is a
function of ae~t* only (possibly depending on T) such that

- 1w 4 cosh Lu u
(18) i exp[_2_7_%u_7ﬁz_+¢(aeé)]da=1.
Equation (18) is the condition that f(a, T, u) is a probability density function
in a.
CorOLLARY 3. If Y, =e!|Y, then the Laplace transform of Y,, viz.,
E[exp(—2Y))] = ¢(R), is given by
(19) #(A) = exp [$¥*/T] exp — _72: arc cosh? <cosh 3u 4+ %) ) A=0.
Proor. The probability density function of Y, say fi(a, T, u), is given by

fi(a, T, u) = iz exp[ w_ 4acosh u + gb(a):l .
a

i
2T
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¢(+) is a function such that

w 1 1w
§6 = exp[—4a cosh fu + ¢(a)] da = exp — 57
= exp — _727 arc cosh?® (cosh fu) .

#(A) = o 21; exp (2_17.: uz) exp[—4acoshu — Za + ¢(a)]da

= §;°i expz_lT_ u? exp[—-4<cosh u -+ %)a + ¢(a):| da

a2
1 2 A
= exp — u’exp— = arcc hz<c hl _>.
P2Tu P T 0s 0s 2u+4
This completes the proof of Corollary 3.
We are now in a position to find G(T, u) as defined by (5).

LeEMMA 4.

(20) G(T, u) = k — §§exp 71f [#* — 4 arc cosh? (cosh {u + 1c)]

% [1 2¢ arc cosh (cosh {u + %c):| da
T {(cosh {u 4 %c)* — 1}

where k = 1/(1 4 e7*), ¢ = (et*/a) — (e~#*/(1 — a)).
Proor. Note we can write G(T, u) as
G(T,u) =P[X~ + Y < eZ'|V(T) = u]

where X~ and Z’ are identically distributed.
We shall omit the condition ¥(T) = u and the prime of Z in the above defini-
tion of G(T, u) for notational convenience. If

1 1
W=__-|—-—— A=X/(Z X-
zZ X- [z + )

it follows from Result 2 that A is a uniform random variable on [0,1], Wis a
gamma random variable with the parameter two, and W, A, are independent.

G(T, u) = Ple t"Y < et*Z — e~d* X"
= P| 3 < (e A) — (1 — )],
Y,
where Y is as defined in Corollary 3.
G(T, 1) = § P 3 < () — (¥(1 — @) | da.
1

where the range of the integration is such that (e}*/a) — (e~#*/(1 — a)) = 0, i.e.,
for0<a <k =1/1+e™).
G(T,u) = k — §5 §¢ P[W z epi]f(y,) dy, da
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where

(i) k is as defined above,
(ii) c is as defined in Lemma 4,
(iii) f(y,) is the density function of the random variable Y;, whose Laplace

transform is given by (19).

Now (20) is proved by using P[W = cy,] = (1 + 2cy,)e"**1and (19). The direct
substitution of (20) in (4) and some simplifications prove the formula (22) in the
following theorem.

THEOREM. Let t be the non-stationarity point of a Gaussian process X(t),
—oo < t < oo, with the Lebesgue measure on the real line as the a priori distribu-
tion for t. Let the process X(t) be such that the likelihood ratio L(t) of X(t), at t
against t = 0, admits the following representation

21) L(t) = exp(W(t) — %|t]), —oo <t < oo,
where W(t) is a standard Wiener process. Then the distribution of the median of
the a posteriori distribution, which is proportional to (21), is given by

P(median > T)
(22) e {5 e~#7 sech Lu du
(2xT)* °° ’
e-—-T/S
Ty
2¢ arc cosh (cosh {u + %c):l da du
T {(cosh fu 4 }c)* — 1} ,

where k = 1/(1 + e7*), ¢ = (et*/a) — (e~#*/(1 — a)).

§=. e~ §E exp —% (arc cosh? (3u + }c¢))

x[1+
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