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MAXMIN C(a) TESTS AGAINST TWO-SIDED
ALTERNATIVES!

BY Rose M. RAY ' -
University of California, Berkeley

Let {X,} be a sequence of i.i.d. random variables, each with probability
density function p(x|d, ¢) subject to certain regularity conditions. Here, 6
is an s-dimensional vector of nuisance parameters, and & € (—r, r) is the pa-
rameter under test. The first N members of the sequence {X,} are to be used
for testing the hypothesis, Hp: £ = 0, against the alternative, H;: & #0,
while 4 remains unspecified. The particular case considered is that in which
the left-hand and right-hand derivatives, with respect to &, of the logarithm
of the density function are unequal. It is shown that the class of C(a) tests
based on linear combinations of the left and right derivatives, is an essen-
tially complete class of these tests. The asymptotic power functions of these
tests depend upon the coefficients of the linear combination. The maxmin
test is deduced and compared with strongly symmetric and weakly sym-
metric tests. The motivation for the study is the vague notion of ‘‘fair’’
tests which do not arbitrarily favor detection of ‘‘positive’’ or ‘‘negative’’
alternatives.

1. Introduction. Let {X } be a sequence of i.i.d. random variables each with
probability density function p(x|@, §), where 0 € ® C R* is an s-dimensional
vector of nuisance parameters, and & € (—r, r) is a test parameter. The problem
considered is to test the hypothesis H;: § = 0, against the alternative H,: § + 0
while the nuisance parameters are left unspecified. Specifically a test is sought
which has good power against “positive” (§ > 0) as well as “negative” (§ < 0)
alternatives. The particular case studied is that in which the density functions
p(x|0, &) satisfy the Cramér regularity conditions (see Neyman (1959)) with the
exception that

do= o logp(x0,8)| |+ Zlogp(x|0,6)| | = ¢

Only the class of C(a) tests will be considered. Let -2~ be the sample space
of the random variables {X,}. A C(a) test is specified by three things: a test
function f: 2~ X 6 — R, a sequence of estimators, {9n}, and a rejection region,
S, C R. For conditions on the test function fand {f,} see Neyman (1959). The
rejection region has the property that the indicator function 7 is continuous
a.e., and if Z is an N(0, 1) random variable, then P[Z ¢ S,] = a. The C(a) test
based on the first N elements of {X,} is given by the rule:
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Reject H, when
N 1 +
Zy(Oy) = NE 2 f(&s Oy) €S, .

Such tests are asymptotically of size «, and have an asymptotic power function
(1)  B(z) = lim,_. P[Z,@0,)eS,|0,&,] = P[Z(ct)eS,]  when ni, —c.
Here Z(cr) is a random variable with N(cz, 1) distribution, and

C:Ef¢1 if ’T<0
= Efg, if t>0.

Here and further below all expectations are taken assuming § = 0.

Under the condition that ¢, # ¢,, there is no uniformly asymptotically most
powerful C(«a) test of Hy: § = O against H,: & #+ 0. In general, tests which have
good power against *‘positive” alternatives have poor power against “negative”
alternatives and vice-versa. In the present problem, detection of “positive” and
“negative” alternatives is considered equally important. In particular a “fair”
test, i.e. one that does not arbitrarily favor detection of “positive” or “negative”
alternatives, is desired. In the search for “fair” tests, Neyman (1969) introduced
the concepts of “strongly” and “weakly” symmetric optimal C(a) tests. These
tests are characterized by the requirements:

I. Strong symmetry:

B(r) = B(—r7) vz, V6.
II. Weak symmetry:.

ai {B(r) + B(—1)} ) is a maximum.

In the present paper a third concept of “fair” test is proposed, the maxmin
C(a) test. The defining property of this test is that:

III. Maxmin C(a) test: maximizes min {3(z), 8(—7)}.

The maxmin test is, by definition, uniformly asymptotically more powerful
than the optimal strongly symmetric test. There exist families of distributions
in which for any positive number, M, the relative increase in power is greater
than M for some set of values of the nuisance parameters. A practical example
of such a family will be given in Section 7.

Prior to deducing the maxmin C(«) test and comparing its asymptotic power
with the asymptotic power of the optimal strongly symmetric and weakly sym-
metric tests, an essentially complete class of C(a) tests will be determined; this
is done in Section 2. In Section 3, two natural classes of C(a) tests &, and &,
are described, and a function H: R* — [0, 1], which is used to compare the
asymptotic power of tests in &7, with the asymptotic power of tests in &, is
defined. In Section 4, the maxmin C(a) test in &, and the maxmin C(«) test in
¢, are deduced. The test functions deduced in Section 4 do not satisfy the
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Cramér regularity conditions, under which Neyman (1959) proved three theorems
necessary for the construction of the class of C(«) tests. In Section 5, it is noted
that the three theorems are true under weaker regularity conditions. These
weaker conditions are satisfied by the functions deduced in Section 4. The
asymptotic power functions of the three types of “fair” tests are compared in
Section 6. In order not to interrupt the continuity of the paper the longer proofs
are placed in Section 8.

2. An essentially complete class of C(«) tests. One of the conditions on the
test function f: 2”7 X ® — R used to specify a C(a) test is that f satisfy

(2) E{f¢;|H} =0 where ¢j=£_logp(x|0,$) and j=1,...,5.
i =0

Let
9= —2a;9;, h=¢s— 2 b;9;
where {a;} and {b,} are chosen so that g and # satisfy (2).

THEOREM 1. The class of C(a) tests based on functions of the form f = ag + bh
is essentially complete with respect to asymptotic power, within the class of all C(a)
tests.

This theorem (proved in Section 8) provides a convenient classification of
C(a) tests. It is particularly useful to compare the asymptotic power functions
of various C(a) tests by considering Ef¢, and Ef¢, as functions of the coefficients
of the linear combination. The optimal strongly symmetric and weakly sym-
metric tests developed by Neyman (1969) belong to this essentially complete
class.

3. The partition of C(«) tests into two natural classes. In order to compare
the asymptotic powers of various C(«) tests we shall distinguish two classes of
these tests, &, and ,. The most powerful unbiased rejection region is one-sided
for &, and two-sided for &,.

The class &, consists of all C(a) tests with a test function f which has the
following property

Efg, >0 forall 6c© and Efg, < 0 forall #e®.

For this class of tests the most powerful rejection region is S, = (— oo, —v,)
and the asymptotic power is given by

3) 8,(0) = O(—v, — tEfg), i=1 if <0,
=2 if >0,

where @ is the N(0, 1) distribution function and ®(v,) = 1 — a.

‘&, * is the class of C(a) tests specified by functions f* with the property that
the C(a) test specified by —f* belongs to . These tests are obviously equiva-
lent to tests in &, and will not be discussed.

The class &, consists of all C(a) tests not in &7 or &, *. The tests in &, are
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specified by test functions with the property that either sgn Ef¢, = sgn Ef¢, for
some 6 € O, or sgn E{f¢,| 0} + sgn E{f¢, |6’} for some 4, 6'; i = 1 or 2.

For this class any unbiased rejection region must be symmetric about 0. The
most powerful unbiased rejection region is given by S, = (— 0o, —v,/5) U (V42> o).
The asymptotic power of a test in this class is given by

@) BA?) = V(—vap + TEfd) + O(—vop — 7Efy),  i=1 if =<0,
2 if ©>0.
In order to compare the asymptotic power of the tests in <”, with the asymp-

totic power of tests in &, it is necessary to consider the function H: R* — [0, 1],
defined as follows:

O(—v, + xH(x)) = O(—v,/, + X) + P(—v,,, — x).
It may be shown (Section 8) that:
LemMMA 1. The function H has the following properties:

(i) lim,_, H(x) = 0;
(i) lim,_, H(x) = 1;
(iii) H is increasing.

z—0

Using the above three properties and equations (3) and (4) it is easy to prove

THEOREM 2. Let f, determine a test in €, and f, determine a test in &,, with
¢;; = |Ef;¢;| fori,j = 1,2. Then there exist numbers t;* € [0, co] such that

Br(7) Z Bp(7)  for —m* =TT,
Bs,(7) = By (7) for t=7* or < —1,*%.

The numbers 7,;* are given by:

&) % = H ey ]cy;)/c if ¢; <cy,

= oo if ¢; =c¢y.

A numerical evaluation of the functions H and H~* (H inverse) may be found
in Tables 1 and 2 for a« = .1, .05, and .01.

No uniformly asymptotically most powerful strongly symmetric C(a) test
exists in &, U &,, but there is a UAMP strongly symmetric test in &, and a
different UAMP strongly symmetric test in <°,. The asymptotic power of the
two tests is easily compared through the use of the function H. The optimal
weakly symmetric test exists and is in &, but it has a one-sided rejection region,
and is therefore biased for some values of the nuisance parameters. With this
exception we will only consider tests with optimal unbiased rejection regions.
The asymptotic power of C(«) tests does not depend upon which sequence of esti-
mators of the nuisance parameters is used, provided, of course, that the sequence
of estimators satisfies the conditions in Neyman (1959). For the purpose of this
paper then, a C(a) test is completely specified by a test function f.
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4. Maxmin C(a) tests. It is not possible to find a C(a) test which is maxmin
for all = and all §. There is, however, a test in <°, which is maxmin for all 4
and all r among all tests in <7, and a different test in <%, which is maxmin
among all tests in &7,.

For tests in &, the asymptotic power is given by equation (3). Consequently,

min {8(z), f(—7)} = P(—v, + |7| min {|Ef¢,], |Efdu]})

and it is enough to find the function f = ag + bk which maximizes

(6) min {Ef¢,, —Ef¢,} .
Maximizing (6) with respect to all coefficients a, b which satisfy E(ag + bk)* = 1
results in

THEOREM 3. The linear combination f* = a*g + b*h, in class &, which maxi-
mizes min {B(7), B(—7)} is given by
) a* = max {0, min (1/a,, a,)} if 6,50,
=a, if 6,20,
b* = —a*o,plo, — [1 — a*¥(1 — p%)a,*]}/a, .
Here and elsewhere o,%, 0,%, g,, and p are respectively the variance of g, the

variance of 4 and their covariance and correlation taken under H,.
The constants @, and a, are given by:

a, = (0, + |ploy)/[o,*(1 — 0°)(o)" + 2|0y + 0,)]t
ay = (03 — |oloy)/[e,’(1 — 0*)(o," — 2|oy| + 0,))]E.
(The proof is in Section 8.)
A glance at equation (4) shows that the test in &, which maximizes

min {$(z), f(—7)} is that which maximizes min {|Ef¢,|, |Ef¢,|}. This maximum
may again be found by finding the proper linear combination ag + bk.

THEOREM 4. The linear combination f,, = a, g + b, h, in &, which maximizes
min {8(z), (—7)} is given by:

a, = max {0, min (1/0,, a,)}

b, = —a,p0,/o, + sgn (0)[1 — a,’(1 — p*)a,]*.
(This theorem is proved in essentially the'same way as Theorem 3.)

Notice that if ¢, < 0 then a*g + b*h = a,,9 + b, h. If 6, > 0 it is easy to
show that |Ef, ¢,| > |Ef*¢,| for i = 1,2. Using Theorem 2, we see that if
0,, < 0, the maxmin test in &7, is asymptotically more powerful than the maxmin
test in &, for all values of z. If o;, > 0, the maxmin test in &, is asymptotically
more powerful than the maxmin test in &7, for r € (—z,*, 7,*) and less powerful
for z outside this interval, where z,* and z,* are defined as in Theorem 2. For
“most” families of density functions ¢,, < 0 for some values of the nuisance
parameters, and g,, > 0 for other values of the nuisance parameters, thus for
“most” families of density functions neither maxmin test dominates the other.
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5. Generalization of the Cramér conditions. In Section 4, the linear combi-
nation a, g + b, h, which maximizes min {|Ef, ¢,|, |Ef, ¢,|} was constructed.
The coefficients a,, and b,, are functions of ¢?, ¢%, 0,,, and p, which are in turn
functions of the nuisance parameters §. The coefficients a,, and b, considered
as functions of ¢,%, 0,}, g, do not have derivatives everywhere, and therefore
are not Cramér functions, that is they do not satisfy the Cramér regularity
conditions (Neyman (1959)). The question at hand is: “Is it possible to con-
struct a C(a) test specified by the function f,,, even though it is not a Cramér
function?” The purpose of this section is to demonstrate that the normed sum

1 PN
ZN = N_Q me(Xis 01\')

has property (1).

Let (7, %7, 1) be a measure space with y a o-finite measure. Let © X E be
a parameter space, with ® C R®and E = (—r, 7). Let & ={P,,: 0c0,&ecE}
be a family of probability measures on (27, .%7") with the property that no two
measures are disjoint, and let p(+ |0, §) = dP, ./dp. Then, a function f: 77 x
O — R is a generalized Cramér function with respect to the family &7 if

(i) For every 6 € ©, there exists a neighborhood, ¥V, of ¢ such that for every
6* e V, the function f; ,.: 2~ X [0, 1] — R is a Cramér function with respect to
the measure space (=77, %7, ), the parameter space [0, 1] X E and the family of
probability measures

Gy ={P . t€[0,1],6 €8} where
dP, .[dy = p(+ |0 + t(6* — 6),¢) all ref0, 1]
foulx, 1) = flx, 6 4 1(6% — 0)].
(ii) There exists a function H,: 2 — R, H, = 0, such that

§ Hy(x)p(x|8, &) dx < oo forall ek,
and
Foor(s r)\ < H(x) forall xe=,
for all t¢[0, 1],
forall 6*eV .

aZ
\’a?

Condition (i) means that the function f satisfies the Cramér regularity con-
ditions when restricted to the straight line joining # and §*. Condition (ii) means
that the bounding function H, does not depend upon §*. Condition (i) insures
that it is possible to make a Taylor expansion of Z +(@y) around 6, and that the
second term of the Taylor expansion will converge to zero in P, . probability
as N — oo, whenever {£,} is a sequence such that N, — t < oo.

It is easy to see that the function f,, satisfies the generalized Cramér conditions.
The coefficient a,, has partial derivatives with respect to ¢/, ¢, 0, except at
points where a, = 1/0, and a, = 0. The condition that the family of measures
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 be regular enough so that ¢, ¢,, ¢;, forj =1, ..., s, be Cramér functions
with respect to the family & implies that ¢y, 0,, 0,, are differentiable functions
of 6.

Examination of the proofs of Theorems 1, 2, 3, of Neyman (1959) shows that

sufficient conditions for
1 ~
ZN = ']\7; Zf(Xi’ 01\1)
to satisfy (1) are that f be a generalized Cramér function that satisfies condition
(2) and that {f,} be a sequence of locally root-N-consistent estimators (Neyman

(1959)).

6. Comparison of maxmin tests with strongly symmetric and weakly sym-
metric tests. The asymptotic power, (zr), of a C(a) test in class &, is an in-
creasing function of Ef¢, if = < 0 and of —Ef¢, if = > 0. The power, f(z), of
a test in &, is an increasing function of |Ef¢,| if = < 0 and of |Ef¢y,| if = > 0.

The tests in ", may be compared to those in &, by using the function H which
is defined in Section 3. In either case the interest centers on the comparisons of
Ef¢, and Ef¢, and only these comparisons will be considered in this section.

Neyman (1969) deduced the optimal strongly symmetric test in &, and the
optimal strongly symmetric test in &,*, here &,* is the class of all C(a) tests
with test functions f such that sgn Ef¢, = sgn Ef¢, for all § € ©.

Let f,,, f1, fas fn denote respectively the test functions of the optimal weakly
symmetric test, the optimal strongly symmetric test in &, the optimal strongly
symmetric test in &,*, and the maxmin test in ;. Then straightforward cal-
culations give the following comparisons.

I. |Ef; ¢s| < |Ef bl for i=1,2 and j=1,2.
IIL. min {|Ef,, i, |Ef, ¢ul} = min {|Ef, ¢, |Ef., ¢} -

III. If g, < 0, or if 6,; = 0 and max {0, .’} > 0,, + [0,%0, — o},]}, then

max {|Ef,, i, |Ef ]} < max {|Ef, ¢, |Efu dul} -

IV. If g, = 0 and max {0,%, 0,’} < 0,5 + [0,°0," — o}]! then

max {|Ef,, |, |Efw$ul} = max {|Ef,, 1], |Ef . hul} -

These comparisons are easily derived by writing Ef¢, as functions of ¢/%, a;?,
gy, for the functions f in question.

7. An illustrative example. The following model was developed by Dorothy
Marschak, in order to deal with experiments on the phenomenon of “memory
boost,” which were done by D. Krech and E. Bennett, at the University of
California, Berkeley, in 1968.

For the experiment in question the response, X, of the experimental animal is
classified into three types, X = 1 (low), X = 2 (medium), and X = 3 (high). It
is assumed that a certain proportion ¢, of untreated animals would score low,
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that a proportion #, would score medium, and a proportion §; = 1 — 6, — 6,,
would score high. The test parameter & represents the effect of treatment. If
the treatment is beneficial (¢ > 0), then a proportion ¢ of low scoring animals
would score medium, and the same proportion of medium-scoring animals would
score high. If the effect of the treatment is detrimental (§ < 0), then the model
is symmetric; a proportion —¢ of high-scoring animals would score medium,
and the same proportion of medium-scoring animals would score low.

A Bernoulli random variable T (P[T = 1] = .5) is associated with each ex-
perimental animal. If T = 1, the animal is assigned to the treatment group. If
T = 0, the animal is assigned to the control group. The response X of each
experimental animal is a trinomial random variable, with parameters which
depend upon the nuisance parameters 6, the test parameter £, and the random-
ization variable T. The model has the following mathematical representation:

Pxo(x,8) = a(1 — =)~ TT3., [0.(66) ] where [(x) =1 if x=1i,

=0 if x+£1i,
§<0 §>0
0.(6t) = 0, — &0, 0,(&t) = 0,[1 — &1]
0,(&t) = 0, + &t[0, — 0] 0,(61) = 0, + &[0, — 0,]
04(61) = 0,[1 + &1] 0,(6t) = 0, + &10, .

For this model ¢, # ¢, and
g = (t — o) (—1(x)0,/0, + L(x)[0, — 0,]/0, + Iy(x))
h = (t — 2)(—L(x) + L0, — 0,]/0, + 1y(x)0:/05) ,
o = 0,10, + (0, — 05)*/0, + 0,
o = 0, + (6, — 0,)’/0, + 6,%/0;
oy, = 20, + (0, — 6,)(0, — 0,)/0, .
The maxmin C(«) test in &, is specified by the function f,, = a,,9 + b, k, where
fn = 9/165°10, — (0, — 65)°0, + 6,]} if o <oy,
=/, if min{o? 6,7} > |0y,
= h/[0, + (6, — 6,)*/0, + 6,}/6,]* if ¢ <oy,
where

— (95" — |owl)g + sgn (o15)(0," — |o4s]) .
[(‘712‘722 - ‘732)(012 - 2|‘712| + ‘722)]ZS

The strongly symmetric C(a) test in class &, is specified by the function f,,
which is defined above. Whenever f,, = f,, the asymptotic power of the strongly
symmetric test and the asymptotic power of the maxmin test are the same.
Whenever f, + f,,, the asymptotic power of the maxmin test is greater than the
asymptotic power of the strongly symmetric test. Figure 1 shows the regions of
the parameter space in which f, = f,. The greatest differences in asymptotic

8
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power between the maxmin test and the strongly symmetric test are in the corner
of the parameter space where 6, is close to 1, and 6, and 4, are close to zero, and
symmetrically in the corner of the parameter space where ¢, and 4, are close to
zero and 6, is close to 1. For any positive number, M, there exists an ¢ > 0,
such that (IEf, i — |Ef,$u)/|Ef, ] > M and (Efu¢sl — |Ef,¢)/\Ef, ] > M
for01:1—25,02:e,03=e.

The highest values of |Ef,, ¢,| are in the region of the parameter space where
0, is close to zero, 6, is close to 1, and 6, is close to zero. In some experimental
situations, the experimenter may be willing to approximate the unknown mecha-
nism of the treatment effect by this model. In such a case the range of possible
scores will be somewhat arbitrarily partitioned into high, medium and low
categories. Of course there is only one, if any, such partition which will exactly
fit the data. This “correct” partition of the range is in general unknown, and
a partition which would result in small 6,(0) and 6,(0) may be chosen. The evalu-
ation of the effectiveness of incorrect or poorly fitting models is beyond the scope
of this paper.

8. Proofs of Theorem 1, Lemma 1, and Theorem 3.
THEOREM 1. The class of C(a) tests based on functions of the form f = ag + bh

is essentially complete with respect to asymptotic power, within the class of all C(«)
tests.

Proor. Let f* be any normed Cramér function satisfying (2), and let ¢, =
Ef*¢, for i = 1,2. It is sufficient to find linear combinations f; = a,9 + b,
with the following properties:
®) Ef¢,=¢,, for i=1,2. Ef ¢, > ¢, and Ef,¢, < c,.

Without loss of generality assume that ¢, > 0. There are two cases to consider.

Case 1. p*+ 1. Let

a, = [e(1 — p°)F — p(o,® — ¢/[(1 — pP)ia?],
b, = (0, — ¢,")}/(0/%0," — oh)t,

a, = [e(1 — %) + p(o)" — )/[(1 — p)lor’],
by, = —(0," — ¢*)/(0%0," — o)},

r, = E[f,f*| H,] for i=1,2,
where
o = Eg*, o) = ER*, oy, = Egh, p = 0y/0,0,,

all expectations being taken under H,.
Note that Ef¢; = 0, forj = 1, - . -, s, implies that Ef¢, = Efg, and Ef¢, = Efh.
Simple algebra shows that Ef,g = ¢, for i = 1, 2, and
¢ = Ef*h = Ef*[a,g + bh] — a,Ef*g + (1 — b)Ef*h,
%) ¢, =r—ac + (1 —b)c,,
¢, = (r, — a,c)/b,; .
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When i = 1, 4, > 0 and the right-hand side of (9) is maximized when r, = 1,
therefore, ¢, < Ef, h.

When i = 2, b, < 0 and the right-hand side of (9) is minimized when r, = 1,
therefore, ¢, = Ef,h.

The idea of the proof for Case 2, p* = 1, is the same as for Case 1, but the
details are slightly different.

Proor oF LEMMA 1. Define a function k: R* — R* by
(10) O(—v, + k(x)) = P(—vun + X) + P(—vp — X) .

Then H(x) = k(x)/x for all x > 0. ®(~—v,) = 2®(—v,,,) implies that k(0) = 0.
By L’Hoépital’s rule, lim,_, H(x) = lim,_, k(x)/x = lim,_, k’(x)/1.
Differentiating both sides of (10) and solving for k’(x) we get

x—0

(an k() = P H(=vo & 97 = XP{— (= = )
exp{—3[—v. — k(x)]}
k’(0) = 0. This demonstrates (i).
The Neyman-Pearson Lemma implies that k(x) < x. Equation (10) implies
k(x) — v, > x — v,,; this gives inequalities (12) which imply (ii).
(12) I — (Vo — vo)/x < Hx) < 1.

We will show that H is increasing, first for x < v,,, and then for x > v, ,.

Case 1. x <v,, For x>0,
(13) H'(x) = di [k(x)[x] = K'(x)/x — k(x)[x* > 0 — xk'(x) — k(x) > 0.
x

Because k(0) = 0, and, from a Maclaurin expansion of (11), k’(x) > 0 near the
origin, it is sufficient to show that xk’(x) — k(x) is an increasing function of x.
Differentiating, we see that it is sufficient to show that k”/(x) > 0. Differentiat-
ing both sides of (11) and solving for k”’(x) we have

(14) k"(x) = K'(x)(Vaja — X + K'(X)[k(x) — v,])

+ zya/2 exp{—%(ua/z -+ x)z -+ %[va - k(x)]2} .
The second term of (14) is obviously greater than zero. To see that the first
term is greater than or equal to zero, use (11) to get
(15) 0 < K'(x) < exp{d[ra — k()] — $(an — 7} -
If k(x) — v, £ 0, k'(x) < 1, because (10) implies that k(x) — v, > x — v, , —
[k(x) — v, ]’ < (x — v,,,)*, and the first term of (14) is greater than or equal to

zero. If k(x) — v, > 0, k'(x) > 0 and x < v, ,, imply that the first term of (14)
is positive.

Case 2. x > v,, (proof by contradiction). Assume that H is not increasing.
Then, the differentiability of H and (12) imply that there are two points x, and
x, such that H(x,) = H(x,) = y, for some 0 < y < 1. Now, (12) implies that if
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X > (Vo3 — Ya)/(1 — y) then H(x) > y. This means that we can find points z,
and z, with z, < z, and z; > v,, such that

(16) H(z)) =z y and H(z,) <y,
(17) H'(z) = H(z,) = 0,
(18) H"(z;) <0 and H"(z,) = 0.

Now, H"(x) = k"'(x)/x — 2H'(x)/x. This implies that k"'(z;) < 0 and k"(z,) = 0.
Statements (16), (17) and (13) imply

(199  K(@)=H@z)=y and Kk(z)=Hz)<y.
Combining this with (14) and the fact that (12) implies yz, > v,, we get
(20) K'(2) 2 Yun — 7 + Y5 — v)

+ 2ven €XP{—5(21 + vop) + #0072 — v.)}
(21) k'(20) < Y(an — 22 + Y(y7 — v,))

+ 2, eXp{—3(2, 4 vap)® + 3(yz, — o)} -

Subtracting (20) from (21) and using the fact that for yz > v,, exp{—21(z + v,,,)* +
3(yz — v,)*} is a decreasing function of z, we get (z, — z,)(1 — y?) = 0, but z;, < z,,
contradiction.

THEOREM 3. The linear combination f* = a*g 4 b*h which maximizes
min {3(z), B(—1)} in &, is given by (7).

Proor. It is sufficient to find a* and b* such that
min {d,(a*, b*), —d,(a*, b*)} = max, , min {d,(a, b), —dy(a, b)}
where dj(a, b) = E(ag + bh)¢, for i = 1,2. The restriction E(ag + bh)* = 1
implies that for each value of a, there are only two possible values of 5. These
values are given by:
b, = —apa,jo, — (—1)po[1 — @*(1 — p*a,*]? for i=1,2.

Now in order that b € R, it is necessary that a € (—K, K) with K = [(1 — p*),7].
Using the fact that Eg¢, = a,, Eg¢, = 7, Eh), = 0,, Ehp, = a,, we can write:

dya, b) = a(1 — p¥a? — (— 1)1 — a*(1 — p*)aJtpa, and
dya, b)) = (= 1)1 — a(1 = pYo s, .
Note that d,(a, b)) = —d,(—a, b,) and dy(a, b)) = —d(—a, b,). Therefore it is

sufficient to consider only one pair, say (a, b,). There are two cases to consider:
e <0andp > 0.

Case 1. p < 0. The graph described by d,(a, b,) for a e (—K, K) is a half
ellipse. The function is increasing in a for a < 1/s,, and decreasing in a for
a > 1/o,. The graph described by —d,(a, b,) is also a half ellipse. It is increas-
ing for a < 0, and decreasing for a > 0. There is only one point of intersection,
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a,, such that dy(a,, b,) = —dy(a,, b,). The point g, is given by (7) and d,(a, b,) <
—dy(a, b,) for a < a,, and dy(a, b,) > —d,(a, b,) for a > a,. It is easily verified,
using the Cauchy-Schwarz inequality, that a, € (— K, K).

There are three subcases to consider.

i) a,<0 This implies that a* = 0.
(ii) 0<a, < 1/a This implies that a* = a,.
(iii) a, > 1/, This implies that a* = 1/o, .

The proof will be given for case (i) only, the proofs of the other cases
being similar; specifically: a, < 0— dy(0, b,) < —dy(0, b,), and —d,(0, b,) =
max, { —dy(a, b,)}.

Case 2. p > 0. The function d,(a, b,) is increasing for a > —1/s,, and
dy(a, b,) > 0 for a > p/[(1 — p*)e,*] > 0. The function —d,(a, b,) is increasing
for a < 0, and is decreasing for a > 0. Also, —dy(a, b,) > 0. Therefore, the
value of a which maximizes min {d,(a, b,), —d,(a, b,)} must be given by a* with
the property that d,(a*, b,) = —d,(a*, b,). The expression for a* satisfying this
equation is given by a, in (7). This is easily shown by setting d,(a*, b;) =
—d,(a*, b,) and solving for a*.

9. Concluding remarks. In the search for a “fair” test of the hypothesis H,:
¢ = 0, against two-sided alternatives, H,: § + 0, a maxmin C(a) test has been
deduced, and it has been shown that the maxmin test is uniformly asymptotically
more powerful than the optimal strongly symmetric tests, and that the maxmin
test is never dominated by the weakly symmetric test of Neyman. In order to
construct the maxmin test it was necessary to consider an essentially complete
class of C(a) tests specified by linear combinations f = ag + bk. It was shown
that the linear combination which specifies the maxmin C(a) test does not satisfy
the Cramér regularity conditions, which were used in the proofs of Theorems
1, 2, and 3 of Neyman (1959). However, the function, f,,, which specifies the
maxmin C(«) test does satisfy a generalized Cramér condition, and this slightly
weaker condition is sufficient for the proofs of those theorems.

In conclusion, it is interesting to note that the function f,, has the following

property:
Sfm = 9]0, if |owl > 0,
= hfa, if oy, > 0},
=f, otherwise.
The C(«) test specified by f = g/a, is the uniformly asymptotically most powerful
C(a) test against alternatives H,’: § < 0, the test specified by f = k/s, is the uni-

formly asymptotically most powerful C(«a) test against alternatives H,"”: § > 0;
the test specified by f, is the optimal strongly symmetric test.
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TABLE 1 TABLE 2
The function H The function H-!
X a=.1 a=.05 a=.01 x a=.1 a=.05 a=.01
.05 .04825 .05542 .06964 .025 .0259 .0225 .0179
.10 .09605 .11014 .13794 .050 .0518 .0451 .0358
.15 . 14294 .16354 .20367 .075 .0779 .0678 .0539
.20 .18855 .21503 .26587 .100 .1042 .0907 .0720
.25 .23253 .26418 .32386 125 .1307 L1138 .0904
.30 .27463 .31067 37726 .150 .1576 1372 .1090
.35 .31466 .35428 .42596 175 .1850 .1610 1279
.40 .35249 .39492 .47005 .200 .2128 .1852 .1471
.45 .38807 .43260 .50975 225 .2413 .2099 .1668
.50 42139 .46737 .54538 .250 .2705 .2353 .1869
.55 .45250 .49937 .57731 275 .3004 .2614 .2076
.60 .48146 .52875 .60590 .300 3314 .2883 .2290
.65 .50837 .55569 .63151 325 .3634 .3161 .2510
.70 .53335 .58038 .65448 .350 .3966 .3449 .2739
.15 .55650 .60299 .67512 375 .4313 .3750 .2978
.80 .57796 .62372 .69371 .400 .4675 .4065 .3228
.85 .59785 .64272 . 71049 425 .5056 .4396 .3490
.90 .61629 .66017 . 72568 .450 .5459 .4745 .3766
.95 .63339 .67622 .73947 475 .5885 5115 .4060
1.00 .64926 .69098 .75203 .500 .6340 .5510 .4372
1.05 .66400 .70460 .76350 525 .6829 .5934 .4707
1.10 .67771 71718 .77400 .550 .7356 .6391 .5069
1.15 .69047 . 72882 .78365 575 .7929 .6887 .5462
1.20 .70236 73961 .79253 .600 .8556 .7431 .5892
1.25 71347 . 74962 .80073 .625 .9250 .8032 .6368
1.30 72384 .75894 .80832 .650 1.0024 .8703 .6898
1.35 73355 .76763 .81537 .675 1.0898 .9461 .7497
1.40 . 74265 .71574 .82192 .700 1.1898 1.0326 .8182
1.45 75118 .78332 .82804 .725 1.3058 1.1332 .8977
1.50 .75920 .79043 .83375 .750 1.4429 1.2520 .9916
1.55 .76675 .79710 .83909 175 1.6083 1.3953 1.1050
1.60 .77386 .80337 .84411 .800 1.8130 1.5728 1.2454
1.65 .78056 .80927 .84883 . .825 2.0744 1.7994 1.4247
1.70 .78690 .81483 .85327 .850 2.4215 2.1003 1.6629
1.75 .79289 .82009 .85745 .875 2.9063 2.5207 1.9957
1.80 .79857 .82506 .86141 .900  3.6330 3.1511 2.4947
1.85 .80395 .82976 .86515 .925 4.8440 4.2015 3.3199
1.90 .80906 .83423 .86870 .950 6.3578 6.2899 4.9896
1.95 .81391 .83846 .87207 975 12.7156  12.5798 8.7319
2.00 81853 84249 87526 H-1 is the inverse of the function H: R+ —
H: R* — [0, 1] is the function defined by [0, 1] defined by
O(—ve + xH(x)) O(—vq + xH(x))

= O(—va/2 + X) + O(—vq/2 — X) . = O(—vq/2 + X) + O(—va/2 — X) .
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