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INEQUALITIES FOR SYMMETRIC SAMPLING PLANS I'

BY SAMUEL KARLIN

The Weizmann Institute of Science
and Stanford University

Introduction. In recent years there has been much interest in evaluating
certain probabilistic quantities arising in sampling with and/or without replace-
ment, from finite populations, e.g., Korwar and Serfling (1970), Lanke (1972),
Sen (1970), Serfling (1973), Kemperman (1973), and others. For these special
sampling procedures a variety of inequalities have been derived for the moments
of the sums and maximum of partial sums based on the observed sample.

Rosén (1972) investigated the validity of a central limit theorem for weighted
sums of observation arising from quite general sampling schemes. In an earlier
paper Rosén (1967) established a convexity type inequality comparing the expec-
tations of certain functionals evaluated with respect to a “symmetric” sampling
plan and for the special plan of sampling without replacement. It was this earlier
paper that kindled our interest. The present work develops a variety of in-
equalities for functionals associated with sampling plans which can be interpreted
as results on multivariate ordering relationships among certain distributions.

The organization of the contents is as follows. In Section 1 relevant definitions
and preliminaries are introduced. Several important classes of sampling proce-
dures are delimited including the “symmetric” sampling schemes, “random re-
placement policies,” sampling procedures based on special partitionings of the
sample space, sampling plans involving a prescribed number of distinct observa-
tions with given multiplicities, conditional sampling procedures and other
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1066 SAMUEL KARLIN

important sampling plans of a more technical nature not readily identified by a
single name.

A series of inequalities for expectations of certain functionals of the observa-
tions with respect to symmetric sampling schemes are set forth in Section 2. In
the process we underscore the special nature of sampling without replacement
as it fits the hierarchy of inequalities. Ina certain sense sampling without replace-
ment can be characterized by a minimum variational problem (Theorem 2.1).
A by-product of our work allows us to settle some problems posed by Rosén
(1967).

The class of functions ¢~ described in Definition 1.3 and prominent in all the
present investigations can be viewed as a more general form of the class of doubly
alternating capacity functions occurring in the theory of robust statistics.

Section 3 is devoted to the study of inequalities for random replacement
schemes. In this context we highlight some of the significance and importance
of sampling with replacement. Sampling with replacement provides the maxi-
mum for a large class of expectations when computed with respect to all random
replacement schemes (see Theorem 3.1).

The fourth section elaborates a series of applications of the main theorems of
Sections 2 and 3 to the theory of dilation of measures induced by symmetric
sampling schemes. A number of majorization inequalities in the sense of Hardy,
Littlewood and Pdlya (1934), Chapter 2, are set forth in culmination of this
work. A number of the results of this section were inspired by an unpublished
manuscript of Kemperman (1973). We are greatly indebted to him for making
his preprint available.

In a future paper we hope to take up some suggestive martingale versions of
the inequalities of Sections 2 and 3. Future prospects for new kinds of mul-
tivariate majorization relationships are also indicated by the present work (see
the close of Section 3). The ideas developed herein further bear on various
multivariate formulations of total positivity, generalized convexity and the con-
cepts of measures of associations among vector random variables.

1. Definitions and preliminaries. Consider a population space Q consisting
of N elements {a,, a,, - - -, a,}. Henceforth, unless stated otherwise, the space
Q is assumed to contain N real values, (repetitions allowed). A sampling plan
.~ of size n is defined by prescribing a probability distribution P on Q" =
Q x Qx - x Q(ndirect copies of Q). Thus the specification of the probability
P (X, Xy - - -, x,) of each n-tuple X = (x,, X, - -+, X,), X, € Q, determines /. A
sample according to ../ consists of a choice of a point of Q" following the dis-
tribution law P .

Sampling with replacement (../") corresponds to the sampling procedure where

1

. P D, = P /'-19"'5 = e
(1.1) L(x) =P (x %) =
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foreachx ¢ Q. For convenience we use the distinguished symbol 7 (suggesting
independent observations) for sampling with replacement so P_(x) = 1/N".

Sampling without replacement (7°") is characterized by the probability
distribution

(1.2) Por() = P o) = oy ---I(N— n 1)

provided all x, comprise different elements of Q and P, (x) = 0 otherwise.
DerFINITION 1.1. A sampling plan & is called symmetric if

Py(aa(l)’ Ayzys ** % ao(n))

has the same value for all permutations ¢ of the elements of Q into itself, i.e.,
P, is invariant with respect to the full group of permutations acting on Q.

A broad class of symmetric sampling plans includes the so-called Random
Replacement Schemes. They are formally defined as follows:

DeriniTION 1.2, Let {7, 7, ---,7,_,} be given in advance satisfying 0 <
7; < 1. Choose X, from Q with each element a; equally likely. Remove X,
from Q with probability 1 — 7, and with probability =, replace it. Then sample
X, from the new population space with each element occurring equally likely.
Remove X, with probability 1 — r, and replace it with probability z,. Continue
in this manner, yielding the sample (X}, X,, ---, X,). The sampling plan so
constructed is designated as .>” = .22(x) for the random replacement scheme
with associated parameters = = (7, 7y, - -+, 7,_;). Note for 1 ={1,1, ..., 1}
that 22(1) = . (sampling with replacement) and for 0 = {0, 0, - --, O} that
#(0) = 77 (sampling without replacement). It is easy to check that each
2 (m) generates a symmetric sampling plan.

We will use the following notation. For any given sampling plan &
E_¢§(X,, ---,X,) = E_ ¢(X) denotes the expected value of #(X) evaluated with
respect to the probability law P where ¢(&,, - - -, §,) is defined on Q".

The stimulus of our work stems from the following result of Rosén (1967).

THEOREM. Let the elements of Q be real-valued. For any continuous convex
function ¢(x) and setting Z, = X, + X, + --- + X,, we have

forany symmetric sampling plan < where 77" denotes sampling without replacement.

This theorem generalized a simpler inequality of Hoeffding (1963) of the form
(1.3) for the special sampling plans, comparing sampling with and without
replacement.

The value of the theorem is manifold. It allows us to obtain lower estimates
on moments for certain functions (e.g., the variance of the sample) with respect
to general symmetric sampling plans in terms of the specific sampling plan 27"
Upper estimates of importance are implied later in Theorem 3.1. Such results
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are relevant in establishing central limit theorems for special functions of Z,
based on certain symmetric sampling plans, (e.g., see Rosén (1972) for details,
and other references), and serve also in other contexts.

Rosén raised the problem of characterizing more general functions ¢(&,, - - -, £,)
not necessarily dependent on (§,, - - -, §,) through the sum (§, + --. + &,) de-
fined on Q" for which the inequality

(1'4) EW/¢(X1’ sz ] Xn) § Ey ¢(X1: ) Xn)

is fulfilled for every symmetric sampling scheme .. He pointed out, specifically,
that (1.4) applies for

(1.5) P -0 &) = PAE) + -+ + AEL))

when ¢ is convex and 2 is arbitrary. He further proved that if (1.4) is satisfied
for ¢, and ¢,, with both these functions symmetric, then (1.4) also holds for

(1.6) #(§) = max (¢,(§), $u(§)) -

Of course, limits of functions satisfying (1.4) also fulfill (1.4).

In this paper we shall settle the problem raised by Rosén pertaining to the
scope of validity for (1.4). Inthe process we do much more. Indeed, we establish
a whole hierarchy of comparison inequalities among certain classes of symmetric
sampling plans, subsuming (1.4) as an application. In order to formulate the
results we need to introduce some apparatus giving perhaps a more natural
perspective on the nature of symmetric sampling schemes.

We first delineate the appropriate class of functions & to be involved in our
considerations, generalizing those of the form (1.5), which also satisfies the
property that the operation (1.6) preserves the class.

DEerINITION 1.3. A function ¢(&,, - - -, &,) is said to be of class & if the fol-
lowing two conditions are fulfilled:

(i) ¢ defined on Q" is a symmetric function of its arguments;
(if)
¢(a, a, 53, R ) En) + ¢(b, b, 63, MR ) En)
(1'7) Z ¢(a, b, 53, R ) En) + ¢(b, a, ');:3, M ) En)
= 2¢(a, b, &, ---,€,) forall a,b,&, --.,&,eQ.

Clearly, owing to (i), a corresponding inequality to (1.7) applies for any pair
of coordinates.

When ¢ is twice continuously differentiable, a sufficient condition for (1.7) is

'
(1'8) 551—352(61, Ez’ 53’ ) En) 2 0 for all e .

The implication leading from (1.8) to (1.7) is straightforward. Indeed, integrate
(1.8) over the rectangle a < §, < b, a < §, < b where §,,§,, ---, &, are held
fixed and (1.7) quickly ensues.
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It is readily checked that functions of the form (1.5) obey (1.7). Also, it is
elementary to show that the property of (1.6) is satisfied for functions of class
Z’. Requirements of the sort (1.7) arise in diverse contexts of generalized con-
vexity (see Section 4).

Sampling plans induced by sets of ordered integers. There is a natural partition-
ing of Q" induced by the following set of symmetric sampling schemes which
will play a central role in all our developments.

DEerINITION 1.4. For each prescribed set of positive integers k, > k, = - - - =2 k,
(p arbitrary but fixed) satisfying >:7_, k, = n, we determine the sampling plan
[k] associated with k = (k, k,, - -+, k,) as follows. (Designate % = [k] as
the collection of all such sets of decreasing integers.) Pick p elements Y, Y,, - - -,
Y, successively from Q at random without replacement. Construct thereby the
set of sample points (X, - --, X,) where Y, is first repeated k, times, Y, then
repeated k, times, etc., and Y, repeated k, times. The totality of all possible
points obtained by this sampling procedure is denoted by Q(n, k) = Q(k) =
Q([ky, kyy - -+, k,]). Thus, a point (b,, b,, - - -, b,) belongs to Q(k) if its composition
consists of p distinct elements of Q, one occurring k, times, a second represented
k, times, etc., and the pth appearing k, times where each group of identical ele-
ments appears in adjacent positions and the blocks occur in decreasing order of size.

The set Q(k) contains (N), = N(N — 1) ... (N — p + 1) = N!/(N — p)! points
corresponding to all possible choices of sets of ordered p distinct elements from
Q.

The probability P, attached to each point a € Q(k) where k = [k, k,, - - -, k,],
k=2 k,= --- = k,, is obviously P_ . ,(a) = (N — p)!/N! and P (a) = O for
ag Qk).

More generally, for any set of ordered positive integers 7, 15, - -+, 7, With
2ii-17: = n we can define a sampling plan S“*[r, 15, - - -, 7,] Which assigns
probability (N — r)!/N! to all n-tuples x in Q" of the form

Tl TZ T’r

x:(gjf..,gl,g,‘...,g”...,gr,...,57)

such that &, € Q appears first y, times and then &, appears 7, times, etc. Whenever
7: are not arranged in decreasing order we employ the asterisk designation
S *[r1» -+ +» 7,] to indicate this fact.

If ¢(§) is symmetric it is clear that

Ey*[rl,r2,~u,r,.] ¢(X) = Ey[61,62,~-~,6,.] ¢(X)

where the integers {d,} coincide with {y,} but are arranged in decreasing order,
i.e.
0, =0,z 206,>0.

Some illustrations of the sampling schemes .>“[k] are worth highlighting:
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(i) ([, 0,0, .., 0]) is the sampling plan that assigns probability 1/N to
each of the points (a;,a,, ---,a,),i=1,2, ..., N where q, is a labeling of the
elements of Q.

(i) & ([n —1,1,0, ...,0])is the sampling scheme which assigns probability
1/N(N — 1) to each of the n tuples where one element of Q appears first N — 1
times and a different element then appears once.

(i) &[1,1,...,1] = %" = sampling without replacement. If N=3,n=2,
we have

02, 0] = {(a, @), (@ @), (a5 )}
Q[l’ 1] = {(a,, ay), (a,; @), (ay, ay), (a;, a,), (ay, a5), (a3, a5)} -

The plan S7[Kk] is not symmetric, because of our insistence that the groups
of identical elements appear adjacently. It is easy to convert .5”[k] into a sym-
metric sampling plan, denoted henceforth by .”[k] (with a tilde inserted), by
taking an element § = (§,, - - -, §,) of Q([k]) and constructing with it the collec-
tion of all possible permutations of the components of § (designating the result
by A(€)), and then spreading the probability assigned to § P.({€}) equally
among the elements of A(§). The observation space for &[] is denoted by
Q([k]) = Q(n k) Q([kv kgy - p])

In terms of the subspaces Q([k]) of Q" we can delineate the general structure
of symmetric sampling plans in a transparent manner.

ProposSITION 1.1. A4 symmetric sampling plan has the structure that the total
probability P assigned to Q(k) = Q(n; [ky, ks, - - -, k,)) is distributed uniformly
among its elements. Moreover, if $(&1, &, -+, &,) is symmetric then
(1.9) E_¢X, X, oo+, X))

= Dby, eekp1 (K5 1, ) E o thyyee )y (X1 Xy -0, X))
where the sum is extended over all choices of nonnegative integersk, > k, > --- > k,

satisfying 31?_ k; = n, i.e., ke 2" and c(k, n; &) (= c(k) for brevity of notation)
are nonnegative numbers satisfying the normalization 3y, . ., c¢(k) = 1.

Proor. From the definition we find that for k = [k, kz, «++,k,] and 1 =
[Ls L - -+, 1,] not identical the sets Q(n; [k,, k,, - - - ,k,)) and Q(n; [1,, Iy, - - -, )
are dls]omt (Also Q([k]) and Q([1]) are nonmtersectmg ) Because & is sym-
metric the probability P_ assigned to each point of Q(n [kys kgy - - -5 k,]) where
nonzero agrees, since each two members of this set are mapped by an appropri-
ate permutation of  one into the second.

Consider any point x = (x;, x;, - - -, x,) from Q" which involves p distinct
specific elementsy = (yy,y,, - - -, ,), y; appearing k, times among the coordinates
of x, y, appearing k, times, etc.

For any two points x and x’ leading to the same y we have ¢(x) = ¢(x’) since
¢ is symmetric. Moreover, because & is a symmetric sampling scheme, neces-
sarily P_(x) = P_(X).
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Let P_(Q(n; [ky, - - -, k,]) = c(k, n, &) denote the probability assigned by &
to the extended set Q comprised of Q(n; [ky, k,, - - -, k,]) and the totality of ele-
ments obtained by performing all permutations on the elements in Q[n; k].

Of course

N — p)!
Ey[kp--»,kp] ¢(X1’ Xy ooy Xn) = *(—NTQ" Zeemn;[k]) ‘/’(e) :

The formula (1.9) is now evident by the law of total probabilities. []

2. The principal comparison inequalities for symmetric sampling plans. We
now state the first principal theorem of this paper.

THEOREM 2.1. Let N and n be fixed. Consider [K] and [1]e ¢ i.e.,
K] =k ko ookl ki zhz o2k, Tk=n
m=rm,h -, L=zL=z---21, >li=n.
Then
(2.1) E o na®(Xp Xy o5 X)) Z Eg iy (X Xy -+ -5 X))
for every function ¢ of class & (see Definition 1.3) if and only if
(2.2) ki+ k4o +k, 2L+ L+ +1, r=1,2,...,p.

Notation. The ordering relation between [k] and [1] implied by the set of
inequalities (2.2) will be compactly written as

(2.3) k] > [1].

This ordering coincides with the notion of majorization of two vectors of positive
components provided suitable zero terms are appended so that the lengths of
the two sequences agree (see Hardy, Littlewood and Pélya (1934), Chapter 2).

The details of the proof of Theorem 2.1 are deferred momentarily. We pre-
sently harvest a series of important corollaries. Manifestly,

P .

(2.4) [M1=1[1,1, -, 1] < [kys kyy -+, k,] < [n,0,0,--.,0]
for any [k] e %" Therefore

CoROLLARY 2.1. If ¢ € &, then
(2-5) E, $(X) = E,in$(X) = Eonad(X) = Egn,.a $(X) -
This inequality in conjunction with (1.9) yields

COROLLARY 2.2. For any symmetric sampling plan & and ¢ € &, we have
(2.6) E, ¢(X) = E, ¢(X) .

The result of (2.6) substantially extends that of Rosén cited in Section 1, as the
class & well embraces all the functions occurring in his work.
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The parallel reasoning to that of (2.6) produces the upper bound
COROLLARY 2.3. For any symmetric sampling plan & and ¢ € € we have

E,¢(X) £ Egpno,n9(X) -

Proor ofF THEOREM 2.1. It is convenient for clarity of exposition to divide
the proof into several steps.

LEMMA 2.1. Let ¢ be of class €. Forn = 2m (m = 1) we have
(2'7) Ey[Zm] ¢(X) = Ey<[2m-1,1]>¢(x) = Ey([zm—2,2]>¢(x) = -
g Es/’([m+l,m-—l])¢(x) g Ey([m,m])¢(x) .

Forn=2m + 1 (m = 1), we have

(2'8) Ey([2m+1])¢(x) g Ey([2m,1])¢(x) 2 tee
2 E.?[m+2,m—1]¢(x) g E:/([m+1,m])¢(x) .

Proor. We begin with the proof of (2.8). From the definition we obtain

m 1 m
1 —~—
(2.9) E_ imi1,mn 9(X) = —]_V(W———T) ?{j=l;i¢j o@a;, -, a,a;, -+, a;)
and
m4 2 m—1
1 ——

(2'10) E.S’[m+2,m—l] ¢(X) = it ¢(a1:, sy Qg aj, DR} aj)

m i,§=1;i%]
For each pair {a,, a;} the terms

m m—1
— —t
¢(ai9 ai, ai’ R aia aj9 tt aj)
and
m m—1
— e —
¢(aj9 aj9 ai’ am M) ai, aj, M) aj)

occur exactly once in the sums (2.10) and (2.9) respectively. Moreover, condi-
tion (1.7) assures

m 4 2 m—1 “m m—1
—t —t
¢(ai, e ai9aj9 “',aj) + ¢(aj9 anai’ "',ai, aj9 "”aj)
m m—1
= 2¢(aj9 a;,a;, ---,4a;4a;, "',a,')c

Summing gives

Ey[m+2,m—1]¢(x) + Ey[m,m+1]¢(x) Z 2E9’[m+1,m]¢(x)

which manifestly reduces to

(2.11) Egtmram-P(X) Z Epmir,m P(X) -
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By similar pairing based on

m4 3 m—2 m 41 m
—— —t— —t—
¢<aia “'aai’ajs “‘saj)+¢(ai9"‘saiaajs "'aaj)
m4 2 m— 1

—
22¢(ai’ <oy ay, ag, ...,aj)

we deduce

Ey[m+3,m—2] ¢(X) + Ey’[m+1.m] ¢(X) = 2E5/[m+2,m—-1] ¢(X) :
This coupled with (2.11) proves

Ey[m+3,m—2] ¢(X) g Es/’[m+2,m—-l] ¢(X) .

Continuing in this manner, we obtain the series of inequalities

(2.12) E tmn®X) Z Egppman®(X) = -+ Z E pnim®(X) -

Observe, next that

1
E_min®(X) = N 2 9a, -5 ay)

1 N
= Y (N—1 A+, 4;) .
N(N— 1) t—l( )¢( 1 )
Now
2m — 1 2m
——t— —A—
@y, -5 a) + da;, -+, a;,0;,a;) = 24(a;, -+, a,4a;) .
Hence

(N - 1)¢<ai’ M) ai) + nyy:l;jaéi ¢(ai’ sy g, aj’ ai)
g 2 Zé'v:l;j#i ¢(ai’ ceey Gy aj) .

Another summation gives

Ey(2m+l] ¢(X) + Ey[2m—1,2] ¢(X) g 2E5/[2m,1] ¢(X) ’

and this in conjunction with (2.12) leads to the result

Es/[2m+1] ¢(X) ; Ey[2m,l] ¢(x) .
The validation of (2.8) is done.
We next turn to (2.7) with n = 2m. Note for each pair {a,, a;}

m-41 m—1 m—1 m-4 1
———t —
¢(ai,...,ai,aj,...,aj)+¢(ai,...,ai,aj,...,aj)
m m
—t—
22¢(ai,...,a.a ...,aj),

19 Y5

Summing, this readily yields

Ey[m—l-l,m-l] ¢<X) g Ey[m,m] ¢(X) .
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The remaining reasoning replicates the preceding case. The proof of Lemma 2.1
is complete.

LEMMA 2.2. Let ¢ be as in Lemma 2.1. For any integer k, and integers a, 8
satisfying 0 < 8 < a < [k,/2] we have

(2.13) Ey*[kl.m,k,_l,k,—a,a,k,ﬂ.---.k,]¢(x) = Ey*[kl.~-~.k,_l,k,~ﬁ,ﬁ,k,+1,--~.k,,.]¢(x) .

ReEMARK. The sampling plan *[y,, 7, -, 7,], Where the r,, X7, =n,

constitute a set of integers but not necessarily appearing in decreasing order, is
defined after Definition 1.4.

Proor. The left side of (2.13) can be evaluated by conditioning on the varia-
bles X; corresponding to the indices k;, k,, - - -, k,_;, k,415 - - -, k, and reliance on
the law of total probabilities. (We drop the asterisk notation for ease of writing.)
We obtain

(2.14)  E by kg kypyen k) PX)
1 1% 8 r
=E b k1 E o thy-aia,0-100

k, k, k k

8 r

———
0 0 0 0 0 0
X ¢(ai1’ '“’ail’aiz’ ...,aiz, ...,air, ...,air, Yv ”"Y"s)

where the symbol [k, —a, a, Q—{a,’}] refers to the sampling plan &[k,—a, a]
applied to the sample space Q with @}, @}, -+, @} _;, @} 415+ -+, 47, removed. The
Y, .-, Y,, denote the random variables corresponding to the k, distinguished

variables, and the notation [k, - - -, Z:, -+, k,] stands for the sampling plan

induced by the parameters [k, - -, k, 1, kyppy =0 s k,] of sample size n — k,.
By Lemma 2.1 we know that

k, k,
0 0 /0\ 0 0
Ey[ka_axavn—(“io)]gs(ail’ Tt ail’ Tt aia’ T ai’r’ T ai’r’ Yl’ T Yka)
k,
n > o
(2.15) < Ey[ka_ﬁ'ﬁ’n_(aio)]¢(ai1’ cee @Y, e, ),
k.,
—A— :
0 0
air, cee, aq, Y, -, Y"a) .

The result (2.13) now follows from (2.15) by virtue of the representation (2.14)
and the corresponding one that applies for the right side of (2.13). []
A vital corollary emanating from the preceding theorem is the following.
LEMMA 2.3. For ¢ € € and k; — k; =2, iy < j, we have
(2'16) Ey[kl.kz,m.ki .---.kj0,~--.k,.]¢(x) = Ey[kl,kz.-.-,kio_l,...,kj0+1,..-,k,]¢(X) .

Proor. To prove (2.16) we coalesce the indices k; and k; to a single index
ki + kj, = k* and consider

Ev("["l'kzv"‘v"*""v"r]¢(x) .
We can clearly apply the inequality (2.13) to secure (2.16). [J

0
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We now have available the necessary ingredients to complete the proof of

Theorem 2.1.

Proor oF THEOREM 2.1. Consider [K] = [k, ky, - - -, k] > [y Ly, - - -, 1=
By adding zero components if necessary we may without loss of generality assume
P = q. Now define the differences

ky 4+ ky+ --- +ki—U+L+ - +L)=r.
The stipulation [k] > [1] entails

(2.17) 7:=0 i=1,2,-..,p.
Now define the index value
(2.18) ¢= XNty =Kk] —[1]).

If ¢ = 0 so that all y; = 0 it follows that [k] = [1], and manifestly equality holds
in (2.1). -

Assume by induction that the inequality (2.1) is established whenever ¢ < r.
Suppose next that /([k] — [1]) = r = 1. Letj, be the least index 2 < j, < p where
7; < 7j-1- Such a j, certainly exists since r>1and 7, =0. Thus 0 <7, <
72 = -+ = 1jm but y; <7, From the definition we manifestly have

k=1, Pi=1,2, =1,

but k; < /; and because y; _, > 0 there certainly exists some i < j, — 1 such
that k, > [,. Take the largest such i, call it i, so that

(2.19) kig> 1, =1, >k
and
(2.20) Kijir = ligsrs Kigrs = Ly = kg =1 4.
Clearly 7, > 0, and it follows from (2.19) that
ki, —k;,=2.

Now form the new [k*] = (k,*, - - -, k,*) € %" where
k*=k, for all v £ iy, j,

and

(2.21) k;g = kio -1, k;!‘0 - kio + 1.
Lemma 3.3 affirms that

(2.22) E uqd(X) = E e d(X) -

Because of the hypotheses [k] > [1] and the definition of i, and j, and reference
to (2.19) and (2.20), we easily verify that

(2.23) [k*] > [1] .

Moreover

Ik*] — 1)) < K(K] — (1)) = r
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and the induction postulate applies, yielding
(2.24) E .y d(X) = E oy $(X) -
Combining (2.22) and (2.24) produces the desired conclusion and the sufficiency
part of the proof of Theorem 2.1 is complete.?
It remains to establish that if the ordering relation (2.3) between [k] and [I]

does not hold, then the inequality (2.1) cannot persist for all ¢ € €.
Assume

(2.25) E_pa9(X) = E_ipo(X) forall ¢e&
and suppose to the contrary that
(2.26) k<.

Take ¢(§;, -+, €,) = 2 Eil Eiz e &‘i“ where the sum extends over all choices of
products of /; variables from the collection {&, - -, §,}. It is easy to check that
¢ is of class & provided Q contains only nonnegative numbers. The sample
space Q is chosen to contain one large element a and all others of moderate
magnitude. With this specification we find that £, #(X) is of order a*1 while
E_6(X) is of the order a1 and (2.25) is violated. It follows that k, = /.
Suppose next that

(2.27) k, =1, and introduce the notation a« =k, +k,, B=10L+1,.

Now take the symmetric sum ¢(§) = 3. &, Eiz & s involving all possible prod-
ucts of 3 variables from {¢,, - - -, ,}. Determine Q to contain two large elements
of equal value a and the remaining of small value. Then E_,¢4(X) is of the
order at most a* while

E_,6(X) is of the order af.

In order to guarantee (2.25), we must have 8 < a. Continuing in this vein we
establish that (2.25) entails

(k] >[1].
The proof of Theorem 2.1 is complete.

3. Comparison of random replacement schemes. Let.” and & designate two
alternate symmetric sampling plans. The problem of ascertaining criteria for
comparing E_ ¢(X) and E; ¢(X) for ¢ of class & (see Definition 1.3), where

2 We have learned from the referee of this manuscript that the argument commencing with
(2.17) and concluding with (2.24) can be replaced by appeal to the following result of Folkman
and Fulkerson (1969). (‘‘Edge colorings in bipartite graphs’’ in Combinatorial Mathematics and
its Applications, Chapter 31, 561-577.)

“If @ ={ay, - -+, ap}, b = {by, - - -, by} are integers arranged in decreasing order adding to n,
a+ - +ag<b + --- +byholdsforall k=1,2, .-, p(a < b), then a can be derived from
b by successive applications of a finite number of transfers. The vector 4’ is a transfer of b means
that for some iand j, by’ = b; — 1, b’ = b; + 1, by’ = by, k + i,j.”

We have retained our proof intact so that the argument is complete in itself.
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X = (X,, - -+, X,) is the observed sample of size n, is of intrinsic value in the
theory of sampling from finite populations. By virtue of (1.9) the problem can
be stated in the following terms. Consider sums of the form

(3.1) Dik=lhg ity Qa1 E o1 8(Xes -+, X,) = E o $(X)
2k b Esuad(Xy - -, X)) = Ez ¢(X)

where ap, by = 0and 3] gy = X by; = 1. We would like to determine nec-
essary and/or sufficient conditions on the coefficient arrays {a;,;} and {b;,}, im-
plying the equality

(3.2) E,$(X) < Es¢(X) forall ge&.

Recall that the comparison inequalities relating the special symmetric sampling
plans E_,,¢4(X), as delineated in Theorem 2.1, obey only a partial ordering
relationship. The results deduced in Corollaries 2.2 and 2.3 emanate, since
Sn...nand &, . are extremal sampling schemes in the ordering prescrip-
tion of (2.3). The relations (2.1) and (2.2) can be construed as a multivariate
case of the majorization concept of Hardy, Littlewood and Pélya, Chapter 2.

The general problem of ascertaining conditions for (3.2) appears exceptionally
formidable. We will concentrate attention on the circumstance of (3.2) where

(3.3) F=RM) and F* = FZ(II¥)

are two symmetric sampling plans induced by random replacement procedures
(consult here Definition 1.2). The principal theorem established in this context
is:

THEOREM 3.1. Let 9?(11) =2, 1I,, - .., 1I,_,) be a general random replace-
ment procedure and, #(1) = F#(1, 1, - .., 1) = _# of course corresponds to sam-
pling with replacement. Let ¢(§,, &, - -+, &,) be of class &. Then

(34 Eemd(X) = E, $(X)

holds in the following cases:

(i) N is appropriately large compared to n. For example, it suffices to have
(NN — 1) < nf(n — 3);
(ii) for all N = n provided

(a) ¢(51, L) En) = (51 + -+ 5n)2 or where

(®) #(&) = ¢+ -+ + £,), P(&) is convex and the sample points in Q have only
two distinct values, say r points of common value a and N — r = s points of common
value B.

REMARK 1. Tt is surmised that (3.4) persists for all ¢ e provided only that
N = n (this constraint is essential). The validation of (3.4) subject only to the
requirement ¢ € &, for N = n appears quite delicate. We have verified the in-
equality (3.4) whenever N = n, n < 12 by direct means (the method to be in-
dicated later in this section). The calculation of E , (X, - - -, X,) is relatively
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easy, since for the sampling scheme .7, X,, - - -, X, are independently uniformly
distributed on Q. The inequalities (3.4) manifest E , ¢,,, as an upper bound for a
large class of expectations with respect to “random replacement schemes.” The
universal lower bound is that prescribed in Theorem 2.1 corresponding to
Fo,....y = # (sampling without replacement).

The proof of Theorem 3.2 is divided into a series of separate lemmas.

For E_, ;,¢(X) it is convenient to employ sometimes the explicit notation
Eﬂ(ﬂ) ¢(X) = E(nl,n2,~~-,nn_,)¢(X1a D SRR Xn)'

The first lemma presents the reduction of the problem via an induction argu-
ment to a basic inequality underlying (3.4).

Lemma 3.1. If
(3'5) E(0,1,1,~~-,1; ¢(X) = E(l,l,‘n,1)¢(x) = E/ #(X)
holds for each n, and all N = n and all ¢ € &, then
(3-6) En nym,_p 9(X) S E, $(X)

for any random replacement scheme Z2(1II).

Proor. Assume inductively that (3.6) is established for all random replace-
ment schemes of sizeat mostn — 1 (N = n — 1), and (3.5) applies for the random
replacement schemes of parameters {0, 1, - - -, 1} and {1, - . ., 1} comprised of n
components. Conditioning on the outcome of the first observation, we obtain

Eml,nz,---,nn_,)Sﬁ(Xv e X

1
= N 2t ﬂ'-lE(Hz,---,Hn-l)¢(ak’ Xy o5 X))

1
+ W— Zf:;l (1 - ﬂl)E(H2,-..,ﬂn_1)¢(ak, Xz, Tty X:,,,)

where the prime in the second sum signifies that the element a, was removed
from the sample space of the observations X,, - - -, X,. Note that ¢(&,, - -+, §,) =
d(ay, &, - -+, &,) is of class & for each a,. Invoking the induction assumption
to the terms of each sum leads to

(3.7) E(nl,...,nn_1)¢(X1’ s X)) EmE LX) + (1 — m)E . 8(X) -

The stipulation of (3.5) applied to the last e;(pectation of (3.7) yields (3.6). The
proof of the lemma is complete.
We will next deal with the special case

(38) 0(61, 62’ Tty En) = (€1+ +€n)2'
LeEMMA 3.2. The inequality (3.5), and therefore (3.6), holds for the univariate
function 0(§) = &* and extended as in (3.8).

ReEMARK. The case of Lemma 3.2 was established earlier by Rosén involving
a more complicated analysis. Rosén used the inequality (3.4) to have estimates
for proving central limit theorems for certain finite sampling schemes.
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ProoF. DefineY, = X, 4 ... 4 X, as the random variable where X,, - . -, X,

n

are i.i.d. following the uniform distribution on Q — {a}; i.e. all values of Q with
the element {a} deleted sampled equally likely. Conditioning on the outcome
of X,, we obtain

(3.9) Epgy. 1 0(X) = % SV [a) + 2a,E(Y,) + EY2 ]

and we give the sum the short name L.
Set

1 1
MZNZLI%, /"2=F2kN=1ak2'

The assertion of the lemma is confirmed once we check that L does not exceed

(3.10) EZ + --- + Z,) = np, + n(n — )p?

where Z, are independently uniformly distributed over Q. Note that

_ (Npy —a)(n — 1)
(311  EY,)= D

Ny, — a? <N,u - )2
EY? =(n—1)22— "% 4 (n—1)(n—2 1 .
== ) M8y — 2y (M
Inserting (3.11) into (3.9) the required inequality, after some straightforward
manipulations, reduces to

1)
3.12 —py =D on_mzo0.
(3.12) (= 1) g N =W 2
This relation is manifestly valid for N > n (even for N > n/2) since the moment
inequality p, > p,* constantly prevails. The proof of Lemma 3.2 is complete.

REMARK 2. The method of Lemma 3.2 can be pursued to validate (3.5) for
the function ¢(&,, ---,&,) = (6§, + --- + §,)* provided all elements of Q are
nonnegative. However, this type of argument is already too crude to handle the
example ¢(é,, -+, &,) = (& + -+ + &)

We will next deal with case (i) of Theorem 3.1. First, we write out
Eqq,...q00(X,, Xy, - -+, X,) explicitly obtaining

(3.13) Egy,...y9(Xy, -+, X,)

L &

- W Bigrttte@i, SAiag Fay w2, n ¢(ail’ Qipp * > ain)

where the sum is extended over all n tuples (a;, - - -, a; ), a; € Q for all v subject
to the restriction that a; is distinct from the other a, .

In order to appropriately represent groupings for future comparisons of the
terms in (3.13) the evaluation of the following combinatorial situation will be
useful. Consider n — 1 indistinguishable points arranged on a line. We inquire
as to how many ways can p — 1 groups be formed consisting of (k,, k,, - -+, k,_;)
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points, respectively for a prescribed sequence

(3.14) kizk,= - =2k, Xiiki=n—1.

This is an elementary known combinatorial query whose solution by careful
counting is seen to be

(3.15) < n—1 > 1 _ (n— 1)! 1
kiyky oo k ala) o, kMK ek agla! !

p-1
where a; are the integers defined by the relations
ky=ky= o =k Sk = =k >
>koppiay 1= = Kapiiha,
Of course Y™, a, = p — 1.

Examine the sum in (3.13) and identify the 2nd to the nth variables of ¢(a,,
By ain) with the points of the previous experimental setup.

Next let y,, ys, - -+, ¥p_1» ¥, be p-ordered distinct elements of Q fixed for the
moment. Consider all terms of (3.13) where y, appears exactly k,; times (i =
1,2, ...,p — 1) among the (a,, - -+, a; ) and y, = a,. Owing to symmetry of
(&, - -+, &,) we instantly see that each such term has the same value and the
number of such summands is (3.15). With these facts, strongly exploiting the
symmetry of ¢, we can represent the sum of (3.13) in the form

Zuiz,n-,aineﬂ;ailvba.iv ¢(ai1’ aiz’ Tt ain)

a

_ n—1 1
(3.16) = Dlklesr <ku ky - kp—l> m Z(ywz,...,u,,)
k, k, k,_,

—— e h e — e —
X ¢(yp,y1, ey Y Ve s Ve s Vot ...,yp__l)

where the inner sum runs over all choices of p elements of Q and the outer sum

extends through all prescriptions of sets of positive integers obeying the stipula-

tions of (3.14), p arbitrary. The number of terms in the inner sum is clearly

the number of ordered arrangements of p selections out of N elements which is

N!/(N — p)!. Note that

Ey[kl,kz,---,kp_l,kp] $(X)
(3.17)

kl k2 kp—l
— —t

——t
X ¢(yl, sy Y1sVas e Vas s Vo1 vt .,yp_l,yp)
for k = [ky, ky, - -+, k,] as in (3.14) with k, = 1. In view of (3.16) and (3.17),
(3.13) becomes

1
(3-18) Eﬂco,1,1.~~~,1) ¢(X) =

> < n—1 >
N(N _ l)n—l Dkgyeekp—y] kv kz, oo k .

»
1 N!
— E X) .
al! a2! . am! (N — P)! lky,kg, ,kp]¢( )

X
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Executing a similar analysis and expansion, we obtain

1 1 n
19 Fanen# = 0 Bsesor 1 0 )
N
' F X
X (N—— q)' y[l]¢( )
where [, 2 1, > ... =1, Y11, = nand {,;} count the blocks of equal / values

analogous to that in (3.15). Obviously, all the expectations

Eopg= Ey(kpkz)'“ykpvl) $(X)
occurring in (3.18) also occur in (3.19) and the latter sum includes other terms
not presentin (3.18); e.g., E_(,;#(X), E_,_s ., ¢(X) and similarly. For the array
of (3.14) enlarged with k, = 1 define 3,, §,, - - -, 8, in the manner of @, a,, - - -, a,,
with respect to
{kp kyy + ooy by gy k) k,=1.

?

Clearly
(3.20) a,=p;,, i=1,2,m—1 andeither r=m with
a,+1=8, or r=m+1 and §,,=1.
We next compare the coefficients a, and b, accompanying E_ ,, displayed in
the sums (3.18) and (3.19) respectively. It follows directly that the inequality
a, < b, is equivalent to

(3.21) 1 1 < n—1 >
NN — 1)y tatay) o, bk, kyy o e K

p—1

< L 1 < " )
TN 181! 182! e 181'! kl’ kz, o kp—v 1
which on account of (3.20) reduces to
(3.22) <_iv_>”" <",
N—1 ﬁr

For any [k, k,, - - -, k,_,, 1] with 8, < n — 3 we see that (3.22) holds whenever
condition (i) of Theorem 3.1 is in force. Actually, the only circumstances when
(3.22) does not apply are for the arrays

(3.23)  [ky .- k]=[21,1,1,...,1] and [1,1,1,...,1].

Thus a, < b, for all [K] = [k, kyy - - -, kp_l, 1] other than the last two cited.
However, the result of Theorem 2.1 tells us that

(3'24) E7(1,1,~~-,1) ¢(X) = E.7(2,1,1,~~~,1)¢(X) = Er/[l]ﬁb(x)
for all other [[]e .. Now
Eun@X) = Egpn,...n $(X)
(325) = ZlctE.y[ll¢(X) =+ (b[2,1,-~-,1] - a[2,1,1,-~~,1])E5"(2,1,"',ll ¢(X)

+ Onges — G ) E o,y $(X)
where the sum extends over all [/] other than the ones of (3.23).
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The fact of (3.22) implies

(3.26) ¢, =0 forall k = [k, k,, ---, k]
except possibly for the k of (3.23). Direct inspection reveals that

(3.27) by, < ar1,1,000,10

The sign of the coefficient of E_,, , ... ;, #(X) in (3.25) is undetermined and un-
necessary for our needs. Note when ¢(§) = 1 the quantity of (3.25) obviously
vanishes. In view of the facts of (3.24)—(3.27), and since 33, ¢; + (bpyy...ny —
Qy,..q1) + (b1 — ap,... ;1) = 0, we deduce

ZaaEomd(X) + (b, — g, )E o, 9(X)
+ Cugen — g ) Eon,. 0 $(X)
>{Zma~+ beia,on — % + bpaen = e E o, 9(X)
=0.

Therefore the inequality is established:

Eﬂ(l,--c,l)¢(x) > EQ(O,I ,,,,, 1} ¢(X) .

Summing up this discussion we have case (i) of Theorem 3.1. This is now stated
formally.

LemMA 3.3. Provided (N/(N — 1))*~* < n/(n — 3), then (3.6) holds.

We continue the developments pertaining to Theorem 3.1 concerned now with
case (iib). In this circumstance { consists of r points of value a and s points of
value 8 (N=r+ s=n). Consider ¢ € & of the form ¢(§) = ¢(&, + &+ - - +&,).
We will compute and compare

(3.28) E o4,..19X), E 1. 9(X) .

By a change of scale and location, without restricting generality, we may take
henceforth @« = 0, § = 1. In order to guarantee ¢ € & we stipulate ¢(3) to be
convex for 7 = 0.

Direct evaluation for the case at hand gives

EQ {0,1,-++, 1} ¢(x)

s =z (T ) ()

e mr 2 () () ()

and

a0 e = s ()2 (2
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The difference of (3.29) and (3.30) apart from the factor n is

(3.31) U= Zim g0 — k) (T 1)

r

() ()

with

5 _ rn—ksk <n>
T s+ s— D \k/
We will establish that the sequence
(3.32) ¢, = (n— k)A" 7k o kptmt — k=0,1,2,...,n,

with 2 = (r— 1)/r, p = (s — 1)/s, y = n((r + s — 1)/(r + 5))"~*, changes sign
precisely twice in the order —, 4, —. Interpretation of the quantities involved
reveals the equations

(3.33) e 0kc, = Np ko, =0
In view of this fact and appeal to the theory of generalized convex function (see
[4], Chapter 11) it follows that the expression U of (3.31) is non-positive.
The two moment equations (3.33) imply that {c,} changes sign at least twice
(see [4], page 409). A direct check produces the inequalities ¢, < 0 and ¢, < 0.
To prove the assertion of (3.32), it is enough to demonstrate that the deriva-
tive of ¢(x) = (n — x)A"~*=* + xp*~' — y vanishes once as x traverses the interval
[0, n]. The relevant zeros of ¢’(x) (i.e. those located in [0, n]) satisfy —[(n —
x)log 2 4+ 1]4*7*=* 4 [x log ¢ 4 1]p*! = 0 or, equivalently, are solutions of

3.34 Ky = n=xloga+1 4 1

(3.34) (12) log o] o
Analysis of (3.34) reveals that if the inequality

(3.35) A =log 2 + log i + n(log 2)(log 1) < 0

prevails, then the right side of (3.34) increases while (4z)® is @easing in x
(since log 2 < 0 and log # < 0). For r = n and s = n we claim the validity of
(3.35). Infact, since 4 is bilinear in log 4 and log ¢ it is enough to check (3.35)
when (g =1,1=(n—1)/n), (t = (n—="1/n, A= 1)and (g = 2 = (n — 1)/n).
The first two cases are immediate and in the last case we have

A:(logn_ 1)[2+nlogn_ 1}<0

n n

when n > 2. Thus for r > n, s = n, the relation (3.34) admits a single solution
for x > 0, and therefore because c(x) changes sign at most twice it must change
sign exactly twice. The theory of generalized convex functions, as referred to
earlier, (see especially [4], Theorem 5.4, Chapter 11) implies the conclusion
that the quantity of (3.31) is < 0.
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We extend the result to the general case of (iib) where we only stipulate r,
s=1l,r4+s=n.

The elementary theory of exponential polynomials tells us that there can exist
at most three solutions of (3.34) and indeed either one or three are possible. In
order to pass from that of a single zero to that of three there must be values r
and s where (3.34) exhibits a zero of multiplicity 3. Writing down the condi-
tions for the existence of a third order zero, we get at such an x point, the
additional equations
N . —A
(3.36) K(p2)*(log pd) = (xlog s + 1y

. s +2Alogpu
K(pA)*(log pd)* = m
with A4 defined in (3.35).
Eliminating x and K from (3.36) and (3.34) leads to the equation

(3.37) B = (log pA)[n(log p)(log 2) + log pa] + 4(log p)(log ) = 0.

Clearly since log # < 0 and log 2 < 0, B is diminished by replacing n by r 4 s
(recall n < r + s). Doing this we write the resulting expression as B. We will
show that B> 0 for 2> %and y > 2 (r,5s = 2). (Thecaseof r=1ors=1
can be treated separately, where we can then check directly that c(k) changes
sign exactly twice; we omit this verification.)

Writing C = (log Ap)[(r + s)(log p)(log 2) + log p4] 4+ D(log 2)(log 1) we will
prove, provided D > 4(2log2 — 1) = 1.6, that C > 0. To this end, define

s =[ee(1-2) (- )

1 1
8 [r+s+1o =1/ " Togd = 1/s)]'

The inequality C > Oisequivalentto D > —¢(r, s) We prove next that d¢/or =
0¢/os > 0 for all r > 2. Then

D= —¢(2,2) = 2log 2 (4 — L) —4Qlog2 — 1) = —¢(r, )
log 2
for r = 2, s = 2 obtains. l
A calculation gives

09 _ 1

1 1
ar = 1)[r+ ‘g = ijs) T Tog(l = l/r)]

+ {1°g<1 - %) (1 - %)Ml T = 1)1022(1 - 1/r):l'

The factor r 4 [log (1 — 1/n]* = [rlog (1 — 1/r) + 1][log (1 — 1/r)]~" is posi-
tive since rlog (1 — 1/r) + 1 < 0. Similarly, we have s + [log (1 — 1/s)]"* > 0.
Now we also verify 1 — [r(r — 1) log*(1 — 1/r)]~* > 0 by expansion of log (1 — 1/r)
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in a series. The inequality d¢/dr > 0, and analogously d¢/ds > 0, is established.
Thus for r > 2, s > 2 the sharp inequality (log z2)[(r + s)(log p)(log 2) + log pA] +
4(2log 2 — 1)(log p)(log 2) > 0 holds.

Since B never vanishes we infer that (3.34) in all cases admits a single zero.
This fact entails the property stated in connection with (3.32), and consequently
U < 0, as earlier. The above discussion contains the proof of case (iib) of
Theorem 3.1. The proof of Theorem 3.1 is complete.

It is instructive to exemplify further the analysis used in Lemma 3.3. Spe-
cifically, we will verify

(3'38) EQ(O,I ,,,, 1)¢(X) é Eﬁ(l.l ,,,,, 1) ¢(X)
for all cases of n < 6 with ¢ ¢ &
Case (n = 3). We have

(3.39) E 4101 9(X) = N(N—l)i Diinikwi 9(a0 G55 Q1)

= Erunt®X) + 2L Epund(X) .
Analogously,
(3.40) e 900 = 1 Eomg) + NV B 60

+ (N - lj)ézN 2) Ey[l 1 1](X)

Since Sy > Funy > g (the ordering is meant in the sense of (2.3)) and
combining coefficients of (3.39) and (3.40) the result E_, ;6(X) = E_o.1;6(X)
ensues, provided N > 3.

Case (n = 4). We have

Etoa90X) = g5 [NV = DE 5,080
+ ONWN = DN = 2 308(X)

+ NN — DN = 2)(N = 3)E 11,110 8(X)] 5
ng[1,1,1]¢(x) = ]*\1[‘4 [NEyn] ¢(X) ‘+ 4N(N - I)Ey[3,1]¢(x)

n 21' ( >N(N DE o130 $(X)

1 4
+ 2! <2, 1, 1) NN — (N — 2)E 151,19(X)

+ N(N — 1) (N = 2)(N — 3)E 1 ,1.19(X) .
Again using the ordering (see (2.1))
4] > 13, 1] > &[2,2] > <[2,1,1] > <1, 1,1, 1]
we deduce the desired inequality for N > 4.



1086 SAMUEL KARLIN

We illustrate finally the analysis for the case n = 6. (We suppress the $(X) in
the expectation symbols after the equation sign.)

Eé?[(),l,l,l,l] ¢(X)
1 5
= m {N(N - I)Ey[s,ll + (m)N(N - 1)(N - 2)Ey[4.1.1]
+ GINN — DN — 2)E y55,1
1 5
(3.41) + o (3 ; 1) NN — 1)(N = 2)(N — 3)E p1nn

5 1
+ (2, 2, 1> 2—' N(N - 1)(N - 2)(N - 3)E9’[2,2,1,1]

1 5
+ 31 (2, 1,1, 1>N(N — DN = 2)(N — AN —=HE ;51111

4+ N(N — 1)(N — 2)(N — 3)(N — 4)(N — S)Ey[l,l,l,l,l,u} :

Eg[1,1,1,1,1]

1
= LI VE o+ ONOY = DE o + ONN = DEon

1 6
+ :2._'— (4, 1, 1) NN — DN = 2)E p1n

1/6
+ 2! (3 3) NN = DE 55 + (2NN — (N = 2)E (351

1 6
(3.42) (5 (°) ) NN = DV = 20N = HE s

1 6
+ 3—' (2 2 2> N(N - 1)(N - Z)Ey[z,z,z]

1 6
TP (2, 2,1, 1) NN — 1)(N = 2)(N — 3)E 301

1 6
+ 4! (2, 1, 1,1, 1> NN — DN = 2)(N = 3H(N = DEoni1am

NV = DN = 2N = )N = OO = HEopannn |

We have the ordering relations

> Fun,
(3.43) Fin> Fon>Fan "> Fiaan >
[3,3]
“
(3.44) > Faaan > Fiasan > Shasaan-
[2,2,2]

The coefficient of E (., on the right of (3.41) does not exceed that occurring
in (3.42). It is necessary now to use the differences of the coefficients of those
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in (3.43) to dominate out this negative part. Using the fact that all the coeffi-
cients of (3.43) in (3.42) exceed the corresponding terms in (3.41), the result
E 1111 = E 401,11, then obtains.

In pursuing this method for larger values of n, the lack of a complete order-
ing among “[k] as k varies makes the comparisons of E_, .. ;;6(X) and
E _n.1...n9(X) quite delicate. We have actually verified the inequality of (3.4)
for n up to 12. We are convinced of its universal validity, provided, of course
that N > n. Theorem 3.1 shows that (3.4) certainly prevails if N is large enough
compared to n, and this fact usually suffices for all practical applications.

REMARK. It is worth pointing out that examples can be constructed to show
that already for n = 4 the quantities

E 410,1,1,0P(X) and E 1,01, 9(X)

are not comparable for all ¢ of class €. We omit the details on this matter.

We conclude this section by stating our general surmise pertaining to random
replacement schemes.

Consider Z2(I1, 11, - - -, II,_,) and &2(11/, I/, - - -, II},_)). It is conjectured
that
(3-45) Eg[nl,---,n,,_llﬂb(x) = Eﬂ[l’ll',l'l2’,n-,l'l;,—1] A(X)
holds for all ¢ in & iff
(3.46) I, <11/, i=12,...,n—1 and N>n.
Theorem 3.1 affirms (3.45) when I’ = (1, 1, . - -, 1) while Theorem 2.1 subsumes
the result where I = (0, 0, ..., 0).

4. Dilations of measures associated with symmetric sampling plans. Consider

a specified sample space Q = {a,, a,, - - -, a,} with the a, regarded as distinct even
if they agree. For a symmetric sampling plan & on Q with observation X =
(Xy, - -+, X,) consisting of n-value we associate the integer-valued N-tuple random
vector

4.1) R = (R, Ry, -+, Ry)

such that

4.2) R, = {number of components among (X, X,, ---, X,) equal to a},

i=12,...,N.
Obviously, each R, is a nonnegative integer and these obey the constraints
(4.3) 0<R,, YR, =n.

Designate the discrete simplex of N-tuples of integers determined by the relations
(4.3)as A,.
Let f be a convex function defined on the discrete simplex A,. Convexity of f
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can be interpreted in our present context in the manner that for any R and R*
of A, such that }(R 4+ R¥*) also belongs to A, then f((R + R¥*)) < {f(R) +
L f(R*) holds.

We would like to compare E_, f(R) and E_, f(R) for two different symmetric
sampling schemes &”and .&’. To this end we introduce a function ¢(¢,, &,, - - -,
¢,) definedon Q" = Q®Q® - .- ® Q (n copies of Q) in terms of f as follows.

Let § = (6, &,, -+, §,) be in Q" composed of k,(§) components equal to a,,
© = 1,2, ,N Set

(4.4)  $y(&, -0 6) =fR)  where R(§) = (ky(§), - -+, ku(§)) 5

and R(£) obviously is a point of A,.

We claim as a consequence of the convexity of f that this ¢ is of class < (consult
Definition 1.3). Note first that ¢ is manifestly a symmetric function of its argu-
ment as the arrangement of the components in § does not affect the determina-
tion of R(£). Next, to check condition (1.7), take

5 - (aa’ ap, 53’ ) En)
7) - (ap, aﬂ, 83’ Tty En)

sharing the same &, &,, - - -, §, entries, and suppose a,(a,) occurs /,(/,) times in
the collection {&;, - -+, £,}. Then

RE) = (kyy - oy L, + 2, oy Ly ooy ky)

RM) = (kyy ooy lyy oo by + 2, o ky)

where R(§) and R(y) agree in all components except in the ath and Sth as
indicated. Observe that

C = (aa, ap, 53, ct En)

corresponds to

RO = (koo by Loy 1 ky) = RELERE)

The inequality (1.7) i.e.,

(4.5) $4(8) + ¢,(1) = 24 L)
reduces instantly to '
(4.6) JR(E)) + f(R(n)) = 2/(R(Q))

which is valid by virtue of the convexity stipulation on f. Thus ¢ as determined
in (4.4) is of class ="
From the definitions, we have

(4.7) E,9,X) = E,[f(R).

Appealing to Lemma 2.1, Theorem 2.1 and its corollaries, we secure the conclu-
sion of the next theorem.
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THEOREM 4.1. Let f(R,, - - -, Ry) be a convex function defined on A, (see (4.3)).
Then, if the ordering relation [K] < [1] in the sense of (2.3) holds, the inequality

E naf(R) = Eomf(R)

maintains. (For the definitions of the sampling plans “[Kk] and S7[1], see Definition
1.4.)
In particular, for a general symmetric sampling plan &,

4.8 E,fR) = E_f(R) < Eopno,...,nf(R)
where 77" = sampling without replacement.

Examination of R reveals that this random vector is defined independently of
the specific {a,} values that make up Q and depends only on the sampling scheme
. Thus for sampling with replacement R consists of the ordered vector count-
ing the number of different elements observed in the sample, and the values of
the elements are irrelevant.

An application of Theorem 3.1 in the present context yields the result

THEOREM 4.2. Let f be as in Theorem 4.1. Suppose N and n satisfy
(N/(N — 1))»* < nf(n — 2) (probably N = n suffices), then for any random replace-
ment scheme 7 (x) (see Definision 1.2), we have

(4.9) E 5 f(Ris Ry -+ Ry) S ELf(Ry, - -+, Ry)
for 7 = sampling with replacement.

The assertions of (4.8) and (4.9) can be expressed in the language of dilations
of measure.

DErINITION 4.1. Let K be a convex and compact metrizable subset of a locally
convex topological space, such as a Euclidean space. Let A and g be given
probability measures on K.

The measure p is said to be a dilation of 2 (written symbolically 1 < ) if
there exists a Markov kernel P(y, 4) with y e K, A C K such that

(4.10) w(A) = § P(y, A)A(dy) for all measurable 4 C K
and
(4.11) y = §zP(y, dz) forall yeK.

This amounts to a transformation of the A-mass distribution into the g-mass
distribution by spreading out a unit mass at y € K to a mass distribution v (4) =
P(y, A) having its center of gravity at y. From Jensen’s inequality we find that
A < p implies that

(4.12) § sNAdy) < § p()(dy)  forall ¢el(K).

Here, I'(K) denotes the collection of real-valued continuous and convex func-
tions on K.
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If Y and Z are random variables taking values in K we write Y < Z if the
relation 4 < z holds for the corresponding probability measures A(4) = Pr (Y € A)
and p(A) = Pr(Z e A). It follows that

E)(Y) < E¢(Z) for each ¢ eI'(K).

Condition (4.12) is not only necessary, but also sufficient, in order that 2 < p.

In view of the above formulation, the inequalities (4.8) applying to all convex
[ defined on A, can be expressed such that the measures P, P_ for the sampling
schemes 97" and .5 restricted to R (the induced measure of P_ on the sample
space of R is henceforth denoted by 1..), satisfy

(4.13) Ay < Ay -(i.e., 2, dilates 4.)
for any symmetric sampling plan & In particular,
(4.14) A, <2,

states that the procedure of sampling with replacement dilates the procedure of
sampling without replacement. Thus, in the statistical theoretic sense, sampling
with replacement wastes effort in gaining a quantity of information on the un-
derlying population as compared to sampling without replacement. The special
case (4.14) was established first by Kemperman (1973) who proved (4.14) by
explicitly constructing the Markov kernel connecting 2., and 2_,. Such an ap-
proach appears to be impractical for comparing two general symmetric sampling
schemes. We are much indebted to Kemperman, who by his findings, stimulated
us to uncover the general facts of Theorems 4.1 and 4.2. They fall out as nice
applications of Theorems 2.1 and 3.1. Some special cases of Theorem 4.5 below
were also discovered earlier by Kemperman.
The conclusion of (4.9) can be phrased in the form

/Z.é?(lr) < 'IJ

so that sampling with replacement dilates any random replacement scheme.

The results of Theorems 4.1 and 4.2 can be extended to the following frame-
work. Suppose Q is composed of ¢ groups of distinct elements a,, a,, - - -, a,
with a, replicated N, times (3¢, N, = N), N, prescribed and fixed. To any
symmetric sampling scheme (& P_), associate the vector random variable Y =

(Y, Yy, - -+, Y,) where Y, is the number of appearances of a, in the n-sample
X=X, -, X,). /

Let 7, denote the simplex of nonnegative integers
(4.15) ¥, =0, Sy, =n.
Let g(y1, y5s - - -5 y,) be a convex function defined on };,. The construction of
a function ¢(§,, - - -, §,) of class = in terms of g(y,, - - -, y,) is done completely

analogously to (4.4). We then deduce, paraphrasing the proof of Theorem 4.1,
the following assertions.

THEOREM 4.3. Let g(y,, - - -, y,) be convex defined on 3, (see (4.15)). Then for
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the random vectors Y = (Y,, - - -, Y,) as defined above, we have

(4.16) E_g(Y) < E_g(Y) for any symmetric sampling plan &~

and

(4.17) E_.9Y)< E_ 9(Y)

where 2() is any random replacement scheme, and in the case of (4.17) we require
N = n as in Theorem 3.1.

As previously, the relations (4.16) and (4.17) can be expressed in the language
of dilations of measures. The special case of (4.16) with & = _# was discovered
earlier by Kemperman (1973). Thus, for this example (4.16), we have that the
multinomial probability measure

=v,i= .. — n! WARTAR N \*e
P{Yi—vi,l—l,z, ,q}—m<—ﬁ> <_]—\7> <_A741)

Ry, =nh

dilates the hypergeometric probability measure

Pl‘{Yi =v,i=12,..., ‘]} = (ﬁ)—l H§=1 ({/V;,’) .

The relations of Theorems 4.1-4.3 are independent of the specific {a,} values
comprising Q and actually express expectation inequalities for certain convex
functions of the numbers of the distinct values observed. We now develop some
inequalities where the elements a, € Q are variables. To this end, let 4(£) be a
convex function of a single real variable defined over the interval [n(min, a,),
n(max, a,)].

Consider a fixed set of integers

(4.18) k=k,= 2k, >0, Tk o=n

and fixed choice of p indices from Q, and designate the variables at these indices
as {b,, b,, - - -, b,} to distinguish them from the collection of all {a,},”. Form the
function

(4.19) g@) = g(a,, - -+, ay) = A(kyb, + kyb, 4 --- + kb))

defined over the collections of all {a,, - - -, a,} fulfilling, perhaps, some convex
constraints. Denote the domain of definition of g by .&7. We assume also that
7 is a symmetric set. Only the variables {b,, - - -, b,} obviously occur in the
evaluation of g(a). It is trivial to check (since A(£) is convex) that g is a convex
function of (a,, - - -, ay). With this fact we easily prove

LEMMA 4.1. Let A(&) be convex as prescribed above. Let (X,, X,, ---, X,) bea
random sample based on the sampling plan &[K] with k specified as in (4.18). Then

(4‘20) Ey[k]A(‘Xl + -+ Xn) = ¢(al’ ] aN)

is @ symmetric convex function of a = {a,};_,, ae .
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Proor. Note that
(4.21) E_paAX, + -+ + X))

— |
= ’(l]v,L) Zi,,qei,, A(klail + kzai2 + te + kpai,,)

where the sum extends over all distinct choices of p indices {i;, ---,i,} from
{1,2, .-+, N}. As established following (4.19), each term of the sum is a convex
function of (a,, - - -, ay). Consequently, the total sum persists as a convex func-
tion and is clearly symmetric in the variables (a,, - - -, ay). The proof of the

lemma is complete.
The result of the lemma in conjunction with the representation (1.9) readily

implies
THEOREM 4.4. If A(§) is convex and &7 is a symmetric sampling plan then
(4.22) E_AX, + -+ + X,) =T(a, a,, ---, ay)

is a convex symmetric function of a = (ay, a,, - - -, ay) in 7, where .87 is any con-
vex set in Euclidean N-space.

The main applications of the fact of Theorem 4.4 concern majorization inequali-
ties, as depicted in Hardy, Littlewood and Pélya, (1934), Chapter 2.

DEFINITION 4.2. A real sequence

(4.23) a—=(a, - --,ay) Iissaid to majorize ¢ = (¢, ---, cy)
iff there exists a doubly stochastic matrix T' = [|#,;||," such that
(4.24) c=Ta

the relation of majorization is symbolized by ¢ < a.

This concept is readily identifiable as the discrete version of dilation of meas-
ures put forth in (4.10) and (4.11).

An equivalent and more practical setup of the majorization conditions is as
follows.

Arrange the components of the vector a in decreasing order where {a,*, - - -,
ay*} ={a,, ---,ay} and a* = a,* = ... = a,*, and do the same for the vector
c. Then (4.24) prevails if and only if

(4'25) Z::l ai* 2 ::1 ci* s r= 1’ 2’ ) N

with equality for r = N. (The equivalence of (4.24) and (4.25) is established in
the reference cited prior to Definition 4.2.)

The characterization of the functions ¢(a) = ¢(a,, - - -, a,) which are mono-
tone with respect to the ordering of (4.25) is classical and of immense utility
(e.g., Hardy, Littlewood and Pélya, Chapter 2). They carry the special name—
Schur-Ostrowski functions. Included in this class are all symmetric convex
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functions. Thus, if 6(a,, a,, - - -, ay) is convex and symmetric for a e %7, then
a > c in the sense of (4.25) entails 6(a) = 6(c).
The convex functions of (4.22) are of special interest. We obtain therefore

THEOREM 4.5. Let A(€) satisfy the conditions of (4.22); thenif a > ¢, a,ce€ %
we have

(4.26) I'(a) > I'(c)

where I'(a) = E_ A(X), and &7 is a fixed symmetric sampling plan defined on the
population space Q = {a,}," and 7 is a symmetric convex set over which a ranges.

We close this section with a concrete application of Theorem 4.4,

Let .7 consist of the collection of all N-tuples {a,, a,, - - -, a,} of real values
satisfying the constraints —1 < a, < 1 and }¥ a, = Na (a given). It is ele-
mentary to show that with respect to the majorization ordering relation (4.25)
the maximal element in this specific %7 has the form

(4.27) a = (G, a, -, ay)

where all g are either +1 or —1 except for at most one component. For the
special case « = 0, N = 2M, then explicitly g, = --- = a,, = +1, 8y, = -+ =
Gy = — 1.

The upper bound for I'(a) of (4.26) with a traversing 7 is attained for (4.27)
for each symmetric sampling plan.
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