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COMPARING RANK TESTS FOR ORDERED ALTERNATIVES
IN RANDOMIZED BLOCKS

By WALTER R. PIRIE

Virginia Polytechnic Institute and State University

Two classes of rank tests are considered for ordered alternatives in a
randomized block design with k treatments and n blocks: tests based on
among-blocks rankings (4-tests) and tests based on within-blocks rankings
(W-tests). Previous efficiency comparisons for fixed &, #— co under the
normal distribution have indicated that A-tests are more sensitive. In the
present paper it is shown that this behavior is not typical under other dis-
tributions. Further, analysis of efficiencies for fixed n, k — oo indicates
greater sensitivity for W-tests. Considering these results and certain other
desirable properties of the W-tests, the latter are recommended for most
applications.

0. Summary. Let X;; =Y, +d;, +b,j=1,..--,k, i=1, ..., nrepresent
a randomized blocks experiment, where {Y,,} is a collection of independent
random variables with common distribution function F and density f. The
constants {d;} are treatment effects, and b, represents the nuisance effect (fixed
or random) of block i. This paper is concerned with procedures for testing
the null hypothesis

(0.1) H,:d; =0
against the ordered location alternative
(0‘2) Hl:d1§d2§”'_£_dk’

where at least one of the inequalities is strict. The procedures discussed are in
fact sensitive to the more general stochastic ordered alternatives (cf. Hollander
[6]) but for mathematical convenience only (0.2) will be considered. The model
and the tests are also appropriate for certain replicated regression problems.

Asymptotic results obtained by Hollander [6] and Puri and Sen [12] for fixed
k, n — co convey the impression that tests based on rankings across blocks are
generally more sensitive to ordered alternatives than tests based on rankings
within blocks, and therefore should be preferred.

The present paper examines these results along with asymptotic properties
for fixed n, k — oo. '

In Section 2, asymptotic distributions for fixed n, k — co are obtained for the
test statistics, employing a projection lemma due to Hajek [3]. Pitman asymp-
totic relative efficiencies (ARE) are derived and discussed in Section 3, and a
table of ARE values is presented for a specific example of each class of tests.
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RANK TESTS FOR ORDERED ALTERNATIVES 375
From the efficiency results and other considerations, the conclusion is drawn
that the within-blocks rank tests would more often be preferred.

1. Introduction and notation. Two basic classes of rank tests are considered
for testing (0.1) vs. (0.2):

(i) Within-blocks rank tests (W-tests), which reject H, for large values of
(1.1) W=2ww,

where w, is a simple linear rank statistic (cf. Hajek [3]), computed on the ob-
servations in block i;

(1.2) w, = 2iac;a(Ry;)

R,; is the rank of X,; among {X,,,u =1, ---, k}, a(+) is a monotone scores
function, and {c,,j = 1, - - -, k} are so-called “‘regression” constants, chosen to
reflect the alternatives; in particular ¢, < ¢, < --- < ¢,. Tests of the W-class

have been proposed by Page [9] and Pirie and Hollander [11].
(i1) Among-blocks rank tests (A-tests), which reject H, for large values of

(1‘3) A= Zu<v Tuv’

where T, is a simple linear rank statistic for paired samples, computed on the
column vectors for treatments « and v;

(1'4) T,, = i:la*(RL?)v(XLif >

uv

with X;iv’ = /\,iu — X

tud

a monotone scores function and

R\ the rank of |X\))| among {|X)], t =1, ---, n}, a*(+)

uv uv

xy=1 if x=0
=0 if X<0.

Tests of the A-class have been proposed by Hollander [6] and Puri and Sen [12].

For parametric and other nonparametric tests for this problem see Doksum
[2], Hollander [6], Jonckheere [7] and Pirie [10].

For fixed k, n — oo (n-asymptotic) Hollander’s paper contains ARE values of
A with respect to W, e, (4, W), when F is a normal distribution function
and ¢; = a(j) = a*(j) =/, j=1, ---, k. This represents Hollander’s A-test
and Page’s W-test. The results, reproduced in the lower left column of Table
1, showed that e, (4, W) > 1 for all k. As the rest of Table 1 shows, this be-
havior is not typical.

2. The k-asymptotic distributions of 4 and W. In Section 3, ARE of 4 with
respect to W will be discussed for fixed n, k — co (k-asymptotic). In the defini-
tion of Pitman efficiency, it is assumed the test statistics being compared are
asymptotically normal (AN); (cf. Noether [8]).

Hajek [3] and Hajek and Sidak [4] present proofs that W is AN for n = I,
k — oco. The extension to general n is trivial.
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For proof that 4 is AN, the following multivariate form of a lemma due to
Hajek [3] is used.
LeEmma 2.1 (Héjek). Let Y, Y,, ---, Y, be independent random n-vectors, and

A =AY, ---,Y,) be a statistic such that Var A < co. Let & denote the class
of statistics L, of the form L = 3%_, 1.(Y;), with Var L < co. Finally let

(2.1) A= 3  EA]Y,) — (k= 1)E(A).

Then A is a member of &,

(2.2) E(A) = E(4)  and  E(A— Ay =Vard — Var 4,
and for any L in ", ’

(2.3) E(A— Ay < E(A — Ly .

In attempting to prove that a statistic of the form A in the theorem is AN,
A is the best mean square approximation to 4 among a class, ..#", of statistics
for which the usual independent central limit theorems can be used to inves-
tigate asymptotic normality.

First a bound on the mean squared error of the approximation is obtained,
then asymptotic normality of A is established. The desired result then follows.
The following two easily proven lemmas are used in the proof of Theorem 2.4.

Lemma 2.2, Let X, Y, Z be independent random elements on a space Q, and
U(s, ), V(+, +) be real-valued measurable functions on Q x Q. Then

(2.4) Cov{E[U(X, Z)|Z], E[V(Y, Z)|Z]} = Cov {U(X, Z), V(Y, Z)} .
Proor. A straightforward exercise in conditional expectations.

LemMma 2.3. If A is given by (1.3) then a convenient formulation of the approxi-
mation (2.1) is the following:

(2.5) A—EA)=3*,B

u=1"u

where {B,} are independent random variables defined by

(2.6) B, = Y [E(T,,|Y,) — ET,,)]
- bt [E(Tuleu)—‘E(Tuu)], U = 1, ..‘,k.

v=1

Proor. This result is easily verified from the definitions of 4 and A and some
routine algebraic manipulation.

THEOREM 2.4. Let A and A be given by (1.3) and (2.1) respectively, where
Y, = (Y, Y,, -+, Y,,) . Then there exists a positive constant M, depending on
n and a*(+), but not on k, such that

(2.7) E(A — Ay < Mk*.

Proor. Noting that Cov (T

uv?

T,,)=0Iif u, v, ', v are distinct, and
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Cov(T,,, T,,) = —Cov(T,,, T,,) if u, v, w are distinct, then
Vard =35, ., VarT,, + 2 3 ¥ 5ucocw COV(T,,, Ty,)
(2.8) +2 2 Docwen COV (T, Toy)
— 2 D T ewcw COV (T, T, -
From (2.6),
Var 4 = 1t Var B, = 35 { T, Var E(T,,]Y,)
(2.9) + 2 % Zucocw COV [E(T,, | Y,), E(T,, | Y,)]

+ 2 Z Zv<w<u COV [E(Tuv l Yu)’ E(Tuw | Yu)]
- 2 Z Zv<u<w COV [E(Tuv lYu)’ E(Tuw | Yu)]} N
Since T,, = T,,(Y,, Y,) and {Y,} is a collection of independent random n-
vectors, Lemma 2.2 provides Cov (7,,, T,,) = Cov [E(T,,|Y,), E(T,,|Y.)]
Thus, from (2.2), (2.8) and (2.9),
(2‘10) E(A - AA)Z = ZZu<v Var Tuv - ZZu#v Var E(Tuv [ Yu)
é ZZu<v Var Tuv *
From (1.4), |T,,| < X7 la*(i)] = M’, say, which, with (2.10), yields
(2.11) E(A — Ay < (M)
Finally (2.7) follows with M = (M’)}/2.
Thus, while 4 and 4 are of order k2, the variance of each is of order k?, and

the mean squared difference is of order only k* This provides the following
theorem.

uv?

THEOREM 2.5. Consider the statistics A and A in Theorem 2.4. If
(2.12y lim,_., Var (k-14) = D*, 0< D' < o,

then k=3[ A — E(A)] is AN (0, D?. \ /
Further, (2.12) and asymptotic normality will hold, or not hold, simultane-
ously for 4 and 4.

Proor. Clearly {B,, =B, /k,u=1,.--,k;k=1,2,...} is a uniformly
bounded double sequence of random variables, independent within rows. Thus
asymptotic normality of A4 follows from (2.12) by a well-known form of the
central limit theorem (cf. Chung [1], page 186). The equivalence for A follows
directly from Theorem 2.4. ‘

REMARK. Since F is assumed continuous, (2.9) reveals that (2.12) will hold
for sequences of alternatives that converge, in either the Pitman (cf. Noether
[8]) or contiguous (cf. Héjek—§idék [4]) sense, to the null distribution. The
usual regularity conditions on the scores function a*(.) (ibid.) are not required
here since n is assumed fixed.

3. Asymptotic efficiencies. Emphasis in this section will center on the ARE
of A with respect to W for uniform (or Wilcoxon) scores, a(j) = a*(j) = j, and
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normal scores a(j) = E,;, a*(j) = E,;, where E,; is the expected value of the
jth order statistic from a normal sample of size m, m = k or n. For convenience
A(U), W(U) and A(N), W(N) will denote the test statistics with uniform and
normal scores, respectively. In practice these two scores functions are almost
exclusively employed. Many-of the following results, however, extend readily
to general scores.

Hollander [6] showed that for ¢, =/, and linear ordered alternatives

d; — d;_, = constant,

G e (AU), W(U)) = 2k + DHK[3 + 2(k — 205N 9°/§ /7T

where g is the density of ¥, 4+ Y, when Y,, ¥, are independent with density f, and
o*(F) = lim,_,, Cov (T,,, T,,) when H holds. This corresponds to Hollander’s
original A-test and Page’s W-test. He also presents a table with which (3.1) can
be evaluated when F is a normal distribution function. Those values and some
for other distributions comprise the lower half of Table 1. The normal dis-
tribution values led Hollander (and others) to conclude that A-tests in general
are more sensitive to ordered alternatives than are W-tests. The original moti-
vation for the present paper was the conviction that this could not be true for
(relatively) large values of k, and small n, and that k-asymptotic relative ef-
ficiencies, e, (4, W), would provide corroborating evidence. The present sec-
tion is devoted to this purpose. However, examination of the lower half of
Table 1 shows that the earlier conclusion (at least for that choice of scores
functions) is not universally valid even for n-asymptotic comparisons.

In the following discussion of k-asymptotic results, a condition of bounded
variation will be assumed for the alternatives, namely that there exists a posi-
tive constant K such that

(3.2) kY (d; —d)P £ K, k=23 ...,

n-r00

where d = k' 37, d;. For the consideration of ARE we define the Pitman se-
quence of alternatives to be

(3.3) X, =Y, + k~tgd; + b, , j=1 - ki=1....n.
The definition of Pitman k-asymptotic relative efficiency of 4 with respect to
Wis
(3.4) € (A W) = lim, .. {(d]dO)E(A) [, [(d[dD)E,(W) |,=o] '}
X Var, W/Var, 4,

where 6 = k¢, and the zero subscript refers to moments computed for § = 0.

TueorEm 3.1. If p,"(F) = Cov, (T, Tyy),
(3.5) lim, . k= 205 (c; — O, (2 — k — D)d;/ 30, (c; — &)d ) = M,

with 0 < M,; < oo, and (3.2) holds, and if the densities [ and g are square inte-
grable, the k-asymptotic relative efficiency of Hollander’s test with respect to Page’s
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test with arbitrary constants c; is
(3.6) e (AU), W(U))
= 6M, [0, (F)(n + DH(2n + D]I7{[(n = 1) § g* + § /1§ /7 -
Proor. The individual rank statistics in A(U) can be represented as
Ty = D0 n(Xyy — Xy + Xy — X)) + Zian(X, — X))
(3.7 = LN Y + Yy) — (Yoo — Yj0) + 20(d, — d,)]
+ DalYe, — Yo+ 0(d, — d)],
and letting G denote the distribution function corresponding to density g,
E, Ty, = DT PlYu + Y) = (Y, + Y5, + 20(d, — d))]
(3-3) + X PlY. =Y, 4+ 0(d, — d,)]
= gn(n — 1) § G(y 4 20(d, — d,)) dG(¥)
+n§ F(y + 0(d, — d,)) dF(x) .
Taking the derivative and summing yields
(3.9)  (@dOE,AU) )y =1 D e, (d, — d){(n = 1) § 0* + /7
=n{Z,;[Z = (k+ Dld{tn = DS+ §/7.
The null variance is given by Hollander [6] as
(3.10) Var, A(U) = n(n + 1)(2n 4 Dk(k — D[3 + 2(k — 2)0,(F")]/144 .
A similar treatment of W(U) gives
E,W(U) = n 35 ¢; E)(Ry;)
(3.11) =n 2 GELR (X — X))
=n3;c{l + X § FOy + 0(d; — d,)) dF(x)},
with the resulting derivative

(3.12) (@d/dOW(U) |y =n 5, c{X.(d; —d)§[7)

= nk{}3; (c; — O}/
The null variance is readily obtained from standard rank distributions as
(3.13) Var, W(U) = nk(k + 1) 3, (¢; — €)}/12.

Substituting (3.9), (3.10), (3.12) and (3.13) into (3.4), and assuming that (3.5)
holds, (3.6) is established.

To compare (3.6) with the n-asymptotic results of Table 1, let ¢; = j. The
appropriate linear ordered alternatives subject to (3.2) are d; = j/k. With these
values, M, = % and the upper half of Table 1 gives the results for the indicated
distributions. Values of p,"(F) are given by Hollander [5]. Hollander [5, 6]
showed that p,"(F), and therefore also the null distribution of A, is dependent
on F. A method is presented in his 1967 paper for obtaining a consistent esti-
mate of lim,__, Var, (A4) which yields an n-asymptotically distribution-free test

based on A. The estimate is not k-asymptotically consistent.
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TABLE 1
Asymptotic relative efficiencies of test A with respect
to test W for linear ordered alternatives and
a(jy=a*(j)=ci =]
(Hollander’s test vs. Page’s test)

Distribution normal uniform exponential

k-asymptotic relative efficiency

n
1 1. 1. 1.
2 1.012 .957 .794
S 1.023 .928 .643
10 - 1.030 ) .918 .587
20 1.032 911 .559
50 1.034 .909 .541
) 1.035 .907 .530
n-asymptotic relative efficiency
k
2 1.5 1.333 .750
S 1.224 1.077 617
10 1.129 .991 .615
20 1.083 .948 .551
50 1.055 .908 .538
1) 1.035 ' .907 .530

From Table 1, it is seen that ARE values alone do not provide a definitive
choice between A(U)and W(U). Which test performs better apparently depends
both on the distribution 7, and the values of k and n. In any case the difference
in power cannot be expected to be great. For other reasons however, the author
recommends using W(U) in most cases. Specifically:

(i) The W-tests are distribution-free, whereas the A-tests are not. In terms
of ability to control type I error then, W-tests are clearly favored.

(ii) In ease of computation also, W-tests are favored. A complicated estimate
of the variance is necessary for employment of any A-test (cf. Puri and Sen
[12]). In addition the proposed variance estimate is not consistent for k — oo,
which limits its appeal. On the other hand, W-tests are easily computed from
the regression constants ¢;, and the scores a(-). Also, small sample null distri-
bution tables are available for W(U) (Page [9]), and W(N) (Pirie and Hollander
[11]).

(iii) Finally, if a specific form of non-linear growth rate of the constants d;
is suspected (say quadratic), the W-tests can take this into account by adjusting
the corresponding growth rate of the constants ¢;. This is not true of the A-
tests, at least in their present form.

For other scores functions a(+) and a*(+), such as normal scores, the results
are less complete. The difficulty lies in evaluation of lim,_,, Var, A. Since n is
fixed, the scores function a*(.) does not converge to a “well behaved” function
as in Chernoff-Savage theorems (cf. Puri and Sen [12]). Thus Cov, (T}, T}



RANK TESTS FOR ORDERED ALTERNATIVES 381

would have to be evaluated explicitly for any distribution F and scores function

a*(+). This has been accomplished only for uniform scores (i.e., for A(U)).
Nevertheless, some comparisons for A(N) and W(N) can be made. Details

are omitted, for brevity, but the following results have been obtained: If

§ 9" < oo, then

(3.14) 0 < e, (A(N), AV)) < oo

From (3.14), if F represents a distribution for which e, ,(W(N), W(U)) = o

(e.g., uniform or exponential), then e, ,(W(N), A(N)) = oo, all n. Similarly,

from results in Pirie and Hollander [11], if § f* < oo, then, assuming the same

regression constants ¢; are used in W(N) and W(U),

(3.15) 0 < e, (W(N), W(U)) < co .

From (3.15), if F represents a distribution for which e, ,(A(N), A(U)) = oo (again
uniform or exponential), then e, . (A(N), W(N)) = oo, all k. As with uniform
scores, ARE results do not provide a definitive choice between 4(N) and W(N),
but for the same reasons as previously stated the author recommends use of the
W-test in most cases.

Concluding remarks. A comparison of Pitman ARE of among-blocks (4) and
within-blocks (W) rank tests for ordered alternatives in the randomized blocks
model has been undertaken in two ways; (i) fixed k, n — oo and (ii) fixed n, k — oo.
In particular, detailed results are presented comparing Hollander’s A-test [6] and
Page’s W-test [9], and a partial result is given comparing the normal scores ver-
sions (cf. Puri and Sen [12] and Pirie and Hollander [11]).

Contrary to previous conclusions the ARE values are at least as likely to
favor the W-tests as the A-tests. Because of this, and certain desirable properties
of the W-tests, the author recommends W-tests for most uses. A simulation
study could be useful to determine if in some cases A-tests perform sufficiently
better than W-tests so that some of the undesirable properties of the former
could be tolerated.

REMARK. The model X,, = Y,; + d;0 + b, is also appropriate for certain
replicated regression problems where {d;} represent known constants and b,
accounts for an inability to accurately reproduce a fixed reference point for the
ith replicate. In this case the flexibility of the W-tests allows the choice ¢; = d,
with considerable advantage in power.
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