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LARGE SAMPLE DISCRIMINATION BETWEEN TWO GAUSSIAN
PROCESSES WITH DIFFERENT SPECTRA!

By ULrF GRENANDER

Brown University

We study the probability of error asymptotically for testing one Gaus-
sian stochastic process against another when the mean vectors are zero and
we have the choice between two given covariance matrices. It is shown
that under certain conditions the probabilities of error form asymptotically
a geometric progression with a ratio that is derived. The approach employs
Laplace’s method of approximating integrals and does not appeal to Fourier
analysis; in this sense it can be said to be elementary.

1. Asymptotic error probability. In connection with the problem of optimal
feature selection in pattern recognition one encounters the difficulty that the
resulting probability of error is difficult to evaluate. This is so particularly when
the distributions are Gaussian and the possible patterns correspond to different
covariance matrices. D. McClure (1972) has recently obtained bounds for the
probability of error and these bounds were decreasing geometrically as the sample
size n tends to infinity.

In this paper we shall approach the problem from another point of view and
show that the error probabilities themselves tend to zero geometrlcally and obtain
an expression for the ratio in this geometric progression.

Let y be an n-vector with normal distribution, mean zero, and covariance
matrices R, and R, under hypotheses H, and H, respectively. We want to test
H, against H, in a Bayesian manner assuming the a priori probabilities 7, and
7,. Let us deal with the case 7, = 7, = }.
Then, in the usual manner, if w is the critical region for rejecting H,,

(1 2P (error) = §, prdy + S,cpudy = 1 4§, (p, — p) dv
where p,, p, are the joint normal densities. The optimal w is given by
(2) w={v|p — p, <0}
or

det R, .

Without loss of generality we can let R, = /and R, be the diagonal matrix

(4) R, = diag(dy, d,, -+, d,) = D .
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Then w is given by the inequality

(5) y'Qy = y"[I — D'y > logdet D .
Let us study the integral

(6) I=1S.pdy

and note that this is the probability that

(7 »'Qy > logdet D .

Toachieve asymptotic results we must assume something about the asymptotic
distribution of the d’s and we shall do this by assuming that their distribution
converges weakly to some distribution on an interval (m, M) and with the dis-
tribution function F; 0 < m < M < oo.

To begin with, let us assume, instead, that the (finite) distribution of 4 has
k spikes only, so that

d=d,=--- :dpln:'zl
(8) dp1n+l = = d(p1+pz)n - '22
d(p1+~~+pk_1m+1 = = drp1+~~+pkm = zk
with positive o’s such that o, + p, + --- 4 p, = 1 and positive 2’s with at least
one of them different from 1. Then the entries of Q (in the main diagonal) are
1 .
%) 1];:1'—'2~, o+ - Foon iz (o4 - + pjn
i
and
(10) logdetD =n 33t o,/ logd, =n-c.

Therefore we can write

(11) I, = P95 = cn},

i=1 =
where the g, denote the k distinct values on the diagonal of Q and where S, is

x>-distributed with p,n degrees of freedom.
Recalling the functional form of the y*-distribution, we have

(12) I, =C,§;, [Ti- ey, ™™ dy
with n; = p,n, and where the region of integration is

(13) Ee={yIyoym 3z 0, gy, = enj.
Also,

(14) o= T () 2.

Changing variables y,/n = u,;, we get

(15) I, = C n*n>™0 G 5, exp (—nuy[2)u ™= du



GAUSSIAN PROCESSES WITH DIFFERENT SPECTRA 349
with
(16) Fo=Aufuy, uyy -+ 0, 20, 35 qu; = c} .
Putting
(17) By = 115, estui,
we can write
(18) I, =C, n"* S,,k o™~ (u)g(u) du

where
g(u) = TT e-sirtu,~raoi

is integrable « > 0. Then

1/n __ ni n—a 1/n
(19) L = ST e g 4

Using Stirling’s asymptotic expression for the I'-function

(20) T(a + 1) ~ <£‘e’~>" (2ra)t,
we get
() -

which takes care of the coefficient on the right-hand side of (19).
Let us consider the behavior of ¢ in the region F,. The unconstrained maxi-

mum of ¢ occurs for u;, = p,, i = 1,2, ---, k, but this point does not belong
to F, since

1
(22) Z%M=Zp«1—7><20mm&=u

3

The constrained maximum cannot be attained when one or more of the coordi-
nates vanish, since then ¢ = 0, and hence we only have the possibility left that
it is attained on the simplex

(23) G, = {uluy,uy ---,u,>0,% qu, =c}.
Maximizing 3 [—u, + o logu,] + ¢[C — 3 ¢, ] by the method of Lagrangian
multipliers, we then get

(24) a =L
1 + pg,

where # should be chosen to satisfy the equality in (23) when a’s are substituted
for u’s, so that if we introduce the function

25 =y, b
(25) a() = Zeg e
we should have

(26) a(p) = c.
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The denominators in (24) must be positive so that 7 is contained in an interval
(a, A) with
(27) a=—__1
max, ¢,*
1

A= —— :
min, ¢,

where the notation indicates the set of positive and negative ¢’s respectively, if
one of these sets is empty a or A4 should be replaced by — co or +- oo respectively.
In the interval (a, 4) the function «(r) defined in (25) is continuous and decreasing
and an examination of the range of « shows that (26) has just one root which
we denote by ¢. Summing up we get

LEMMA 1. The function ¢ attains its maximum over F, in the point P with co-
ordinates given by (24), (25) and (26).

Denote the maximum by M,
(28) M =expi X (0;loga, — a)).

We also note that the gradient of ¢ at P points outwards from F.

The reason we make our integral in the form (19) is that we can now apply
the classical method of Laplace (see, e.g., Hardy, Littlewood and Polya (1964),
pages 134, 143, where p corresponds to our integrable function ¢). Combining
(19), (21) and (22), we get

LEMMA 2. For eigenvalue distributions of the type (8) we have

(29) lim,_, 1,')" =exp} X, o(loga, —a, + 1)
with
1
(30) = - =an,.
I+ ng,

To treat the integral
(31 1) = §ucpdy
we transform the y-variables by y,/d}} = z, so that in the z-variables
(32) w' = [z|z"[D — I]z < logdet D}

and z have the identity matrix as covariance. We can now proceed in the same
way as before and get a similar expression

(33) 1imn—»oo (ln')lm = exp% 2 Pi(log a/ —a' + 1)
but with
1 — g,
(34 ar = L=,
: 1+ pg

where p is given by (26).
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One simplification is possible observing that

2io(loga, —a, + 1) — 37 o(loga’ —a/ + 1)

(35) = S0 log (%) = (a,— a/)]
a;
I A ——
g 9) — 5 Ny
Using the definition of 4 in (25), (26) the sum reduces to
(36) =20 log(l —g)—c=3,plogd —c=0.

Hence the two limits in (29) and (33) are identical, and we have proven

THEOREM 1. Under the given assumption the probability of error decreases geo-
metrically as the sample size tends to infinity and with the ratio

(37) lim, ., (P, (error))* =exp$ >, o,(loga, — a;, + 1).

We can use this result to find the asymptotic decrease of the error probability
when the distribution of

(38) O<m=d™<d™< - 4" <M<

converges weakly to a distribution over (m, M) with df F. We shall approximate
the probability of the event in (7) from below and from above. We do this by
shifting the 4, a little to the left such that they form k spikes inside the interval
(m, M). Let this affect only the left-hand side of (7); the right-hand side we
leave as it is. In asimilar way we shift the values to the right. The probabilities
associated with the new quadratic forms replacing Q in (7) obviously form lower
and upper bounds for the probability we study. Both of the bounds behave
asymptotically in a way that is described by (29). For fixed, but arbitrarily large
value of k, this gives us asymptotic bounds expressed through the ratios of geo-
metric progressions. Since the a’s depend in a continuous manner upon the ¢’s
we can make the difference between the two ratios arbitrarily small. This gives
us the result we sought.

THEOREM 2. [f the eigenvalues d,'™ are contained in the interval (m, M), 0 <
m < M < oo, and their distribution converges weakly to the df F the optimal error
probability P, (error) satisfies

(39) lim,_, [P,(error)]"™ = exp 4 {¥ [loga(x) — a(x) + 1]F(dx)
with

_ X
(40) a(x) = Y Fax =)

where p should be determined from the equation

M x—1 _ .
(41) SMW——I)—F((IIX) = {¥logx . F(dx) .
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It can be noted that the geometric ratio in (39) is strictly less than one unless
a(x) = 1 a.c. which is only possible if x = 1 a.c. so that F has all its variation

inx=1.

2. Remarks. It is intuitively plausible that the role of the a priori probabilities
T, @, is asymptotically negligible. This can be proven by noticing that if =, # =,
and 7, # 0, 1, the only change in (7) is the occurrence of an additional term
log 7, — log =, on the right-hand side. This term will not influence the asymptotic
result, so that the theorems in the last section are valid in this case too.

We have scarcely exploited Laplace’s method to its full strength. The problem
was very well suited to it and we could apply it directly. It seems likely, how-
ever, that using a more refined analysis (see, e.g., Polya and Szegd (1964),
Volume 1, Chapter 5), we could get asymptotic expressions of the form

(42) P, (error) ~ B. A™.

The author had originally intended to use Laplace’s method in the Fourier-
domain before he observed that the frequency functions (and not only their
Fourier transformed) could be written as high powers of a continuous func-
tion. This led to the above variation of an old theme in the theory of limiting
distributions.
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and for reading the manuscript.
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