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A NON-PARAMETRIC TEST OF WHETHER TWO SIMPLE
REGRESSION LINES ARE PARALLEL!

By RICHARD F. POTTHOFF?
University of North Carolina at Chapel Hill

This paper provides a means for testing the hypothesis that two simple
regression lines are parallel, when the two sets of error terms have two
arbitrary unknown continuous distributions. The non-parametric test
which is developed here is analogous to the two-sample Wilcoxon test. At
the end of the paper, two additional problems in non-parametric regression
analysis are briefly referred to.

1. Summary and initial remarks. If one desires to test whether two simple
regression‘ lines have the same slope, then one can, of course, use the standard
test derived from least-squares theory if one is willing to assume that the dis-
tributions of the two sets of error terms are both normal and that they have
the same variance. If the two distributions in question are both normal but
have different variances, the tests of [1]and [10] are available. In some cases,
though, the experimenter may need a test which is valid for two arbitrary
distributions of the two sets of error terms. The present paper presents such a
test. The test bears a close resemblance to the Wilcoxon two-sample test
[13, 7], and may be considered as an extension of the idea developed in [8]
concerning the use of the Wilcoxon statistic with respect to a generalized
Behrens—Fisher problem.

2. Introduction and statement of results. We suppose that we have M pairs
(Y X)), (Y XYy o, (Y, X)) such that

(2.1) Yi=a, + 5, X, + ¢ (=12 -, M),
and N pairs (Z,, W), (Z,, W), - -+, (Z,, W,) such that
(22) Zj = «a, + ng ”J—Q—f] (/: 1,2, ,/\)

The a’s and 3’s are unknown regression parameters. The X,'s and W''s are
(known) constants; to avoid complications, we will assume that no two X,’s
are equal and that no two W/s are equal. The error terms e, e, -, e,,
S fos -+, fy are assumed to be mutually independent. We assume that each e,
comes from a distribution with continuous cdf F,(e), and that each f; comes
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from a distribution with continuous cdf F,(f), where ordinarily F,(e) and F,(f)
will both be unknown.

Without loss of generality, we may assume that M < N.

We wish to test the null hypothesis that the two regression lines are parallel.
Specifically, we want to test

(2.3) Hy: 8, = 8,
against alternatives 38, # §,.
Our test of H, (2.3) will be based on the statistic

(2.4) w= (377 Dics D<o 4(Vizja) »
where the function u(V) equals 0 if ¥ < 0 and 1 if V> 0, and where
Z, — Z, Y, — Y,

W, — W, X, —X,

(2'5) Vin.I =

The summation in (2.4) is over all (i, /,j, J) such that 1 </ <7< M and
1 <j<J <N, and thus embraces (¥)(}) terms altogether.
In Section 3 we show that, regardless of what F,.(e) and F,(f) are,

(2.6a) Ew) =1 if H, istrue,
and
(2.6b) E(w) + % if H, isnottrue
[E(w) > & if 8, > By, E(w) < § if 8, < 3,]-

In Section 4 we prove that

!
(2.7) Supy, », Var (w) = — M + 5 if H, istrue.

18M(M — 1)
Section 5 appeals to a theorem of Hoeffding dealing with U-statistics for inde-
pendently but non-identically distributed random variables [3] to show that,
under certain mild restrictions, [Var (w)]"}(w — 1) is asymptotically N(O0, 1) if
H, (2.3) is true. This result, together with (2.6a) and (2.7), tells us that, if we
base a test of H, (2.3) on the critical region

2M + 5 Tﬁ
2.8 o sm e —1 ,
(25) [ISM(M— 1) W=l >
where z,, is defined by
(Rr)yt§icedz = 1 — la,

then (disregarding inaccuracies due to the normal approximation) such a test
(2.8) will be of size a (where ‘“‘size” means maximum probability of Type I
error). Section 6 uses a slightly refined form of (2.6 b) to establish the consistency
of the test (2.8) against all alternatives 3, # §,.

Our test (2.8) will of course be a conservative test, since Var (w) generally
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will be smaller than the value on the right-hand side of (2.7). Apparently the
test is not unbiased. The question could be raised as to whether one might use
in (2.8) a consistent sample estimate of Var (w) instead of the upper bound (2.7),
in order to provide increased power. Although the present paper will not at-
tempt to explore this question, such an approach would appear to present a
couple of problems. First, whatever estimator one might choose for Var (w)
would probably require laborious calculations, perhaps prohibitive calculations
(laborious or prohibitive even with a computer, for larger values of M and N).
Second, since the estimate of Var (w) will differ from the true value of Var (w)
(and can of course be either higher or lower), the true probability of Type 1
error will differ from its intended value a and one will not know how great the
difference is or whether it is plus or minus; with the conservative test (2.8), on the
other hand, the difference between true and intended probabilities of Type I
error can be in the minus direction only (if we ignore inaccuracies caused by
the normal approximation to the distribution of w, which are perhaps not of
great import). As M and N increase, the second problem diminishes in im-
portance, but the first problem becomes rapidly more serious. Utilizing a con-
sistent sample estimate of Var (w) is reasonable if one is concerned only with
“large” M and N and if calculation difficulties are ignored. From a practical
standpoint, though, M and N will not always be “large” enough, and calcula-
tion difficulties cannot be disregarded.

We may note the following points which are relevant for applications of the
test (2.8):

(i) Although the discussion above is in terms of a two-tailed test, the exten-
sion to one-tailed tests can of course be made in the usual manner.

(ii) We can obtain confidence bounds on

(2.9) A=g,— B

which are associated with the test (2.8). The technique for getting the bounds
is similar to the one often used with the ordinary Wilcoxon statistic: we find
the value (or those two values) of A which, when subtracted from every V,,;,
in (2.4), will cause the resulting new value(s) of w to be on the threshold of
significance. The reason why this works is that A (2.9) is the median of each
Vi (2.5), as we shall see in Section 3.

(iii) In practical situations, there may be pair(s) of X,’s or of W,’s whose
two members are equal, contrary to one of our assumptions. If such ties do
occur, perhaps the best thing to do ordinarily would be simply to count a tally
of § in the sum (2.4) for each u(V,,;,) whose argument (¥,,,,) would be unde-
fined by virtue of the two X’s being alike and/or the two W’s being alike.

For a one-sample problem involving one simple regression line, Theil [12]
introduced and briefly examined a non-parametric test which resembles our test
above for the two-sample problem. Section 7 below will provide a short dis-
cussion of the one-sample problem.
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Finally, Section 8 poses a two-sample regression problem which is a com-
panion problem to the one covered by the present paper.

3. The expectation of w. In this section we prove (2.6). Using (2.5), (2.1)—
(2.2), and (2.9), we obtain
(3-1) Vuj,/ =Z;;+ vy + A,
where
(3.2) 2= = DIV, — W), Y= —(e;, —e)/(X; — X).
Note that z,, and y,, (3.2) are independent, and that each is the difference of
two independent random variables with a common continuous cdf. It then
follows that z;, and y,, are each distributed symmetrically about 0; that their

sum (z,, + y,,) is symmetrically distributed about 0; and that P{z;, + y,, = 0}
is 0. Thus, for the case where H, (2.3) is true (i.e., A = 0), we can write

(3.3)  Elu(Vi,;)] =PV, >0 =Pz, +v, >0 =% if 5,=45.,
and (2.6a) follows at once from (3.3) and (2.4).
For the case 8, > 8, (A > 0), we obtain
Elu(V,;;01 = PV, > A) + PA = V5, > 0}
s+ Pl=A <z, +y, =0}
+ P[—1A <z, €0, —3A <y, £ 0}
+ Pl—d,, <f,—f; £0}P{—0d,;, <e —e <0},
where d,;, = $A|W, — W] and 4,,, = 3A|X, — X,|. There exist numbers [*
and ¢, = ¢,(d,;,) such that I, (f* + d,,;,) — F,(f*) = ¢, > 0. We have
2P =0, <[ — [; 20}

Il

(3.4)

v

I
[

(3'5) = P{_(;Zj./ <f/ _fj<62j.l}
= P{f* <fl < f* + (;Zj./'f* <f] < f* + 62;’./}
= [‘iz(azj./)]2 .

Looking at (3.4) and (3.5), we can now write

(3.6) Elu(V1;0] = % + 2le(0,,) [ev (0, )] it 5,>p,,

where ¢,.(d,,) is analogous to ¢,(d,;,) (and is also > 0). The result (2.6b) for
3, > (5, is established if we apply (3.6) to the expectation of (2.4).
For 3, < §,, the proof of (2.6b) is similar to the above.

4. The variance of w. Sections 4 and 5 are concerned with proving certain
properties of w under H,. In this section we prove (2.7). First we will establish
that, if the two cdf'sare F,(e) and F,(f) = F,"(Kf), where F, is any cdf, then
(under Hy) we have

2M + 5

(4.1) lim,_.. Var (w) = B — 1 °
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Let us start by defining

(42) C?I]’l gt — = Cov [ll( ljl) u(Vl g )]
= P{Vilj.l > Oa Vir[rj»J« > 0} — -41—,y

note that V,,;, is given by (3.1—3.2) with A = 0. By using (2.4), we can write

(4.3) Var (w) = ()7%(3)7* Xjes Dgren [ 20i<s Cirjairgra
+ 23 i Cospirgn + 2 Diciar Cirgairris
+2 X Coprrgra] + 1

where r is the sum of the terms C,,,,,.,.;.,, for which (i, I, i’, I') are all different
but (j, J, j’, J’) are not all different. In Sections 4 and 5 we will assume (with
no loss of generality) that the X,’s and the W ’s are arranged in ascending order,
so that i < [ implies X, < X, and j < J implies W; < W,. Now as K — oo,
F,(f) = F,AKf) approaches a distribution function which has all of its proba-
bility mass concentrated at a single point (0). We can thus show that, upon
taking the limit in (4.3) and using (4.2), (3.1)—(3.2), we obtain

(4.4) lim, .. Var (w) = ()7 () *EVIEG — 3 + 260G — 1
+2G —-H 200G - D1+ 0
2M +5

TOI8M(M — 1)

which proves (4.1).
The remainder of this section will be devoted to proving that

2M + 5

(4.5) Var (w) < — TSM(M 1)

no matter what F, and F, are. Clearly, (4.5) taken together with (4.1) will be
sufficient to establish (2.7).

Let R = (R, R,, ---, R,) denote a permutation of M of the numbers
1,2, ---, N. There exist N!/(N — M)! such permutations altogether. From
(2.4) it follows that

(4.6) = I s () i)

where the left summation (over R) indicates summation over all N!/(N — M)!
permutations R. Now if #,, 1,, - - -, r, denote any set of random variables, then,
regardless of what their joint distribution is, we will have
(4.7) Var[v='(t; + t, + -+ + 1)]

< v7'[Var (1)) + Var (1) + --- 4 Var ()] .
With » = N!/(N — M)!, we apply this standard inequality (4.7) to (4.6); we

»
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obtain

(4.8) Var (w) < ,(,]X,]—W,"@l <"24>_2 SR Var [ S, u(V g n)] -

For each of the (¥)(}) sets (i}, iy, i3} ji, jo» J3) Which satisfy 1 < i, < i, < i, < M
and I < j, < j, < j,; £ N, let us define
(4'9) S(il’ ly, Iy} jl’jz’ja) = Zlﬂ Cil17‘12]‘1,,]'1,2":1113:'1,11'1,3 ’

where the summation Y, in (4.9) is over the 18 sets of values of (I, 1, /;;
L,, L,, L,) which are obtained by taking a double summation in which (L, Ly, L,)
runs over all 6 permutations of (1, 2, 3) and (/,, /,, [;) runs over the 3 permuta-
tions (1, 2, 3), (2, 1, 3), and (3, 1, 2). Then we can write

ZR Var [Zi<l u( Vi[RiR[)]

e () 0,

X Zil<1‘2<i3 Zj1<j2<j3 S(ivs by B33 Juis oo J5) -
Our final task in this section will be to prove that
(4.11) S(iy, Iy, 35 Jis Jor Jo) < %
for any values of the indices (i, < i, < iy j, < j, < j;). Once (4.11) is estab-
lished, (4.5) follows easily by combining (4.8), (4.10), and (4.11).
Let
(4.12) e < € < €y and Jo < Jor < fos»

and let P{V,,, > '0, Virir > 0| e, ey €y’ fors forr fis} denote the conditional
probability that V,,;, and V,,.;,, are both > 0 given that

(4.13a) e, e, e, = ey, ey e,, butnotnecessarily in that order

and

(4.13b) Sfis o f1r = fors fors fos » DUt nOt necessarily in that order.

Given (4.13), the 3! x 3! = 36 possible values of the sextet (e,, e,, e,.; f;, f,, f)
all have the same probability (= 1/36), inasmuch as (in the unconditional dis-
tributions) the three e’s are identically distributed, the three f’s are identically
distributed, and the six variables are mutually independent. Let us define

(4.14) S* = S*(iy, iy I3} fus Jos Ja | €ors €020 €033 fors fors foo)

= Z”‘ P{ Villflzjl,lil,2 >0, Vil]ilgj/,le3 >0 l €o1> o2 eoa;fov foz’fos} - 138 5
where Y], has the same meaning as in (4.9). We will prove below that
(4. 1 5) S*(iv Iy, Iy} Jv Jor J3 | €o1> €025 €035 fov foz» fos) = %

for any allowable values of the i’s, j's, e,’s, and f;’s. Noting (4.2), we see that
S(4.9) is the expectation of $*(4.14); hence, (4.11) will follow immediately from
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(4.15) once the latter is proved. [Incidentally,.we note in view of (4.12) that,
in (4.14)—(4.15) and the ensuing comments, we are neglecting the point set in
which the three e,’s are not all different and/or the three f;’s are not all different.
However, this point set is of measure zero (thanks to the continuity of F, and
F,), and so we may legitimately neglect it.]

All that remains, then, is to prove (4.15). If we use (4.14) and recall that the
36 possible values of the sextet of e’sand f’s are equally probable, we can write

4.16 365* 4+ 162 = u< Joo, = fur, e, — e, >
( ! ' 2 L Wi . WjLJ X . Xz‘u

L U

% u( f0J3_f0.11 . e()l3"eo11 >,
W, — W, X, — X,
3 3 3 B

IL 1

where the summation ) is over the 36 sets of values of (/,, 1,, I,; J,, J,, J;) which
are obtained by taking a double summation in which (/,, I,, ) runs over all six
permutations of (1, 2, 3) and (J,, J,, J;) likewise runs over all six permutations
of (1, 2, 3). The right-hand side of (4.16) thus consists of a summation of
36 x 18 = 648 terms; each term is the product of two u-functions, and must
therefore be equal to either 0 or 1. We will be able to prove that no more than
180 of these 648 terms can be equal to 1, no matter what the X’s, W’s, ¢,’s, and
fy’sare. That will mean, in view of (4.16), that 365* 4 162 < 180, from which
(4.15) (and hence (2.7)) will follow at once. :

Thus, it now only remains to show that no more than 180 of the 648 terms
can be I’s. Our proof of this proposition is exceedingly lengthy and also rather
elementary, and will therefore be omitted here. However, full details are avail-
able in [9].

5. Asymptotic normality of w. In this section we show that, under mild re-
strictions, w (2.4) is asymptotically normal under H, (2.3). Our proof will use
a theorem of Hoeffding [3, Theorem 8.1] concerning the asymptotic normality
of U-statistics for random variables independently but not necessarily identically
distributed.

A U-statistic must be of the form [3, equation (5.1)],

(5]) U= 2 q)(xal’ 2 O ) xam) s
where the summation Y’ is over all (7) sets satisfying | < a; < a, < -+ <
a,, < n, the function @ is symmetric in its m (vector) arguments, and the x,’s
(¢ = 1,2, ..., n)are mutually independent (but not necessarily identically dis-
tributed) r-dimensional random variables of the form x, = (x,, x,'®, - - -, x, ™).
(In this section we are trying to maintain the same notation which Hoeffding
used, except that we are using x where he used X.)

First we find a U-statistic which is related to w (2.4). In (5.1), let us make
the identifications n = M + N, m = 4, r = 3,
(5.2) x,=(x." x.®, x,¥) = (e,, X, 1) for 1<as M

= (foerr Woers2) for M+ 1< a< M4 N,
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and
(5.3) O(x

ay? xml’ xrr:" xll_‘)
(1

| . X' XA[I" X o /\Ill)
= 20a (X Xy Xy Xyp0) [” < ) {g» B \I;»[ - 'ﬁ”'[z» Mm,’l‘zf) - %:1 s
X — Xy Xy ™ = X
where the summation in (5.3) is over all 4! = 24 permutations (4, H, /', H') of
(¥, @y, @y, ) with u(V') being considered to be 0 if V' is undefined, and where

S(Xs Xy Xpos Xop0)

(5.4) =1 if x,» =x,%=1,x2=x =2,
X0 > x xp > X
=0 otherwise.

The x,?’s and x,*’s of (5.2) are constants, but for our present purposes we
regard them as random variables for which all the probability mass is concen-
trated at a single point. Thus no two x,’s are identically distributed.

Now note that @ (5.3) satisfies the specification of being symmetric in its
arguments. When H, (2.3) is true, the statistic U determined by (5.1)—(5.4)
will be related to w (2.4) by the equation

(5’5) U= k.u,x(w — %) s
where
(3-6) Ky = (T

We will apply Hoeffding’s Theorem 8.1 [3] to U (5.5) to prove that
[Var (U)]"}[U — E(U)] is asymptotically N(0, 1). At this point we introduce
the two mild assumptions which we will use:

AsSUMPTION 5A. We assume that, as n — oo, N/M approaches some constant
¢ (c=1,since N > M).

AssuMPTION 5B. Let us define
(5.7) K= (X, — X)W, —W)).

We assume that there exists a fraction I (0 < II < 1)and a number K, (K, > 0)
such that, for all (M, N) and for all integers v in the interval 1 < v < M/2,
the following property holds: in the set of (M — v)(3) triples (/, j, J) for which
v< 1< Mand 1< ;< J<N, the number of triples satisfying the condition
(5'8) Kvlj./ < Ko

is = TI(M — 2)(3).

Observing (5.6), we see that Assumption 5A implies that

(5.9) lim, . k, y = 6c/(1 + ¢)*,

which is strictly > 0. We conclude from (5.5) that, once we prove that
[Var (U)]"{[U — E(U)] is asymptotically N(0, 1), it will follow immediately that
[Var (w)]"¥(w — $) is likewise asymptotically N(0O, 1).
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To establish the asymptotic normality of U (5.5) by using Hoeffding's Theorem
8.1 [3], we need only show that the three conditions [3, formulas (8.2)—(8.4)]
are satisfied. We can see at once that [3, (8.2)] and [3, (8.3)] hold, simply by
virtue of the fact that @ (5.3) is bounded in absolute value. The condition
[3, (8.4)] is

(5.10) lim,_ 2 EI_‘?’fm(x»)l‘ —o.
[0 EQWLL ()}

where W, is defined by [3, equation (8.1)]. Since E(®) =0 and |®] < L
[see (5.3—5.4)], it will follow that |W, | < 1. Hence |¥% | < T‘;’[,,, and
2 ENWS | < X EW:, . Therefore the fraction on the left side of (5.10) is

1(v)

< [X EW?, 174, which allows us to conclude that (5.10) will be proved if we

1(v)

can show that
(5.11) S E(U (x,)) > o0 as n— oo .

Thus all that remains is to verify (5.11). Now using (5.2)—(5.4) above along
with [3, equations (8.1), (5.15), and (5.14)], we can write

(5.12) T(x) = () 7S, S (v =102, - m),
where we define (forv =1,2, ..., M)

(5.13) S, = Si(e) = X Micseses Wi (el)

(5.14) o, = Sule) = L1 Dizjesen Wiiile)

(5.15)  Wi,(e) = SSS (K [fy — fi] + e —e)dF (e) dF (f,) dF ,(f,) — }
(i=12,--,v—1),

and
(5.16) Wy (e) = SSS (K, lf) — i1 — e + e) dF\(e)) dF,(f;)dF (f) — %
T=v+1,v4+2 ..., M.

Note that £(S,,) = E(S,,) = 0. Let s}, and o3, denote the respective variances

of §,,and S,,, and let p, be the correlation coefficient between S, and S,,. Then
(5.17) E[(S), + S.)°] = ol + 0% + 20,00y, = (0, — 0,,)" .

From (5.15) we see that |¥; ; (e,)| < 1. Hence it follows from (5.13) that
(5-18) oL = (v = D))

We will show shortly that there exists a constant =(0 < = < 1) such that
(5-19) o = (M —»)(0)(2)

for all integers v in the interval 1 < v < M/2. Now define v, to be the largest
integer v such that (M — v)r — (v — 1) > 0; thus

M—D Mo+ 1

R S

5.20
(3.20) c

= k)
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and v, < M/2. Using (5.18)—(5.20), we can write
(5.21) Tp — 01, Z 3NIMe + 1) —v(c 4+ D] >0 (v =1,2,--+,y,).
From (5.12), (5.17), and (5.21) we obtain
(522)  EIME(FL(0)) 2 (P ) TRPGPD N (M 4 1) — (= 4 D
But
UL UMz 4 1) — oz 4 D]
=44+ D, — 3(c + DMz + 1 — o),?
+ [(Mz + I)YM — D)7 + §(z + 1)*]y,

(M — 1)y  (2Mc 4+ 1 — o)(Mz + 1)’

(5.23) >

- 3+ 2(z + 1)
(Me 4 1)(M — 12 | (M — yz(z + 1)
R C T 6
z,(M;_l)ii_iM_12T2_1_1M_ (z
e AT P = O (e )
T

the inequality in the second line of (5.23) being a consequence of (5.20). Finally,
(5.11) can now be established at once if we combine (5.22)and (5.23), let n — oo,

and apply Assumption 5A.
Thus the proof that w is asymptotically normal will be complete once we

show that there is a (> 0) for which (5.19) holds.
Proor oF (5.19). From (5.14) and (5.16) we obtain
(5.24) 0, = 200 iit il —1 Duisicisy 21 <s Sy E[wj—/j./(ev)w‘:rl'j’J'(ep)] ,
and we also can write
(5.25)  2E[W,,(e )W 5(e)]
= §§ (W5 0(v) — W)Y e (ve) — W (v)] dF () dF\(v,)
Note that, since w (2.4) depends on the ¢;’s only through differences between
pairs of e;’s, we can assume with no loss of generality that 0 < F,.(0) < 1. Since
F, also is continuous, we can choose numbers D, p, and yx such that
(5.26) D >0, O<p<l, ©w>0, F.(—D)> p,
I — F.(D) >y, Fy(pD) — Fy(—pD) > 1.
Defineg =1 —p. If v, < —D, v,= D, and K,,;, < K,, then
W) — ()
= Plo, < K, ;;,(f; — 1) + e, = v}
P{_D < KvaJ(fj _f.l) +e = D}
P(—qD < K, ;;,(f; — ) = 9D, —pD < e, =< pD}
P{—qD < K, ;;,(f; — f)) = qD}P{—pD < e, = pD}
P{—qD[K, < f; — [, = 4D|K)[Fy(pD) — Fir(—pD)]
[e2(9D/K)T e

(5.27)

VIV LIV IV
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the last line being obtained with the aid of (3.5) as well as (5.26). If v, < —D,
v, > D, and K, ;, < K,, then we can obtain for ¥}, . .(v,) — ¥..,.(v,) a
result similar to the result (5.27). From this pair of results it then follows that

lf Kv]j.l < KO and Kvl'j'.l’ < Ko
SSv,s—n;vzgn [IIJ‘:FIJ'J(/UZ) - mjlj./(vl)]
(5.28) X Wi () — Wiy (0)] dFy(01) dF(v,)
> [eAgD[K) t#Fy (= D)1 — Fi(D)] > [e4(¢D/Ko)])'set -

From (5.16) it is clear that both W}, . (v)and ¥}, . (v)are always non-decreas-
ing functions of ». Therefore, the integrand on the right side of (5.25) always
is nonnegative everywhere. The latter fact implies that the integral in (5.25) is
greater than or equal to the integral in (5.28), which in turn establishes that if
Kvlj.l < Ko and KpI’j’J’ < Ko
(5-29) ETW50(e) ¥ y(e)] > Hlea(gD/K)] e 5
it also implies that if K,,;, = K, and/or K, ,.;,,, = K,
(5.30) ET¥0(e)¥ 0 (e)] 2 0.
Finally, we combine (5.24), (5.29), and (5.30), and apply Assumption 5B to
obtain, if 1 < v < M/2,
(5.31) a3, > 3I(M — v)(§)[e.(qD/Ko) 't -
Thus, (5.19) is satisfied with = = 2I[e,(¢D/K,)]*1.

REMARK. It may be noted that our development here in Section 5 suggests
a rather interesting way of proving that the Wilcoxon statistic [13, 7] is asymp-
totically normal, in either the null or the non-null case. The proof is effected

by means of Hoeffding’s Theorem 8.1 [3], using identification analogous to
(5.2)—(5.4) above.

6. Consistency of the test. In this section we show that, against all alterna-
tives A # 0, the power of the test (2.8) approaches 1 as M — co. In order to
prove this consistency property, we will impose a mild assumption:

AssUMPTION 6A. We assume that there exists a fraction Il (0.< II; < 1) and
a number k, (k, > 0)such that, for all (M, N), the following two properties hold:
(1) in the set of (¥) pairs (i, /) for which 1 < i < I < M, the number of pairs
satisfying the condition

(6.1a) X, — X[ > k&,

is = II, (¥); and, (ii) in the set of (§) pairs (j, J) for which 1 < j < J < N, the
number of pairs satisfying the condition

(6.1b) | W, — W, >k,

is = I, (5)-
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In proving the consistency of our test (2.8), we will consider explicitly only
the case A > 0; however, the proof for A < 0 is analogous. First we obtain a
couple of preliminary results. One of these is related to the material of Section
3. When the conditions (6.1) are satisfied, the expression [z,(d,;,)[¢,-(d,,,)] in
(3.6) can be replaced by [¢,(38k,))[¢,(34k,)]* and the inequalities will still hold.
Hence it will follow from Assumption 6A that, if A > 0, then

(6.2) Ewy>=4+d forall (M,N),

where d = LI 7[¢,(40k)]*[¢,(3Ak,)]* > 0. The result (6.2) provides a slight
refinement to (2.6b).

We will need an upper bound on Var (w) for the non-null case. First we use
(2.4) to write

(6.3) Var (w) = (N7 2t D<o Zirer 2agre Cov [u(Vir0)s u(Vipja)] -

Now (H(N(M53)(Y5?) of the (¥)*(5)* covariance terms on the right side of (6.3)
will be 0, and the remaining covariance terms wiil all be < 1. Hence we have

(6.4)  Var (w) < (N7 TLEIE) — O]
2 8

4
= — () (M) VI < | — (l _ ,,_,_,,,,,-> e
7)) < o) <
for M > 2.
Let P{R} denote the probability that the test (2.8) will reject H,. We will
show, for A > 0, that P[R} — 1 as M — co. Now

B 2M + 5 -1 w— 1
IR} = P 1| 1'8'M’<Mfi’>”] >
P{W - % > M_ézﬁn}

Plw — E(w) > Mz, —d},

(6.5)

A\

the last line of (6.5) being a consequence of (6.2). Applying Tchebycheff’s in-

equality to (6.5), we obtain
(6.6) PRy =1 Yar(w
(d— Mtz,,)

for M sufficiently large that d — M=z, > 0. Our desired result now follows
at once from (6.6) if we utilize (6.4) and let M — oo.

7. The one-sample problem. Suppose we have just a single sample of size M
which conforms to the model (2.1) and to the accompanying assumptions, and
suppose we wish to test

(7.1) Hy: 5= 5>

where 3, is a specified number, against alternatives 3, = 3,. For this one-sample
simple regression problem, a test statistic proposed by Theil [12, page 390]
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is applicable. This statistic, to which w (2.4) bears a certain similarity, is
essentially
, - Y, - Y,

As Theil has noted, (2w’ — 1) is closely related to the well-known statistic ¢
which has been considered by M. G. Kendall (see, e.g., [5], page 82, equation
(1)) and by others. Although there evidently is not an exact correspondence
between (2w’ — 1) and ¢ for the respective non-null cases, it is easily verified
that the null distribution of (2w’ — 1) is identical with the null distribution of
z. Therefore it follows at once that E(w’) = 1 if H/ is true; that

2M 45

(7.3) Var(w'):.lSM(.,,M,_l)

if H,/ istrue
(incidentally, note how (7.3) compares with (2.7)); and that w’ is asymptotically
normal under H,’. Hence a test with critical region

2M 4+ 5 BE I
74 it 1y | >
constitutes a non-parametric test of Hy (7.1) whose level of significance (disre-
garding inaccuracies due to the normal approximation) is equal to a. The con-
sistency of the test (7.4) is easily established via techniques similar to those used
in Sections 3 and 6 above.

In addition to the test (7.4), another way of testing H,’ (7.1) under the model
(2.1) is also available. Hajek [2] has introduced an extensive class of distribu-
tion-free tests which are applicable to the one-sample simple regression problem;
the Fisher-Yates-Terry-Hoeffding c,-test is (as he points out) one member of
his class. (Explicitly, Hajek just considered the case where j3, of (7.1) is 0, but
this really involves no loss of generality since the formulation (2.1, 7.1) can
effectively be put into Hajek’s form if we subtract 3,.X; from both sides of (2.1)
and subtract j3, from both sides of (7.1).) In order to pick a specific test from
Hajek’s class of tests, the user must select a density function which in turn
determines a function ¢(u) [2, page 1125, equation (1.6)] upon which the formula
for the test statistic is based. The test will have optimal power in a certain
sense if the selected density is the (presumably unknown) density of the e,’s.
Some users may object to the procedure of arbitrarily selecting a density each
time they utilize Hajek’s class of tests. However, such users could simply decide
in advance that they would always utilize a certain density, such as the normal
or the logistic density (densities 3 and 2 respectively in Hajek’s Table 1 [2, page
1127]). In fact, it might even be possible, through further theoretical investiga-
tion, to discover a specific ¢(u) (i.e., discover a specific choice of the density)
which will in some sense possess a minimax property with respect to some
criterion related to the power of the test.

Although we will not attempt here to undertake a detailed comparison of
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Theil’s test (7.4) versus Hajek’s tests, we may briefly indicate some of the
matters (in addition to the problem of choosing ¢(u) for Hajek’s tests) which
should perhaps be further examined in such a comparison:

(i) Power is obviously an important consideration. The power of the tests
will depend (among other things) on the X,’s, on Fy(e), on (3, — f3,), and on
the choice of ¢(u) for Hajek’s tests. Thus power comparisons may be somewhat
difficult. For the case where ¢(u) is based on the logistic density, however, the
power comparison seems to be relatively clear-cut and dependent mainly on
the X,’s (evidently this particular power comparison can never favor the test
(7.4); usually favors the Hajek test to a modest degree; and may less commonly
(i.e., for certain types of sets of X,’s) favor the Hajek test to a more substantial
degree or, contrarily, find the two tests essentially equal in power).

(ii) The relative rapidity with which the null distributions of the competing
test statistics approach normality could sometimes be an important matter to
the test users. For the particular case where ¢(u) is based on the logistic density
and the X,’s consist of the integers from 1 to M, Héjek’s test statistic is equiva-
lent to Spearman’s rank correlation coefficient p. Now the distribution of
Kendall’s = evidently converges to normality a bit faster than the distribution
of Spearman’s p [6, page 58]; this situation may be indicative of a small advan-
tage for the test (7.4).

(iii) Ease of computation is a third factor which test users may be expected
to take into account. If only a test of H, (7.1) is desired and no associated
confidence bounds are required, then it appears that the test (7.4) would generally
be less simple to compute than one of Hajek’s tests. If, on the other hand, a
confidence interval for 3, is needed, then basing it on a Hajek test would seem
to necessitate some sort of trial-and-error computations which could be rather
lengthy, whereas a confidence interval associated with the test (7.4) can be
computed in a straightforward manner.

8. A second two-sample problem. An obvious companion problem to the
two-sample problem treated in this paper would be to develop a non-parametric
test of whether two parallel simple regression lines are the same. In other words,
suppose we have the same model as indicated by (2.1)—(2.2) and the accom-
panying discussion, except that 3, and 3, are each replaced by f (i.e., the two
lines are known to be parallel), and suppose we wish to test the hypothesis
a, = a, against alternatives a, # «a,.

It looks as though one interesting possibility for this situation would be to
develop a test based on a statistic of the form (2.4), but with V,,;, in (2.4)
replaced by

(8.1) T2y = Y + (1= 1iu)(Z; = Y1),

where 7., = (X, — W)/(X, + W, — X, — W;) (for the formulas (8.1) we as-
sume that the X’s and W’s are in increasing order, so that X; < X;and W; < W,).
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Evidently such a test would not be valid under as general conditions on F, and
F, as the test of the present paper: the random variable (8.1) is equal to

(8.2) Teio(fr —€) + (1= 15)(f; — €;) + (a; — ay)

and thus has the desired median (a, — «,) if

(8.3a) F, and F, are both symmetric (about the origin)
and/or
(8.3b) F,=F,,

-

but it may have a different median if (F,, F,) do not satisfy (8.3).

If the test just proposed were to be fully developed along the lines of the pre-
sent paper, the outstanding matters to be resolved would include the following;:

(i) finding a satisfactory upper bound for the variance of the test statistic
under the null hypothesis, given the condition (8.3);

(i) showing that the null distribution of the test statistic is asymptotically
normal under appropriate restrictions, given (8.3); and ’

(iii) establishing the consistency'of the test under appropriate assumptions,
given (8.3).

Of course, (8.1, 8.2) would have the proper median even under conditions
somewhat broader than (8.3), but such broadening of the conditions might
complicate the proofs and at the same time be of limited practical import.
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Final note. After this paper was essentially complete, Hollander [4] proposed
a test which is a competitor to the test (2.8) above, and which has certain ad-
vantages and disadvantages relative to the test (2.8), as he points out. According
to [4], for certain specific situations Monte Carlo samplings show greater power
for his test than for the test (2.8). Among other things, though, there is reason
to believe that the test (2.8) will be the one with superior power in situations
where Var (w) under H, is sufficiently close to the upper limit (2.7).

Another recent related article is that of Sen [11].
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