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ASYMPTOTIC BEHAVIOR OF BAYES TESTS
AND BAYES RISK )

By B. R. JonnsoN! AND D. R. TruAX®
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In this paper the asymptotic behaviors of the Bayes test and Bayes risk
are studied in both the one-sided and two-sided testing problems, where the
independent observations are taken from one member of a one-parameter
exponential family. Precise asymptotic expressions are found which show
the Bayes procedure to be relatively insensitive to the prior distribution as ~
the sample size increases to infinity.

1. Introduction and summary. The main shortcoming of the Bayes principle
is its dependence on the prior distribution. In order to apply this principle it is
necessary to assume that the parameter is a random variable with known prob-
ability distribution (prior distribution). Usually experimental data is insufficient
to accurately establish the nature of this distribution. Fortunately, however,
there are many situations in which the Bayes procedure becomes relatively
insensitive to the prior distribution as the sample size increases.

In 1952 Chernoff [1] studied the asymptotic behavior of Bayes risk in the
hypothesis testing problem involving a simple hypothesis versus a simple alter-
native. He proved that the natural logarithm of the Bayes risk behaves like
—nl, as n tends to infinity, where / is a positive constant which does not depend
on the prior distribution. Efron and Truax [3]in 1968 improved upon Chernoff’s
result by showing that the Bayes risk behaves like Kn~t exp(—nl) as n tends to
infinity, where only the positive constant K depends on the prior distribution.

In this paper the asymptotic behaviors of the Bayes test and Bayes risk are
studied in both the one-sided and two-sided testing problems, where the inde-
pendent observations are taken from a one-parameter exponential family. Again
it is found that the large sample behaviors do not depend very heavily on the
prior distribution. Also, since two distinct probability distributions which are
absolutely continuous with respect to each other can be embedded in a one-
parameter exponential family (see [3], page 1414), some of the results in the
following sections include the above described results as special cases.

We now introduce some notation. We represent a one-parameter exponential
family by

P,(A) = §,exp(fx — ¢(0)) du(x)
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for Borel subsets A of the real line ..+, or more simply by

(1.1) dP,(x) = exp(fx — ¢(0)) dp(x)
for xe. . Here y is a nondegenerate probability distribution on .2, and ¢ takes
values in
Q= {0c.~: §exp(fx)du(x) < oo}.

It is well known (see [9]) that Q, called the natural parameter space of the
exponential family (1.1), is an interval (finite or infinite). The function ¢ is
defined on Q by

¢(0) = log [§ exp(fx) dpu(x)] .
With the aid of Holder’s inequality together with necessary and sufficient con-
ditions for strict inequality of Holder’s inequality (see [6]), it is easy to show
that ¢ is a strictly convex function. It is also known (see [9]) that ¢ has finite
derivatives of all orders in the interior of Q. If X is a random variable having
probability distribution P,, then we have

$(0) = E(x) and  "(8) = Var, (X).
Section 2 is devoted to the one-sided testing problem
H,: 0 <6, versus H:0>40,,

where #, is some fixed real number in the interior of the natural parameter space
Q. It is well known that when a sample of size n is observed and the standard
zero-one loss functions are used, the Bayes test corresponding to the prior prob-
ability distribution v has rejection region

{/\7n > Cn} ’

where X, is the sample mean and ¢, is that unique real number such that

(1.2)  Siwpyexp(nfe,d — H(O0)]) du(0) = §iy,. exp(nfc,t — ¢(0)]) d(0) -
Here the prior distribution v is defined on the Borel subsets of . ~* such that
v(Q) = 0, y(—o0, 6] > 0and v(f,, o) > 0. The Bayes risk of v is given by

(1.3) r(v) = S wu [ = Gule,; )] dv(0) + §, - Glc,; 0)du(0),

where G,(+; ¢) is the distribution function of X, under 0.

If the prior distribution v assigns zero measure to an interval which contains
f,, it is found that the sequence {c,} converges to a finite limit at least as fast as
n~'log(n). Also, the Bayes risk of v converges to zero at the rate Kn=*exp(—nl,),
where K, « and /; are positive constants. On the other hand, if v admits the
possibility of parameter points arbitrarily near ¢, on each side, then the sequence
{c,} converges to a finite limit at least as fast as n=*. In this case Mn~} is the rate
at which the Bayes risk of v converges to zero, where M is a positive constant.
The constant terms K, «, /,and M depend on the prior distribution v only through
its behavior near its closest support to 6, on each side. These are the main results
of Section 2.
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In Section 3 a similar study is conducted of the two-sided problem
H,: 0 =6, versus H,:0 =+ 0,.

For this testing problem the prior distribution v is defined such that .(Q%) = 0,
v(—oo, ) > 0, v({6,}) > 0 and v(0,, o) > 0. Let n(v) be the smallest positive
integer such that

Y({00}) > Sicwip g XPIN[P(00)0 — H(0)] — ["(00)0, — ¢(00)]}) () -

Such n(v) exists because the function

[9/},(00)0 - ¢(0)] - [¢,(00)00 - 9’)(00)]
is a strictly concave function of # which has absolute maximum equal to zero at
6 = 6,. ltisknown that for every n > n(v) the Bayes test corresponding to v has
acceptance region ~
{an < X’n é bn} ’
where a, and b, are the unique real numbers such that

(i) a, <P'(0) < by,
(L4) (i) »({00) = Siwnp 0y €XP(n{[@, 0 — H(O)] — [a, 00 — $(O)]}) du(0) ,
(i) »({0}) = §iwp ey €XP(A{[E, 0 — H(O)] — [6,00 — O(0)]}) d(0) -

Therefore, for each n = n(v) the Bayes risk of v is given by

(15) rn(y) = S(——oo,llo) (g, 00) [Gn(bn; 0) - Gn(an’ 0)] dp(ﬁ)
A+ ({0 DIG(a,; 00) + (1 — Go(b,3 00))]

where G,(.; ¢) is the distribution function of X, under 4.

The main results of Section 3 are in most cases quite similar to their one-sided
counterparts found in Section 2. If there exists an interval containing ¢, such
that v assigns zero measure to this interval with 6, deleted, then the two sequences
{a,} and {b,} each converge to a finite limit at the rate n='log (n). In this situation
the rate at which the Bayes risk of v converges to zero is Bn=# exp(—nl,), where
B, 8 and I, are positive constants. The final case to be considered is the situation
where v assigns positive measure to arbitrarily small intervals on each side of 6,.
In this case the two sequences {a,} and {b,} each converge to the same limit at
the rate (log (n)/n)*; while the Bayes risk of v converges to zero at the rate
A(log (n)/n)t, where A is a positive constant. As in the one-sided problem, the
behavior of v near its closest support to ¢, completely determines the constant
factors B, 3, I, and A.

All proofs are deferred to Section 4. Since the techniques used are fairly
standard, many details of analysis have been curtailed, hopefully without detri-
ment to readability. Also, proofs of several theorems pertaining to the two-sided
case have been omitted because the lines of reasoning involved are very similar
to those of their one-sided counterparts. For detailed proofs of all results pre-
sented in this paper see [7].
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2. The one-sided problem. Let X, X,, ---, X, be a random sample from one
member of the one-parameter exponential family (1.1), and consider the one-
sided testing problem H,: § < 0, versus H,: § > 0,. As was pointed out in the
introduction, the Bayes test with respect to the prior distribution v is to reject
if X, > ¢, where ¢, is the unique solution to equation (1.2).

The support of the prior distribution v will influence the asymptotic behavior
of the Bayes risk, and we want to treat two cases separately. The first case is
when some nondegenerate interval containing ¢, receives v-measure zero. The
second case we treat is when the prior distribution has a positive density on some
nondegenerate open interval containing #,. Accordingly, we will say v satisfies
condition A, if there are real numbers #, and 6, in the support of v and interior
to Q such that 4, < ¢, < ¢,and v(f,, 6,) = 0. If such numbers exist they must
be unique. (Note: If condition A, is satisfied we are essentially testing § < 6,
versus 0 = 0,.) We say v satisfies condition A, in case there exists ¢ > 0 such
that v has a density p with respect to Lebesgue measure on (6, — ¢, ¢, + ¢) where
0(0,4) and p(#,—) both exist and are positive.

First, let us examine the behavior of the critical constant ¢, under each of
these two conditions.

THEOREM 2.1. [If v satisfies condition A,, then

@.1) lim, ¢, = ¢/(65)
where 0, is that unique real number in (0,, 0,) such that
(2.2) ¢'(0;) = [¢(0,) — ‘rl)(al)]/(az —'0).

By imposing some very mild additional conditions on v one can say something
about the rate of convergence of ¢, to its limit. These conditions essentially say
that v cannot assign too little measure to neighborhoods of ¢, and 4,.

THEOREM 2.2. [f v satisfies condition A,, and if there existe > 0and 0 < a < 1
such that
(2.3) (i) v, —y,0,] = exp(—y) forall ve(0,e¢)

(i) v[0,, 0, + y) = exp(—y™) forall ve(0,¢)
then

(2.4) lim, nt(c, — ¢'(6)) = 0 .

It should be remarked that (2.4) need not hold if (2.3) fails. On the other
hand, (2.3) fails only for somewhat pathological prior distributions.

THEeOREM 2.3. If v satisfies condition A,, then

(2.5) lim, n(c, — ¢'(6,)) = d
where d is that unique real number such that '
(2.6) Dd[[¢"(0)1)]P(=d[[¢"(0)]}) = p(0o—)]0(0s+) -

Here @ denotes the cdf for the standard normal distribution.
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It is worth noting that in both cases, the limiting behavior of ¢, depends on
v only through its properties on the support of v nearest to 6,. That is, under
condition A, the limiting behavior of ¢, depends on v only through the behavior
of v near ¢, and ¢,, and for condition A, only through the behavior near 6,.

The next stage in our study is to examine the behavior of the Bayes risk and
observe how it depends on the choice of prior. Recall that the Kullback-Liebler
information number is defined on Q x Q by

10, 0) = E,(log [dP, [dP,(X)]),
and note that if ¢’ ¢ int Q and 0 € Q then
K0, 0) = (00" — 0) — (¢(0") — () .

THEOREM 2.4. [Ifvsatisfiescondition A,, yisnonlattice andlim, nt(c,—¢'(0,))=0,
then the Baves risk of v has the following property:

(2.7) lim,ntlog r,(v) = —1,
where
(2.8) I, = 1(0,,0)) = 1(0,,0,).

Thus, the risk decreases to zero at an exponential rate. Equation (2.7) is a
generalization of Chernoff’s result which was briefly discussed in Section 1.

" By imposing some further restrictions on the behavior of v at ¢, and 6,, we
will obtain a much more precise result for the Bayes risk. The next theorem
points out quite clearly how the behavior of v near these two points determines
the asymptotic behavior of the risk.

THEOREM 2.5. Suppose

(i) v satisfies condition A,
(i) »(0, — x,0,] ~ p,x"1 as x — 04 where 3, > 0, a, = 0,
(iii) v[0,, 8, 4 x) ~ Byx"2 as x — 04 where 3, > 0, @, = 0.

Then

(2.9) c, — ¢'(0y) = n (0, — 0) [(a, — ) logn 4+ K, + o, (1)].
Also, if yu is nonlattice the Bayves risk of v is

(2.10) rn(V) — Kn=Hlaqy=0p+ag3—0 1/ 0y=0p) exp(—nlo)(l + On(l))

where 1, is as in (2.8). K, and K are constants depending only on 0,, 0,, a,, a,, 3, 8,
and their exact values can be found in (4.6) and (4.7).

If ;¢ is nonlattice the critical region {X, > c¢,*} is asymptotically Bayes (i.e.
the ratio of its Bayes risk to that of the Bayes test approaches one), where
¢, =¢'(0,) + n(0, — 0,) (@, — ay)logn + K] .

This fact, which follows easily from the proof of Theorem 2.5, is significant
because c,* is generally much easier to compute than c,.



ASYMPTOTIC BEHAVIOR OF BAYES RISK 283

Equation (2.10) generalizes the result of Efron and Truax which was discussed
in Section 1. In that case v assigned positive mass to ¢, and 6, so that a, = a, = 0.
Note also that if v and v* are two prior distributions both satisfying the hypotheses
of Theorem 2.5 such that 0, = 0,*, 6§, = 6,*, @, = a,*, a, = a,*, then

llmn rn(V)/rn(v*) = K/K* ’

and K = K* if 8, = §/*, B, = B,*. Thus, r (v) ~ r,(v*) provided v and v* “be-
have similarly in the neighborhood of ¢, and 6,.”

Some examples of prior distributions satisfying the conditions of Theorem 2.5
would be worthwhile at this point. If v isa prior distribution satisfying condition
A, and if 0, and 0, are atoms of v, then (ii) and (iii) hold with a;, = @, = 0 and
B> B, are the masses assigned by v to 0,, 0,. If A, is satisfied and v has a density
o with respect to Lebesgue measure such that o(6,—), o(#,+) both exist and are
positive, then v(0, — x, 8,] ~ p(6,—)x and v[0,, 0, + x) ~ p(0,+)x as x — O+.

When condition A, is fulfilled the behavior of the Bayes risk is radically dif-
ferent and is given in the following:

THEOREM 2.6. [If the prior distribution v satisfies condition A, and y: is nonlattice,
then the Bayes risk of v is

(2.11) rv) = Mn=¥(1 + o,(1))

where M = ([o(0,—) + p(0,+)1/[27¢" (0)]}) exp(—d*/24"(6,)) and d is given by
(2.6).

Under the hypotheses of Theorem 2.6 the critical value ¢,” = ¢'(6,) + dn~},
obtained from expression (2.5), gives a test which is asymptotically Bayes. Note
that if o(0,—) = p(0,+), the most common case, this test has the extremely
simple form of rejecting whenever the sample mean is larger than the population
mean under 4.

3. The two-sided problem. The problem of testing the hypothesis H,: § = 6,
against the two-sided alternative H,: 6 =+ 6, can be treated in a manner similar
to the one-sided problem, but, as we shall see, the behavior of the Bayes risk
is somewhat different. Again we will distinguish two cases. We will say the
prior distribution v satisfies condition Ay if v({6,}) > 0 and there is an open interval
I containing ¢, such that v assigns probability zero to 7 — {¢,}. If this is the case
there exist unique ¢, and 6, in the support of v such that I = (6,, 4,) satisfies the
condition (i.e. (4, #,) is the largest such interval). Observe that in this situation
we are testing 0 = 6, versus § < ¢, or = 0,. The second case we consider is
when v({f,}) > 0 and there exists ¢, > 0 such that v has a probability density p
with respect to Lebesgue measure on (6, — ¢, 6,) U (6,, 0, + ¢,) where p(6,—),
o(0,+) both exist and are positive. Under these circumstances we will say that
v satisfies condition A,.

As was mentioned in the first section, every Bayes test hasan acceptance region
of the form {a, < X, < b,} where a, and b, are solutions to (1.4). In order to
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describe the asymptotic behavior of the critical values a,, b, let us define ¢, and
0, as the unique real numbers such that
(i) ¢'(0y) = [9(0) — $O(0, — 0))
(i) ¢'(0,) = [$(02) — $(00)]/(0, — bo) -
THEOREM 3.1. [f v satisfies condition Ay, then
lim_ a, = ¢'(6,) and lim, b, = ¢’(9,) .

THEOREM 3.2. If v satisfies condition A,, then

a, — ¢'(0,) = —[¢"(O)n~ log n]}(1 + 0,(1)),
b, — ¢'(05) = [¢"(O)n~" log n]}(1 + 0,(1)) .
THEOREM 3.3. If v satisfies condition Ay, o is nonlattice and if
lim, n¥(a, — ¢'(0,)) = 0 = lim, ni(b, — ¢'(0.)) ,
then the Bayves risk of v has the property
lim,n=tlogr,(v) = —1,
where
I, = min {I(0,, 0)), I(0,, 0,)} = min {I(0,, 0,), I(0,, 0,)} .
Because of the hypotheses of this theorem we will need conditions on v which
will insure that
lim, n¥(a, — ¢'(0;)) = 0 = lim, n¥(b, — ¢'(6,)) .
As in the previous section, the requirement is essentially that » cannot assign too

little measure to neighborhoods of ¢, and 4,.

THEOREM 3.4. Suppose v satisfies condition A,. If there exist ¢ > 0 and 0 <
a < 1 such that
(i) »(0, —y,0,] = exp(—y™") forall ye(0,¢),
(i) [0, 0, + v) = exp(—y™) forall ye(0,¢),
then
lim, ni(a, — ¢'(6;)) = 0 = lim, n¥(b, — ¢'(0,)) .
Under certain rather mild restrictions on the prior distribution v, which are
satisfied for all common choices of v satisfying condition A,, we obtain the next
theorem which gives precise asymptotic expressions for the critical constants

a,, b, of the Bayes test and for the Bayes risk. Fortunately, the dependence of
these expressions on the prior distribution is not too severe.

THEOREM 3.5. Suppose v satisfies condition Ayand has the following two properties:

(i) v, — x,0,] ~ B xm as x—>0+ where 3, >0, a, =0,
(i) v[Oy, 0y + x) ~ Pyx" as x— 0+ where (3,>0,a,=20.
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Then
a, — ¢'(0;) = nX(0, — 0;) [, log n + K, + o0,(1)], and

b, —¢'(0,) = nY (0, — 0,) [a,logn + K; + 0,(1)] .
Also, if 10 is nonlattice the Bayes risk of v is

rn(”) — {An~|§+a1<00-03)/<00-01)] CXP[—HI(03, 00)]
+ Bttt 0=00) exp[ —ni(0,, 0)])(1 + 0,(1))

where K,, K,, A and B are constants depending only on 0, 0,, 0,, «,, «,, §,, B, and
v({0,}). Their exact values can be found in (4.10), (4.11), (4.12), (4.13).

The final theorem of this section describes the behavior of the Bayes risk when
the prior distribution satisfies condition A,.

THEOREM 3.6. If v satisfies condition A, and p is nonlattice, then

(3.1) r,(v) = C(ntlog n)}(1 4 o,(1)),
where

C = ([o(0y—) + o(0,+)]/1$"(00)]*) -

Note the rate in which the Bayes risk converges to zero in this theorem is not
only much slower than when the prior distribution satisfies condition A, but is
also slightly slower than the rate found in Theorem 2.6 which is the one-sided
analogue of this theorem. It is also interesting to observe that neither the rate
of convergence (n~'log n)! nor the constant C depends on the amount of mass
that v assigns to ¢,. Further, the large sample insensitivity of the Bayes pro-
cedure to the prior distribution is again apparent in this theorem.

Finally, let us observe that, similarly as in the one-sided problem, we are able
to find asymptotically Bayes tests which are easy to construct (see Theorems 3.2
and 3.5).

4. Proofs of theorems stated in Sections 2 and 3. This section is devoted to
the proofs of main results.

Proor oF THEOREM 2.1. One can easily show the sequence {c,} is bounded,
where ¢, is the solution of (1.2). If 4 is any limit point of the sequence, then
there is a subsequence {c, } such that ¢, — b. Taking n,th roots of both sides
of (1.2) and letting k — oo, it is routine to show that the l.h.s. converges to
exp(bf, — ¢(0,)) and the r.h.s. converges to exp(bd, — ¢(0,)). Thus, any limit

point b = [¢(8,) — ¢(6)]/(0, — 0,) = ¢'(5), which proves Theorem 2.1.
Proor oF THEOREM 2.2. Define g,(0) = c,0 — ¢(0). From (1.2)

eXP (1G,(01)) § 0,01 €XP (n[9u(0) — 9,(01)]) du(0)

= exXp(19,(0,)) 14,00, €Xp ([9,(0) — 9.(0,)]) du(0) ,
so that

(4.1) ey = ¢'(0) = [n(0, — 0)]7{l0g § (w1 XP (n[9.(0) — 9.(0))]) d(0)
— 108 §15,e) €XP(1[F4(0) — 9a(02)]) d(0)} -



286 B. R. JOHNSON AND D. R. TRUAX

Thus, it will be sufficient to prove

(4.2) lim, n~* log § o exp(nlg,(0) — 9,(0))]) dv(0) = 0,
and
(43) “mn n—vi lOg S[//2.oo1 exp(n[gn((}) - gn((}‘Z)]) dp((j) - 0 .

First we will prove the following:

LEMMA. Define H(t) to be the df of a nonnegative random variable such that for
some positive constants M, ¢, ¢ and some 0 < « < 1 we have

H(t) = Mexp(—ct™) forall te(0,¢).
Then
n~tlog§ . e " dH({t)—0.

Proor. Applying integration by parts
§w.m €™ dH(t) = n {7 H(ne=" dt = n {5 H(t)e "' dt
= nM §iexp[—(ct™ + nt)] dr.

The function ¢t~* 4 nr has a minimum when ¢ = (ca/n)"**V and is decreasing
on (0, [ca/n] t**1). Thus, for all sufficiently large n

§oexp[—(ct= 4 nn)ldt = §/n i exp[—(et= + )] dt
> Y(cafn) b exp[— pnn
where 3 = (2 + «/2)c! "+~ «+1 Therefore,
0 = liminfn-tlog§, ., e " dH(1)
= lim inf n=H{log [(nM/2)(ca/n)t “*P] — fn*ic+v} = 0,
since 0 < «a < 1.

Now we return to the proof of Theorem 2.2. For all sufficiently large n the
strictly concave function g, is increasing on (—oo, ¢,] N Q and decreasing on
[0,, o0) N Q, so we can write

§ i €XP(n[9,(0) — 9. (0)]) du(0) = (., €7 dG (1),

where G, (1) =v{0:0 < 0, and ¢,(0,) — ¢,(0) < t}. There exist positive real
numbers b and ¢ such that

9ul01) — 9u(0) = €, (01 = 0) — ($(0,) — ¢(0)) < —b(0 — 0,)
forall 0 e [0, — 0, 0,), provided n is sufficiently large. Then
Gty =v(0, — 1]b,0,] < G, (1) forall 0< 1< bo.
Therefore,
S5 €7"0dG (1) = §.45 € dG(1) for all sufficiently large n.

Equation (4.2) follows immediately from the above lemma by letting H(f) =
G(1)/v(— o0, 0,]. The proof of (4.3) is similar.
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Proor or THEOREM 2.3. For convenience of notation let usset a, = ¢, — ¢/'(0,)
and rewrite equation (1.2), which is the defining relationship for c,, as

(4.4)  S_oexpalal — 0,) — 1(0,, 0)]) du(0)

= Vg eXp(nfa,(0 — 0,) — 1(0,, 0)]) du(0) .
It is easily seen that lim, «, = 0, for otherwise (4.4) would fail for infinitely
many n.

For a fixed d > 0 we will first obtain upper and lower bounds for
Sng-s.09 €Xp(nfa,(0 — 0,) — I(0,, 0)]) dv(¥). Define

H\(0) = inf {[¢"(0)]}: 0, — 6 < 0 < 0,)
and

Hy(0) = sup {[¢"(N]}:0,— 0 <0 < 0,}.
By Taylor’s theorem /(0,, 0) = 1¢"(£(0))(0 — 0,)* for some {(¢) between 0, — &
and 6, so that

%ng(’;)((} — 0, 1(0,, 0)

LHA0)0 — 0, if 0, —d<0

A IA
IA

0, .
If 4 is sufficiently small v has density o in (¢, — 4, ¢,] and we have the upper bound
S(I)U—J,Ilol exp(n[a, (0 — 0,) — I(0,, 0)])p(0) dO
= Sxﬂo—s,ou] exp(nfa, (0 — 0,) — 3HX0 — 0,)'])o(0) db ,

where the r.h.s. is easily evaluated as

S, = o) exp(na,}2H® (2 nH P D(—nte, [H)) — O(—n*H 6 — nie,[H)],
0, lies between ¢, — i and ¢, and ® is the df of the standard normal distribution.
Similarly, a lower bound for the integral is S,, which is the same as §,, except
~ that H, is replaced by H,and 0, is replaced by ¢,, a number between ¢, — 4 and 0,.

Also, for ¢ sufficiently small

T, = §<l/0,ll0+61 exp(nfa, (0 — 0) — I(0,, 0)])du(0) < T,,,

where

T = p(0,) exp(na2[2H )27 [nHA{D(n'H, 6 — nie,[H,) — O(—nie,[H)],
@, lies between ¢, and ¢, + d, i = 1, 2.

Now since lim, «, = 0 and «, (0 — 0,) — I(0,, 0) has, for all sufficiently large
n, its maximum value on (—oo, ¢, — d] at ¢, — 4 it follows that

§—eorny—s1 €Xp(n[, (0 — 0,) — 1(0,, 0)]) dv(0) = exp[—(n/2)I(0,, O, — 0)] .
From this,
§—wng eXp(n[a,(0 — b,) — 1(0,, 0)])
~ Sy-s.09 exp(n[a,(0 — b,) — 1(0,, 0)]) dv(0) ,

and an analogous argument gives the asymptotic equivalence of the integral over
(6y, o0) and (6, 6, + 9). '
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Next, we prove that {n*e,} is a bounded sequence. Suppose it tends to — oo
through some subsequence. Then examine 7,,/S,,along this subsequence. Using
the well-known relation

I — O(x) ~ exp(—ix*)/[x(27)}] as x — oo,
we find,
T ~ o(0,)/n]a,]
and
Su ~ 0(0) exp(na, 2 2H )2z nH )
so that

T/ Sux ~ [0(0)/0(0,)] exp (—nev,?|2H,)(Hy'2ane,?)}

which has limit zero contradicting 1 < lim inf T',,/S,,.
In the same way, if nta, — + oo through some subsequence we can contradict
limsup 7,,/S,, < 1.

nl =

Finally, let d be any limit point of ntw,. Letting n tend to infinity through a
subsequence such that nt«, — d we have

ToufSus = (0(0)]0(0.)) (o H,) exp[3d*(H, ™ — H,™)|O(d]H,)|D(—d[H,)
and
ToafSos = (0(8)[0(0) ([ H,) exp[3d*(H,™ — H,™)|Q(d[H,)|D(—d]H,) .
Since ¢ was arbitrary and H,*(3) — ¢"(¢,) as 6 — 0, it follows that
Q][ (0)]HP(=d[¢"(O)]) = 0(0s—)/0(00+) »
and there is only one such limit point, proving Theorem 2.3.

Proor oF THEOREM 2.4. Because of (1.3) we need asymptotic expressions for
1 — G,c,; ¥) and G, (c,;0). For fe(—o0, ] n Q one obtains after some
calculations

I — Gc,; 0)

= exp(n[g,(0) — 9.(02)]) Yo {Fulk, — (log n)/[o,n*(0, — 0)]) — F,(k,)}dr,

where g,(0) = ¢, 0 — ¢(0), g, = [¢"(0)]}, k,, = n¥(c, — ¢'(8,))/o;,and F,, is the df
of the normalized sum n}(X, — ¢’(0,))/o, under ¢,. Next we apply the following
theorem due to Esséen.

THEOREM (Esséen). [f the independent random variables Z,, Z,, - - -, Z, are iden-
tically distributed and have finite third moments, then

H,(x) — ®(x) = (2zn)~* exp(—x?/2)Q\(x) + o(n™})

uniformly in x. Here H, is the df of the normalized sum, ® is the standard normal
distribution function and Q, is a polynomial of degree 2 (see [5], page 210 for exact
form of Q).
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Using this theorem we obtain for # € (— oo, 6,] N Q

_ gy — SXP(n[9.(0) — 9.(05)]) _
1 G.(c,;0) = *"iz‘nhf)}(as - 0)’(2“— (1 + [0 — 0]o, (1)),

where o,(1) goes to zero uniformly for 6 € (— oo, 6,] N Q.
Similarly, for 6 € [0,, c0) N Q

G.(c,: 0) = XPULILO) = 0.09)) (| 1y _ g1, (1)),
et ) = g g (1510 = 0o, (1)
where o,(1) converges to zero uniformly for ¢ € [0,, o) N Q.
A routine calculation will show the Bayes risk of v is

1 +o0,(1) eXp(n[9,(0) = 9.(0)]) 4,9y

r = — — o0 u o) T
w(¥) oy(2mn)! §coy10 00,000 16, — 0]

(.5) = ,<,1,U,§2%1£)§21 exp (n[0,(0,) — 0,(05)])

« S eXp ([0.(9) = 9.(00]) 49y .

(—m,l)]]u[ﬂz‘m) — ]0 _ 0
3
Since the nth root of the integral converges to 1 and
9u(0h) — 9u(05) > —1(0,,0,)
formula (2.7) is valid.

Proor or THEOREM 2.5. To prove (2.9) we need asymptotic expressions for
the integrals in (4.1). For all sufficiently large n we can write

§ w0 €Xp(n[g.(0) — 9.(0,)]) du(0)
=nf{yuff: 60 <6, and y > g,(0,) — 9,(0)} exp(—ny)dy
and
$10.000 EXP(1[9,(0) — 9,(0,)]) dv(0)
—n§Fu0: 0= 0, and y > g,(0,) — .(0)} exp(—ny) dy .
Thus, the following well-known lemma will be useful.

LEMMA. Suppose f is a nonnegative bounded measurable function defined on (0, co)
such that f(v) ~ By~ asy — 0+, where 3 > 0 and a« = 0. Then

n e f(y)exp(—ny)dy ~ n=*I'(a + 1) as n-—oco.
After some calculations using this lemma, one obtains
log § (.o, €xp(n[g,(0) — 9.(6,)]) d(0)

_ Bl (e, + 1) _
= log {[gb'(ﬂg) - ¢'(01)]”‘} a,logn + o0,(1),
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and
108 §(s,.c €Xp(n[9,(0) — 9,(0,)]) dx(0)
Pla, + 1)
= log ,,f,z_,g o — a,logn + o, (1).

76 syl ~ 1

Hence, (2.9) is established with

“4.6) ~og BT+ bl - O
3. (ay + [(/”(03) — ¢"(0,)]

To establish (2.10) observe that from (4.5) we have
r() = (1 + o, () (y2zn)~*

X .Sexp(n[gn(al) - qn(a'i)]) S
l ‘93 - 01

eXP(”[ﬂn(az) - .(/n(aa)])
T b, — 0, )

exp(n[g,(0) — 9,(0)]) du(0)

(0, — O))(0, — 0)
exp(n[g, (0) — 9.(0,)]) dv (0)1
(0 - 03)/(0 - 0‘)

(—e0,0,]

5.00)

By proceeding similarly as above it is easy to show

S exp(ng.(0) = 9.(00]) 4,9
0, — 00, — 0))

= 5 T(a, + D0y — (@)1 + o,(1))

and
10, SPELILD) = 9,09]) 4 )
2 ((} - {}:x)/((lz - 0:;)
= B, U(a, + Hyn==[d"(0,) — $"(0)] (1 + o, (1)) .
Since
exp(n[g,(0)) — 9.(0:)]) = exp{—nl, + n(c, — P"(O))0, — 0,)}
and

exp(n[g,(0.) — 9,(0,)]) = exp{—nl, + n(c, — "(O:))(0, — 0;)} ,

it is routine to combine the above formulas obtaining equation (2.10) with

K = ﬁl r("l + 1)[ r(r,’“ x)] ‘9 - 0) [ ( 5) — 9,’/(01)]_"'
(4.7) X [ﬁ? r((l’z + 1)[(]5/(0{) _ (r/’ (0])] jl((ls-lllt 4//2—0 )
50 + D[P0, — ¢"(0,)]
+ 3,1 + D[27¢ (001740, — 0)7[¢'(0) — ¢'(@)]
% [ﬂl [, + D[¢(0,) — (/,/(03)]«_:|1//_ e .
By + D[¢"(05) — ¢'(0,)]"
Proor or THEOREM 2.6. Similarly as in the proof of Theorem 2.4 write

1 — G (c,; )

= exp(n[q,(0) — 9.0)] S {F.(k, — (log N/[a,nt(0, — 0)]) — F,(k,)}dt
for ¢ (— o0, 0,) N Q, and

G,(c,; 0) = exp(n[g,(0) — 0.(0)]) $i {F.(k,) — Fo(k, + (log O/[o,n*(0 — 0,)])} dr
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for 6 € (0,, o) N Q, where g, = [¢"(0,)]}, k, = n¥(c, — ¢'(8,))/0, and F, is the
df of the normalized sum n¥(X, — ¢’(6,))/s, under 6,. Since the integrals in the
above expressions are bounded above by 1, it is easy to see that

nt S Cwmn [T — Go(c,s 0)]d(0) — 0 as n-— oo

and
nt§igeism Go(C,5 0) dv(8) — 0 as n— oo

for every o > 0. Thus, as expected, the asymptotic behavior is determined by
integration over a neighborhood of 4,.
An application of Esséen’s theorem yields

§o {Fu(k, — (log 0)[[ayn*(0, — O)]) — F,(k,)}dt
= §{@(k, — (log )/[o,n*(0, — O)]) — P(k,)} di + n~*K,(0)
for f ¢ (— o0, 0,) N Q, where
K.(0) = §o{(27)"*Q\(k, — (log 1)/[a,n*(8, — 0)])
X exp(_-%{kn — (log 1)/[a,n*(0, — O)]}*)
— (27)7Q\(k,) exp(—Lk )} dr + o, (1) .

The term o,(1) converges to zero uniformly in #. Since k, - d/s, where d is
given by (2.7), routine analysis establishes for ¢ ¢ (¢, — 4, 6,)

§o{Fu(k, — (log 0)/[oyn¥(0y — O)]) — F,(k,)} dt
= (1 + 0,(1)) s {P(k, — (log t)/[o,n}(0, — O)]) — P(k,)} dt

where 0,(1) converges to zero uniformly on (0, — 4, 0,).
Similarly, for 6 € (6, 0, + d)

Vo lFu(k,) — Fu(k, + (log 0)[[oy(0 — Oo)n*])} dr
= (1 4 0,(1) §i {P(k,) — D(k, + (log 1)/[o(0 — Oo)n*])}

where o (1) converges to zero uniformly on (¢, 6, + 0).
Now we are ready to prove

(4.8) nmn'nég‘m,,,(l_ (e, 0)] du(0)

()((02 ) {exp(—d*[20") — (27)}(d[0,)D(—d]7,)}

and
(4.9)  lim nt§, . G,(c,: 0)dv(0)

= O (exp (=20, + (20)(dJa)D(djay)) -
a7y 2 )t

Since 1(6,, §) = 1"(L(0))(0 — 6,)* for some ((0) between 0 and #,, it follows
that for given 0 < a < 1 we have

0(0) < p(0,—)/a and 1(0,, 0) > Lacj(0, — 0)
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for all ¢ sufficiently near #, on the left. Hence,
limsup, n* § _. ,,[1 — G,(c,; 6)] d»(0)
= limsup, n* §J0_; [1 — G (c,; 0)]o(0) db
= lim sup, n¥(1 + o,(1)) §/s wxp(n[gnw) — ,(0))
X G {@(k, — [10g 1]/[a,n}(0, — 0)]) — D(k,)) dip(8) dO
= lim sup, nay(1 + 0,(1)) §fe_; (6, — 0) exp[—nl(&o, 0)]0(0)
i, {<1><v> - @(km exp[— (8, — 0)y] dy b
= limsup, n*(1 + 0,(1)) §50_, exp[—nl(f,, 0)]o(0)
x §0 (27)” 5exp[— 3x* — nte (0, — 0)x] dx do
< limsup, o(0,—)a~(n/27) §jo_; & exp[—4x* — xnioy(0, — 0)
— tnas (0, — 0)*) dx do
= 0(0y—)(ao)(27)* 3, §7 exp(—4x — xv — ay?) dy dx .
Since a can be chosen arbitrarily close to 1 from the left, it follows that
lim sup, nt §, .0, [1 = Go(e,: 0)] du(0)
= 0(0—)o,{(27) "t exp(—d°[20,") — (d]ay)D(—d]a,)} .
Similarly, the reverse inequality holds when taking the limit inferior of the I.h.s.,
which establishes (4.8). The proof of (4.9) is similar. Formula (2.11) is an
immediate consequence of (1.3), (4.8) and (4.9).

Development of theory for the two-sided problem proceeds similarly as in the
one-sided case, and most of the proofs involve the same basic lines of reasoning.
For this reason the proofs of Theorems 3.1 through 3.5 have been omitted. The
proof of Theorem 3.6, being somewhat unique, is outlined below. Detailed
proofs of all results presented in this paper can be found in [7].

The following formulas define the constants which appear in the statement of
Theorem 3.5.

(4.10) K, = log [»({f})(¢"(05) — ¢"(0, ))“1/511“(01 + D]
(4.11) K, = log [v({0})(¢'(0.) — ¢'(0.))/B. T (e + 1)]
@iy a= G O) T M(al 1) e
' (0y — 03(0, — 0)[¢"(0)] Lo({0a)[¢'(6;) — ¢'(0)]"
@13 B— R = O [ BuD(a + 1) ]
(0 = 0)(0, — 0)[¢" (001 Lo({0)[P"(02) — $'(0.)]"
PrOOF OF THEOREM 3.6. Letd, = ni(a, — ¢’(0,))/o,and k, = n¥(b, — ¢'(0,))/s,
where o, = [¢"'(6,)]}. From Theorem 3.2

(4.14) d, ~ —(log n)t and k, ~ (log n)t .
It will now be shown that
(4.15) exp(—3d,’) = [(27)to(0,—) /oo v({0:))]n~H(1 + o0,(1)),

(4.16) exp(—3k,%) = [(27)0(b,+)/ao({0)]n (1 + 0,(1)) -



ASYMPTOTIC BEHAVIOR OF BAYES RISK 293

Equation (1.4, ii) can be written
1“({00}) = S(—oo,ﬂo)uwo,oo) exp{—n](&o, 0) - ”5(00 - 0)00d7¢} d”(a) ’
from which we obtain '
Smo-n—i log n,0) eXP{—”I(ﬁo» 0) - ”k(ﬁo - 0)‘70dn} d”(ﬁ) - V({ﬁo}) N
From Taylor’s theorem
10,, ) = 05%(0, — 0)" + 39" (L(O)0, — 0)
for some {(¢) between 6, and §. Further, for 6 € (¢, — n=tlog n, 6,)
0(0) exp{—(n/6)""(L(0) (0 — 0y} = o(0,—)(1 + 0,(1))
where o,(1) converges to zero uniformly on (¢, — n=*log n, 6,). Therefore,
lim, n* exp(—3d,")({0.})
= lim, n* exp(—4d,")o(0,—)(1 + 0,(1))
X a1 1060 €XP{—(n05/2)(0, — 0)* — n¥(0, — O)o,d,} db
= (27)*0(0,—)/a, ,
so (4.15) is valid. The proof of (4.16) is similar.
Next, from Esséen’s theorem and the behavior of normal tails, it is shown that
(4.17) v({0DIG (@, 05) + (1 — G, (b, 00))] = o([(log n)/n]?) .

It remains to find an asymptotic formula for the integral in (1.5). Similarly
as in the one-sided problem we obtain the following expressions:

1 — G,(a,; 0) = exp[—nl(b,, 6) — n(8, — 0)o,d,]
X §i {Fu(d, — (log )[[(6y — O)oyn*]) — F(d,)}dt
and
1 — G, (b,; 0) = exp[—nl(f,, ) — n¥(0, — B)o,k,]
X §o {Fulk, — (log )/[(6, — O)a,n']) — F(k,)} dt
for ¢ (— oo, 6,) N Q; also,
G, (a,; 0) = exp[—nl(8,, 0) + n¥(0 — 0,)0,d,]

X $5{Fuld,) — Fu(d, + (log 0)/[(0 — 0y)a,n*])} dr

and
G, (b,; 0) = exp[—nl(8,, ) + n¥8 — 6,)0,k,]

X $o{Fu(k,) = Fu(k, + (log 0)/[(8 — Oo)o,n*])} dt
for 6 ¢ (6, oo) N Q. Analysis using these expressions will yield the desired
asymptotic formula. More precisely, the equation

Vicwny [1 — Gula,; 6)] dv(6)
= (1 4+ 0,(1)) § e sy €Xp[— /(805 0) — 1¥(0y — 0)0,d,]
X 3 {®(d, — (log 1)/[(8, — O)nia,]) — (d,)} dt du(f)
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is obtained by applying Esséen’s theorem and considering separately the integral
over (—oo, 6, — n~*log n] and (¢, — n~*logn, 0,). Further, the r.h.s. integral
over (0, — n~*log n, §,) is found to be asymptotically equivalent to

[(]og n)[n]*(o(0,—)/a,)

while the integral over (—oo, ¢, — n~* log n] goes to zero faster than 1/n, which
implies

S'—w',,o, [1 — G (a,; 0)]d(0) = [(log n)/n]}(p(0,—)[o)(1 + 0,(1)) .
Similarly,

Singemr Galbys 0) du(0) = [(log n)[n]}(0(0y+)[a,)(1 + 0,(1))
These results combine to yield
(418) S(-OO,(/O)U((IO,OO) {Gn(bn’ 0) - Gn(an7 0)} dp(a)
= [(log n)/n]([0(0,—) + o(0s+)][ae)(1 + 0,(1)) -
Formula (3.1) follows from (1.5), (4.17) and (4.18), proving Theorem 3.6.
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