The Annals of Statistics
1974 Vol. 2, No. 1, 219-222

ON STATIONARY POLICIES—THE GENERAL CASE!

By MICHAEL ORKIN

University of California, Berkeley and
Case Western Reserve University

A recent result of Blackwell states that in a positive dynamic program-
ming problem with countable state space, if there is an optimal policy, then
there is a stationary optimal policy. We extend this result by allowing the
state space to be Borel and by proving that if there is an optimal policy,
then for any probability measure ¢ on the state space there is a stationary
policy which is optimal on a set of  measure 1.

1. Introduction. In [3] Blackwell considered positive dynamic programming
problems with countable state space and showed that if there exists an optimal
policy, then there exists a stationary optimal policy. In this paper we extend
Blackwell’s result to the general case by proving:

THEOREM 1. In a positive dynamic programming problem with Borel state space,
S, if there is an optimal policy, then for every probability measure p on S, there
exists a stationary policy which is optimal on a set of y measure 1.

We note that our results also hold if the state space and constraint set are
allowed to be analytic. Also our formulation of the problem, while consistent
with [3], is slightly less general than [2] or [1]. However, our results hold in
this context as well.

2. The dynamic programming model. A positive dynamic programming prob-
lem is specified by three objects S, 4, r, where S, considered the set of states of
some system, is a Borel subset of a complete separable metric space, 4 is a Borel
subset of § x II(S), where II(S) is the set of all probability measures on S, endowed
with the weak * topology and the corresponding Borel o-field (for details about
II(S) see [5]), and where r is a nonnegative bounded Borel measurable function
(called a reward function) defined on 4 x S. Also, we assume for each x € S the
corresponding x-section 4, = {P ¢ II(S) | (x, P) € 4} is nonempty.

When you are at x € S you select in a measurable way (as a function of the
past states and selections) any P e 4,, and move to a new state y € S selected at
random according to P. You then receive the reward r(x, P, y) and proceed as
before. If you select P and you are in state x, your expected reward for this
move is (¢ r(x, P, y)P(dy).

A policy, o, is a sequence o,, 0,, - - -, Where g, tells you how to act on the nth
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move as a Borel measurable function of the previous history 4 = (x,, Py, - - -,
X,-1» Pn_ys x,) Of the system. Starting in a fixed initial state, your object is to
find a policy which maximizes your total expected reward over the infinite future.
For a discussion allowing a more general class of reward functions and policies
and a more general state space, see [4].

A policy ¢ in which ¢, is a function only of the current state is called sta-
tionary; equivalently, any Borel function from § to II(S) whose graph is in 4
defines a stationary policy: when x is the current state, choose P = f(x). If f
defines a stationary policy, we denote this policy by f=. Let W(x, o) be your
expected income starting at x and using ¢, and let U(x) = sup W(x, o), the sup
being taken over all policies. We assume that for all x, U(x) < co. A policy ¢
is called optimal at x if W(x, ¢) = U(x) and optimal if it is optimal at every x.

3. Main results. Assume that for the problem (S, 4, r) there is an optimal
policy 4.

LeMMA 1. For each x € S, denote by A, the set of Pin A, for which the following
equation is true:.

(1) U(x) = \sr(x, P, y) + U(y)P(dy) .
Then

(a) The set A = {(x, P)|Pe A,} is Borel.

(b) For each x, A, is nonempty.

(c) In the reduced problem (S, A, r), U(x) = the original U for each x ¢ S.
(d) In the reduced problem there is an optimal policy.

Proor. Since there is an optimal policy ¢, U(x) = W(4, x), and therefore U(x)
is Borel measurable (in general, the function U need not be Borel, although it
is universally measurable, cf. [4], [6]). Also, the function A(x, P) = § r(x, P, y) +
U(y)P(dy) is Borel measurable (see Lemma on page 266 in [6]). Thus, 4 =
{(x, P)| U(x) = h(x, P)} is the intersection of the graphs of two Borel measurable
functions and hence is a Borel set, proving (a). For (b), claim 4,(x) satisfies (1)
for each x. To see this, suppose P = d,(x) and note that U(x) = W(x, ¢) =
§ r(x, P, y) + E(3 52, 1| y)P(dy), where r, = reward from the ith move. But
E(Y,r;|y) = U(y) almost surely; otherwise, we could improve ¢ by playing
optimally in y after the first move (on a set of positive measure), which would
contradict the fact that ¢ is optimal.

For (c) (d), claim the following policy yields U: use ¢ whenever possible, play
arbitrarily if you reach a position where ¢ is not available (something is always
available, e.g., d,). Using this policy, with probability 1 ¢ will always be availa-
ble. If not, there is a first n, say n, such that with positive probability 6, will
not be available on the nith move. But this cannot happen; an argument similar
to the one for (b) shows you could then improve ¢ after the n,th move, contra-
dicting the fact that ¢ is optimal. []

Reduce the problem so that (1) is always satisfied. Lemma 1 says we can do
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this and that the new U = the original U at every x € S, and there is an optimal
policy (which we shall still call 4).

LEMMA 2. Let x, € S andassume U(x)) > 0. Lete > 0 withU(x,)) — ¢ > ¢. Then
there exists a Borel set B C S with x,€ B and sup, ., U(x) < oo, and a stationary
policy f= such that the policy G: use f~ while in B and G when not in B, satisfies:

(2 Wp(xp, 6) > U(xp) — ¢,

where if x € B, Wy(x, o) is your expected income up to the first exit from B starting
in x and using o, and

(3) W(xy, 0) = U(x,) .

Proor. Theorem 1 of [2] shows there exists a stationary policy >~ for which
W(xo, f©) > U(x,) — ¢/2. Since r is nonnegative and U(x) < oo for each x ¢ S,
we can find a Borel set B containing x, such that Wj(x,, <) > U(x,) — ¢/2 and
sup,.; U(x) < co. Let B = {xe B| Wj(x, f*) > ¢/2}. Then sup,., U(x) < o
and x,€ B (remember U(x)) — e > ¢). Also, Wy(x,, =) > U(x,) — ¢, since
U(x)) — €/2 < Wp(xy f°) £ Wy(xo, f°) + ¢/2 Prob (B — B is hit before B is left
for the first time) < Wy(x,, ) + ¢/2.

For (3), let 7, be your income from the first » moves and let (X; = x,, X,, - - )
be the history of states of the system, using 6. Since (1) always holds, the se-
quence V, = I,_, + U(X,) is a martingale, so that (proceeding as in [3]) for all
n, E(V,) = U(x,), i.e.,

4) E(I,_,) + EU(X,) = U(x,) .
Letting n — oo gives
W(x,, 6) + a = U(x,)
where a = lim,_, EU(X,). We must show a = 0. For this note that
5) E(I —1I,_|Xy, -+, X)) = E(F|X,, --+, X,) a.s.,

where I* = lim,_, I, and F is our future income after X;, ---, X, up to and

including the first re-entry into B (F = 0 if X, € B). Since we are playing opti-
mally up to the first re-entry into B

(6) UX, < E(F|X, -+, X,) + MP, as.,

where M = sup, ., U(x) (remember M < oo) and P, = Prob (X, ¢ B for some
i>n|X, -, X,). Combining (5) and (6) and taking expectations yields

(™) EU(X,) = E(I* — 1,.,) + ME(P,) .

Also,

8) E(I* —I,_,|X,, --+, X,) = (¢/2)P, ass.,

since x € B = Wj(x, f~) > ¢/2 and since we are playing optimally when not in
B. Taking expectations and letting n — oo in (8) yields E(P,) — 0 and letting
n — oo in (7) then yields EU(X,) — 0, i.e., a = 0.
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LeEMMA 3. For each state x there exists a stationary policy which is optimal at x.

Proor. If U(x) = O then any policy is optimal at x. Suppose then x, is such
that U(x,) > 0. Make the Lemma 1 reduction so (1) is always satisfied. Pick a
sequence ¢, | 0 with U(x)) — ¢, > ¢,. Let B, be a Borel set satisfying Lemma 2
for ¢ = ¢,, with f,= the corresponding stationary policy. For each x € B,, reduce
A, to the single action fi(x). For this reduced problem, (3) shows that the new
U(x,) is the same as the original U(x,). Now, in the reduced problem find a set
B, D B, and a function f, (which must coincide with f; on B,) satisfying Lemma
2 for ¢ = ¢,. Reduce the problem again by allowing f,(x) to be the only action
available at x € B, and use (3) again to see that U(x,) remains the same, etc. We
get a sequence of Borel sets B, B,, - - -, and a Borel measurable function f defined
on B = ., B,. Extend f arbitrarily so that it is defined and measurable on S.
Now (2) gives Wy (xo, f*) > U(x,) — ¢, for all n. Thus, Wy(x,, f*) = U(x,), so
W(x, f~) = U(x,), completing the proof.

THEOREM 1. Let y be a probability measure on S. Then there exists a stationary
policy which is optimal on a set of y measure 1.

Proor. Introduce a new state x* with only one action available at x*; namely
u. Define r(x*, u, y) = 0. Since ¢ was optimal for (S, 4, r), its corresponding
extension must be optimal for (S U {x*}, 4 U {(x*, p)}, r). Lemma 3 says there
is an optimal stationary strategy ¢* at x*. But ¢* must be optimal on a set of
¢ measure 1; otherwise, we could modify ¢* after the first move (which must
be £) and do better, contradicting the fact that ¢* is optimal at x*.
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