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A BEST SEQUENTIAL TEST FOR SYMMETRY WHEN
THE PROBABILITY OF TERMINATION
IS NOT ONE'

By DaviDp L. BURDICK

California State University

A sequential test of a statistical hypothesis Hy versus H; is said to be
a test of Robbins type if there is a positive probability that the test will not
stop if Ho is true. Tests of this nature were introduced for testing the
Bernoulli case by Darling and Robbins [1]; an earlier paper of Farrell [2]
deals implicitly with the asymptotic expected sample size of such tests for
testing the hypothesis ¢ = 0 in the parametrized family of generalized
density functions h(0)e?* dy.

Let (X;>7, be independent replicas of a random variable X occurring as the
by-product of a process. As long as the distribution function of X satisfies a
restriction, it is desired to have the process continue. H; would assert that the
distribution function of X satisfies the restriction, while H, would contain all
undesirable possibilities for the distribution function of X. A test of Robbins
type T which stops with small probability under H, but stops the process under
H, with probability one would be of value in regulating the process. In this paper
a test of symmetry of Robbins type is constructed which has power one against
any non-symmetric alternative. A measure of deviation from symmetry is intro-
duced and the order of magnitude of the expected sample size of the constructed
test for small deviations from symmetry is computed. A theorem of Roger
Farrell’s is cited to demonstrate that the order of magnitude of the expected
sample size of the constructed test cannot be improved.

1. The Smirnov statistic. Let X, X,, ---, X, be n independent replicas of a
random variable X with the continuous distribution function F. To test X for
symmetry, that is to test the null hypothesis H, F(—x) = 1 — F(x) forall 0 < x,
Smirnov suggested in 1947 [4] that the following statistic be used:

Rank the n replicas X, X,, - -+, X, in order of increasing absolute value. Let
N,*(x) denote the number of positive X;, X,, - - -, X, of absolute value less than
or equal to x. Let N=(x) denote the number of negative X, X,, - - -, X, of absolute
value less than or equal to x. The Smirnov statistic is sup, |[N*(x) — N=(x)|. For
the purposes of this paper advantage will be taken of the identical roles played
by N*(x) and N~(x) when X is symmetric and calculations will be made on the
statistic T, = sup, [N*(x) — N=(x)].
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THEOREM 1. (Smirnov [4]). Let N = 2n. Then
Pz = w2 (H ),
J N F

2. An analytical formula for P(T, = yN*). It is necessary to determine how
fast the Smirnov statistic grows as successive observations are made on a sym-
metric random variable. The first step in this direction is to determine an ana-
lytical approximation for the distribution function of T,,.

The following theorem, a special case of a problem of Uspensky ([5], page 135),
which is the local limit theorem for the binomial distribution with p = } together
with an error term due to Uspensky, is required.

THEOREM 2. The probability of exactly m successes in n independent trials with
constant probability L is (2/zn)te=** 4+ A, where t is determined by the equation
m = (n + t?)/2 and |A| < 1.2n~% 4 e~ providing n = 100.

Armed with Uspensky’s result, the main theorem of this section follows.

THEOREM 3.
P(Ty = yN¥) = (2/n) §7 e"* du + R(y)

where R is less in absolute value than a term asymptotic to (0.4/y})N=* as N — oco.
PROOF. Set N = 2n, then by Theorem 1:
2j 1
P(Tyz=20) =3, 2 ( 9 ).
(Ty = 2v) 2ii=0 j <1+ ’U> 22j
If 2v = 100, as will be assumed, P(T, = 2v) = v 3%, (1//)((1/(z))})e "2 + A))
where j + v = j + £;(j/2)}, or t; = v(2/j)}, and
0.15)2% .
8 < O+ expl-2))
by Uspensky’s result. Let f(x) = x~%e~** and let R, satisfy the equation
(v/t) Ti= f() = ([=)[§5 fx) dx + R,] .
IR, = §5 f(x) dx + 252, §57 [f(x) — f())] dx.
The function f(x) has its maximum at x = 2% If 20 < n + 1 then
50 $37 ) — fDl dx = (f3Y) — fv) + (f3Y) — fln + 1)) = 2f(3") .

If n + 1 < %9, then the value of the sum is less than f(n 4+ 1) — f(v) which is
less than f{%v%). In the integral, let y = v/x* and conclude:

[R,| < 2/v) Sy e dy + 2(3) w2},
The change of variable y = 2tvx—* yields (v/x?) {2 f(x) dx = (2/m)? (%/np, € dy.
Taking v = y(Nt/2) where 2n = N results in
P(Ty = yN¥) = (2/n)t §7 e dy + R(7) ,
where R(T) g |Rn| + v Z?:u [Aj/jl .

Then
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An easy calculation shows that lim,_ nt|R,| = 0 and lim, ., Ntv 377_, |4;,;| =
0.4/r.

3. The law of the iterated logarithm for successive Smirnov tests. In this section
it will be shown that the fluctuations to be expected in calculating successive
Smirnov statistics when the random variable is symmetric obey the law of the
iterated logarithm: limsup,_. Ty/(2NInInN)? = 1. AsT, = ¥, signum (X)),
the ordinary law of the iterated logarithm implies that

limsupy_.. Ty/2NInln N)t > 1.

The proof presented here that lim sup, .. 7/(2N InIn N)} < 1 parallels closely
the proof for the law of the iterated logarithm as presented in Feller [3]. To
carry out the proof, the following lemma, which plays the role of a similar
lemma in Feller’s presentation, is needed.

Lemma 1. P{max,., T; = x} < 2P(T, = x).

Proor. If max,.,., T, = x, since the Smirnov statistic increases by at most
one from one trial to the next, there must be a first trial for which the Smirnov
statistic equals x. Therefore

P(max, ., T,

k2

§X):Z:‘=1P(Ti:x and T]<X,j<l)
Now

PT,=zx)= >, PT;=x and T; < x,j < i)
X P{T, =z x|T;,=x and T; < x,j<i}.

If T, = x as the first / independent observations of X are ranked in increasing
order of absolute value then let k designate the place in the ranking at which
there are x more positive than negative signs recorded. When the remaining
n — i observations are taken, an unknown number r will be inserted into the
block of those observations with absolute value less than or equal to the absolute
value of that observation holding the kth place in rank at the ith trial. If the
sum of the signums of these r observations is nonnegative, the Smirnov statistic
at the nth observation will clearly be greater than or equal to x. For any r, the
probability that the sum of the signums of the r observations is nonnegative is
the probability that the sum of r independent random variables with probability
1 of being +1 and probability {1 of being —1 is nonnegative. This probability
is always at least one half. Therefore P(T, = x|T, = xand T,_, ;,) = %.

The equation for P(T, = x) becomes the inequality:

PT,zZx)zi>0,PT;=x and T; < x,j<i).

The sum, however, is just P(max,g., T, = x). Therefore 2P(T, = x) >
P(max,,., T, = x). The result that limsup,_. 7Ty/(2NInlnN)! <1 is now
equivalent to the following theorem.

THEOREM 4. With probability one only finitely many of the events Ty >
(2AN In In N)t for any 2 > 1 are realized.
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Proor. Let 7, = (24InIn N)? and let ¢ be a real number greater than one but
less than 1. Let n, be the least integer greater than or equal to p”. The event,
for infinitely many N, T, = y, N, implies the event, for infinitely many r,
max,..., T, =7, _(n,_,)" Using Lemma 1 and the Borel-Cantelli Lemma, to
prove Theorem 4 it suffices to show >, 2P(T, = 7,.,_,(n,_))* is finite. Using
the estimate of P(T, = yN*) in Theorem 3 a routine calculation shows the series

to be convergent.

4. The construction of a level « test of Robbins type for symmetry. Using the law
of the iterated logarithm for successive Smirnov tests, it is possible to construct
a test of Robbins type at a specified level of significance «. If 2> 1, it is a
consequence of the continuity of measure that as C — oo the probability T, <
(2AN In In CN)t for all N = 1 tends to one. To design a test a 2 > 1 is chosen.
Then a number Cis chosen so that the probability that 7', < (2AN Inln CN)} — 1
for all N is at least 1 — /2. The Smirnov statistic is calculated at each obser-
vation and testing stops, with the rejection of the symmetric hypothesis, the first
stage N that it exceeds (24N InIn CN): — 1. With the above choice of C and 1,
the probability of stopping, if the random variable is symmetric, is less than a.
To show that the power of the test is one—that is, that testing stops with prob-
ability one if the random variable is not symmetric—it will be shown that the
test has finite expected sample size against any non-symmetric alternative. This
will be done using a technique suggested by the referee: the first step is to define
a measure of asymmetry.

T = SUP [F(x) + F(—x) — 2F(0)] .

Define the stopping random variable N, (X) for a test 7' of the random variable
X to be the positive integer valued random variable which assumes the value n
if T'stops at the nth stage of sampling. Let 7 be the test of Robbins type described
in this section and let ¢ be the measure of asymmetry just described. Let S,
denote the Smirnov statistic at stage n.

THEOREM 5.
~_EN, o 22
Inln C(EN,) =

Proor. Define ¢/(x, 1) as equal to one if 0 < r < x, minusoneif —x < <0
and as zero otherwise. It is easily verified that sup, |E¢(x, X)| = . As
[22%-09(x, Xj)| = S,, © # 0 together with the weak law of large numbers implies
that the constructed test stops with probability one. Using Wald’s identities,
one obtains: (EN,)(E¢(x, X)) < E|Y)1,¢(x, X;)|. Thus (EN,)(E¢(x, X)) <
ES,, . Taking the supremum over x on the left-hand side and using Sy, =
(24N, Inln CN,)* one obtains (EN,)(r) < E(2AN, Inln CN;):.  As (xInIn Cx)t
is a concave function, Jensen's inequality may be applied yielding: (EN,)(r) <
[2A(EN;) InIn C(EN,)]t. From this, Theorem 5 follows. Theorem 5 shows that
the order of growth of the expected sample size of the constructed test as ¢ | 0
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is less than (22/z%)Inln1/r. The constant 2 may be chosen as close to one as
desired, but the constant C tends to infinity as 2 | 1. Thus there is a trade off
between good order properties of the expected sample size for small ¢ and quick
detection of large departures from symmetry.

5. The best order properties of the constructed sequential test. Let g(x) =
P(X > 0]|X] = x). Testing X for symmetry is equivalent to testing the assertion
g(x) = % a.e. under the measure induced on the real line by the distribution
function of |X|. With each observed value of |X,| there is associated a Bernoulli
random variable Y, which takes the value 1 if X, > 0 and the value 0 if X; < 0.
Consider the testing problem in which g,(x) = § + 40k(x) where |A(x)| < 1 and
the distribution of |X| does not depend on #. In this problem the asymptotic
order of the expected sample size as ¢ | O for a test of Robbins type must be at
least the minimum order of the expected sample size for a randomized test of
Robbins type testing H,p = } versus H, p + } using a sequence of independent
Bernoulli random variables each with probability p(6) = § + 6/2 of equalling
one. This statement follows as the statistician can simulate the distribution of
|X|; if |[X| = x he randomly decides with probability |#(x)| whether to observe
the Bernoulli variable with unknown bias #, otherwise he simulates a Bernoulli
variable with p = 1. If h(x) = 0, the statistician uses the Bernoulli variable
specified at the last step; otherwise he uses one minus it.

Theorem 1 in R. H. Farrell’s paper [2] proves that the order of the expected
sample size must be at least (InIn 1/)/6-2. For the case in which A(x) = 1,
¢ = 7 and this shows that the order properties of the expected sample size of the
constructed test cannot be improved.

The author had obtained a different and independent proof of the order of
magnitude of the asymptotic expected sample size. This proof depended only on
the theorem of the mean and the fact that the harmonic series diverges. This
elementary proof can be modified to obtain the same result Farrell obtained for
the Bernoulli case; however it does not appear possible to derive Farrell’s general
theorem from purely elementary considerations.
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