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AN ASYMPTOTIC EXPANSION OF THE DISTRIBUTION OF
THE STUDENTIZED CLASSIFICATION STATISTIC p*?

By T. W. ANDERSON

Stanford University and Center for Advanced Study
in the Behavioral Sciences

The classification statistic W is used to classify an observasion as
coming from one of two multivariate normal populations with common
covariance matrix and different means when these parameters are estimated
from two samples, one from each population. The distribution of ¥ de-
pends on the Mahalanobis distance between the populations, «. When the
sample sizes approach infinity, the limiting distribution of (W — a)/a? is
the standard normal distribution if the observation is from the first popula-
tion; the same is true of (W — }a)/a?, where a is an estimate of . This paper
gives an asymptotic expansion of the distribution of (W — 4a)/a} with an
error of the order of the square of the number of observations. The cor-
rection to the standard normal distribution function is the standard normal
density times a third-degree polynomial in the argument divided by the
sum of the observations (less 2). '

1. Introduction. A samplex,”, ..., x}) is drawn from the normal distribution
N(p®, Z), and a sample x,®, - . -, Xy is drawn from N(g¢®, Z). The p-component
mean vectors g and ¢® and the common covariance matrix X are unknown;
it is assumed that g® # p® and Z is nonsingular. Another observation x is
drawn. It is desired to classify this observation as coming from N(g®, X) or
N(p®, Z). (See T. W. Anderson (1951) or T. W. Anderson (1958), Chapter 6.)

The observation x may be classified by means of the classification statistic

(1) W= (X — XPYSx — L(X® 4 X?)],
(2) X0 — Ni S x X2 — le_ T X,
1 2

(B)  nS = Min (5% — XY — XY T (5 — X — X
and n = N, + N, — 2. The rule is to classify x as coming from N(g®, Z) if
W > c and from N(p®, Z) if W < ¢, where ¢ may be a constant, particularly
0, or a function of X, Xx»_ and S.

The distribution of W depends on the parameters g, £, and X through the
squared Mahalanobis distance

@ @ = (i — p) B — ),
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which can be estimated by
(5) a = (i(l) — )_((2))’S—1()_((1) — )_((2)) .

The limiting distribution of W as N, — oo and N, — oo is normal with variance
a and mean }e if x is from N(p®, X) and mean —la if x is from N(p®, X).
Bowker and Sitgreaves (1961) for N, = N, and Okamoto (1963) (with correction,
Okamoto (1968)) gave asymptotic expansions of the distribution of (W — Lla)/a?
for x coming from N(g®, Z) and (W + la)/at for x coming from N(p®, Z)
to terms of order 1/N?, 1/N,?, and 1/n* when N, — oo, N, — oo, and N,/N, — k,
a finite positive constant. In particular, Pr{W < 0} was evaluated. (In Bowker
and Sitgreaves (1961) the coefficients a;, and a,, should be replaced by —a,, and
—ay,, respectively.)

The statistician, who wants to classify x, may take ¢ to be a constant, perhaps
0, and accept the pair of misclassification probabilities that result. The asymp-
totic expansion of the distribution of (W + la)/a? gives approximate evaluations
of these probabilities, which are functions of the unknown parameter « as well
as of c.

On the other hand the statistician may want to determine the cut-off point ¢
to adjust the probabilities of misclassification. Since the limiting distribution
of (W — }a)/at and (W + }a)/at are N(0, 1) when &'x = p® and &x = p?,
respectively, a first approximation to the pair of misclassification probabilities
is @(fa + cat) and O(—La + cat), where ®( ) is the cumulative distribution
function of the standard normal variate. Since a is an estimate of «, one might
base his choice of ¢ on the fact that the limiting distributions of (W — la)/a* and
(W + %a)/a* are N(0, 1) when &x = g and &'x = p®, respectively. In this
paper we make asymptotic expansions of the distributions of (W — 1a)/a* and
(W + %a)/a? in these two cases, respectively.

2. The asymptotic expansion. The statistics x, X, X® and S are independently
distributed according to N(g, Z), N[#®, (1/N,)Z], N[p®, (1/N,)Z], and W (Z, n),
respectively; here g = &’x and W(Z, n) denotes the Wishart distribution with
degrees of freedom. We write

(6) W —la = (X — XPYyS(x — XV).
Then
(1) Pr {u < u}

at -

= Pr{(x® — x?)S7(x — p) < y[(X? — XPYS{XD — X?)]t
+ ()—((1) _ 2(2))/3—1(’—((1) _ ﬂ)} .
Since x has the distribution N(g, Z) independently of X*, x», and S, the con-
ditional distribution of (X — X®)'S=Y(x — ) is N[0, (XV — X®)'S1EZS-}(xV —
x®)], and
8 r_ (i(l) — ,—((2))’3—1(,( — ‘Lt)
( ) - [(’—((1) _ i‘z’)'S‘12S‘l()_((1’ _ )—((2))]}
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has the distribution N(0, 1). Then (7) is

) Pr{Wa—%"

< u}

_ Pr r < u[(i‘” — )‘(‘”)’S—l(i‘“ _ im)]% + (i(l) _ i(z))’s—l(i(l) — ,Ll)
= [()—((1) _ i(Z))IS—lZS—l(i(l) _ )—‘@))]g
u[(i‘“ . i(2))ls—1(i(l) . )—((2))]7} + (i(l) _ i(2))’S—1(i(l) _ ﬂ)
[(xV — 2(2))/5—125—1()—((1) . 2(2))15 :l ’

:gcp[

where the expectation is with respect to X, X, and S.

The distribution of W and a is invariant with respect to the transformations
x* = Ax 4+ b, x,*® = Ax;® + b, j=1, .-+, N}, and x;*® = Ax;® + b, where
A is nonsingular. The maximal parameter invariant of these transformations is
the distance «, given by (4). We can choose A and b to transform X to I,
2 — p,to 8 = (4,0, ...,0), where A = a?, and g, to 0. We shall first treat
the case where g = g,.

Let Y, Z and V be defined by

S _ %@ _ 1 |
(10) x"—x‘”_a_;_ﬁy’ Xm_ﬁz’
(11) S=I+1V.
nt
The joint distribution of (Y’ Z')" is
n<i + i> LR
(12) N <°>, NN/ N,
0 i | R |
N, N,
Then (9) is
LT RN
a n n n
1 R P
(13) +—<8+_Y><I+_V> z
nt nt nt
ALl 5y (o) ]
n n n
We can write
1 \y 1 1 1 1
(14) <I+—EV>1—I—EV+7V2—EVS+FV4
_—17V5<I—I—_1_V>_1’
nt nt
1 -2 2 3 4 5
I el [ vz T ys R 2!
(1) <+n*v> I n*V_i—nV n%V+nzV
_ L(6V5 + iV6)<I + L )‘2.
nt n% n%
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Then (as Taylor series expansions) we have -
' - 3
L (V) ()]
nt nt nt
- [a'a + 2oy —ave) + L ovie 1+ vy — 20vY)
n n
b
(16) + (Y. Z,V)
2Ant

Ay L oy—ove 4 L [i (@'V3 1+ Y'Y — 23'VY)
n

_ 8_25 Q¥'Y — a'va)ﬂ + (Y, Z, V),

0 b byl by

=loz+ Lovz_avz) 1z, v,
n n

[ ) () o)

- [a'a + 2oy —28v8) + L 3arvie + Y'Y — aavy)
n n

(18) (% 2V [
1

11 1

Lo L ev—ave — L[ 1 ave + vy _ asvy

A o ) n[zm( Vo + vY)
_ % @Y — a'va)ﬂ + r(Y, Z, V).

Il

Here r,,(Y,Z,V), j=1, - .., 5, is a remainder term consisting of 1/n? times a
homogeneous polynomial (not depending on n) of degree 3 in the elements of
Y, Z, and V plus 1/n* times a homogeneous polynomial of degree 4 plus a re-
mainder term which is O(n~#) for fixed Y, Z, and V.

The argument of ®( ) in (13) is the product of

1 u
A4+ | =2 (20'Y — d'V8 8'Z
+n%[2A( ) + }

17 u
19 —| == (0'V?3 + Y'Y — 28'VY
(19) o[ @Vt )

— Sk QOY — OV 4 Y'Z — a'vz]

+ 1, (Y, Z, V)
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and (18), which is

1T u
’ . 4 A VY — 8V
O LALES )+ L @VY = V)

(20) + % (—d'YSVI + L(3'VI)) + % Y'Z

1, 1, 1
— L OVL - VT Ea'zafva] + ra(Y, Z, V)

—u % iz, V) + % D(Y, Z, V) + ro(Y, Z, V) ,

say [as the definition of C(Z, V) and D(Y, Z, V)] and r,,(Y, Z, V) and r,, (Y, Z, V)
have the same properties as r,,(Y, Z, V), j=1, ---, 5.
A Taylor series expansion of ®( ) in (13) gives

(Dl:u + _1; c(z, V) + _1- D(Y, Z, V) + ru(Y, Z, V)]
@1) — Q) + ¢(u){ czv) + L [D(Y, Z,V) — 3uC¥(Z, V)]}
Pz )+ L2V vz ),

where r(Y, Z, V) is a homogeneous polynomial (not depending on n but depend-
ing on u) of degree 3 in the elements of Y, Z, and V, (Y, Z, V) is a polynomial
of degree 4, and 7y, (Y, Z, V) is a remainder term, which is O(n~%) for fixed Y, Z,
and V (and u).

Let J, be the set of Y, Z, and V such that [y,| < g(log n)}, |z,| < g(log n)*,
i=1,.--,p,and |v ] <2logn, i,j=1,---,p, where g > 2(1 + k)/kt. As
shown in the Appendix,

(22) PriJ}=1—o(n?.

The difference between &’®( ) and the integral of @( ) times the density of Y, Z,
and V over J, is o (n7%), because 0 < ®( ) < 1. InJ, each element of Y, Z, and
V divided by n? is less than a constant times log n/nt. The part of the remainder
ri(X,Z, V), j=1,---,7, that is O(n~?) for fixed Y, Z, and V can be written as
a homogeneous polynomial of degree 5 in the elements of Y, Z, and V with
coefficients possibly depending on Y, Z, and V (by use of Taylor series with
remainder); each coefficient is bounded in J, (for sufficiently large n). The same
holds for r,,(Y, Z, V). Hence, in J,

(23) |710.(Y, Z, V)| < constant X <1°g ”) ,

and the integral of this times the density of Y, Z, and V over J, is o(n7?).
Since fourth-order absolute moments of Y, Z, and V exist and are bounded,
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the integral of r(Y, Z, V) times the density of Y, Z, and V over J, is bounded;
hence, the contribution of this term (with the factor n~%) is O(n~?).

The differences between n~*&C(Z, V), n*&[D(Y, Z, V) — $uC*Z, V)] and
n=3ryY, Z, V) and the integrals over J, of n*C(Z, V), n=[D(Y, Z,V) — 3uC*Z, V)]
and n#ry(Y, Z, V) times the density of Y, Z, and V, respectively, are O(n“z).‘
Thus

Pr {E’_:.%_" < u}
at -
— D) + $(u) {_1? “C(Z, V) + L [gD(Y, Z,V) - 2z, V)}}
, n n
(24) + (Y, Z, V) + 0(n~)
h
— O(u) + (u) {_1{ #C(Z, V) + - [gp(y, z,v) - Lo, V):H
n n
+ O(n™)
because the third-order moments of the elements of Y, Z, and V are either 0 or
o).

Since C(Z, V) is linear and homogeneous, & C(Z, V) = 0. Since (Y, Z) and
V are independent,

ED(Y,Z,V) = — L &0V + % vy

1 1
25 — EYL — —EYZL3
(25) . +5 ©
1
= —(p—2 — 12
(P =D+ (= D3

since
(26) EXVIO = EIVV'S = N Fir, v},
= N(E] 4 L&) = A(p + 1),

(27) E(OVI) = Al = 204,
‘We have
2 1
28 “CHZ, V) = XLV + — £3ZLL'3
(28) (Z, V) A (3'Voy + v
= %_uz + %1 .

Replacing n/N, by its limit 1 + k and substituting in (24), we have

Pr {u < u}
at

(29) =0 + g LoD 1+ 8 = (0 = § o+ Hou = 3
+ 0(r)
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when &x = p#®. Interchanging N, and N, gives

pr{mg u}
at -

_ 1 p—1
(30) = O() — - 9(0) |2 (1 +
+ 0(n™),
when &x = p®.

3. Discussion. If N, = N, and costs of misclassification are equal, the minimax
classification procedure is defined by the cut-off point 0 for W; a cut-off point
different from 0 will increase one probability of misclassification and decrease
the other. The inequality W < 0 is equivalent to (W — 1a)/at < —1ia?, and
—1at estimates —la? = —1A. For most purposes, then, one is interested in
u < 0. Then the correction term to ®(x) is nonnegative; use of the normal
approximation alone tends to underestimate the probability of misclassification.
The correction term decreases as the distance A between the two populations
increases if p > 1 and for nonpositive u the correction term increases with the
number of coordinates p (for fixed A).

The expansions of Pr{(W — lat)/at < u|p = p®} and Pr{(W + Llat)jat <
u|p = p®}given by Okamoto (1963) can be obtained by the method of this paper.
It is interesting that the expansions for (W + }at)/a? here are much simpler than
the expansions for (W + lat)/at as given by Okamoto. At g = —3A = —fa?
(corresponding to the cut-off point 0) the correction term of order 1/n to the
probability for (W + Lat)/at is about & as much as for (W + la?)/at.

As indicated in the introduction, the statistician may want to use the evalua-
tion of Pr {(W — la*)/at < u} in order to set the cut-off point ¢ = uat 4 la to
obtain a specified probability of misclassification or at least approximate a
specified probability. The crudest approximation is to take # so ®(u) is the
specified probability. This approximation, however, is not very good; the error
of the approximation is evaluated above to order 1/n!. The error depends on
the ynknown parameter if p > 1. To get a better approximation let ®(u + du)
be the specified probability, where

(31) ﬁuz—%[_(p___lig_lﬂ_(P_%+%k)u_%uaj|.
Then the actual probability is the specified one with an error of order n~2.
For further discussion, see Anderson (1972).

Acknowledgments. The author is indebted to John Miller and Fred Nold for
assistance in preparing this paper.
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APPENDIX

To control the errors of approximation we define the set J, by |y;| < 2(log n)?,
|z;| < 2(logn)t, j=1,.--,p,and |v,;| < 2logn, i,j=1,---,p. We want to
show Pr{J,} =1 — o(n7?).

We have when £ = I and £, = g(log n)}/[n(N,™* + N,™})]?

2
Gyt Vi et dy
2etha’
@ay'h,
— I: 2n(n + 2) ]J" 02N Ny/[n(n+2)]

©g*N, N, log n '

= o(n"?)

Pr{|y;| > g(log n)}} =

(A.1)

by use of Mill’s ratio. Then
(A.2)  Pr{ly,| <g(logn), |z;| < g(logm),j=1, .-, p} = 1—o0(n7?).
Now consider V = (v;;). The moment generating function of nS when
Z=1Iis
(A.3) & exp[tr OnS] = & exp[n X7, 0,;5,;]
= I — 20|
where @ = @’. We use the Tchebycheff-type inequality (Chernoff (1952), for
example) for an arbitrary random variable X and ¢ > 0
(A.4) e lg el = Eel ¥ = Pr{X = a}.
Then
Pr {v,; > 2log n} = Pr {nts;; — n* > 2logn}
(A.5) = Pr {ns;; > n + 2ntlog n}
< (1 — 20)~t"exp[—0(n + 2ntlog n)]
for0 < 0 < 4. Let 0 = y/nt, where y > 1. For n > 4y*
Pr{v; > 2logn} < (1 — 2y/nt)~ " exp[—2y logn — kn?]
(A.6) < constant X exp[—2y log n]
= O(n~%)
= o(n7?).
Similarly Pr {—v,, > 2logn} = o(n~*). We have for i  j
Pr {v,; > 2log n} = Pr {nts,; > 2 logn}
(A.7) = Pr {ns,; > 2ntlog n}
< exp[—02nt log n](1 — 6%~
for 0 < 0 < 4. Let 6 = y/nt, where y > 1. For n > 4y*
(A.8) Pr {v;; > 2log n} < constant X exp[—2y log n]

= o(n7?).
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Similarly Pr {—v,; > 2logn} = o(n™?). Then
(A.9) Pr{lv,;| <2logn,i,j=1,---,p} =1—o(n7?).
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