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f(x) is a uniformly continuous density which equals zero for negative
values of x, has a right-hand derivative equal to a at x = 0, where 0 < a <
oo, and satisfies certain regularity conditions. Xj, --., X, are independent
random vaAriables with the common density f(x — 6), ¢ an unknown param-
eter. Let 6, denote the maximum likelihood estimator of ¢, and define ax
by the equation 2ax? = anlogn. It was shown by Woodroofe that the
asymptotic distribution of au(f — 0) is standard nofmal. It is shown in
the present paper that f, is an asymptotically efficient estimator of .

Let f be a uniformly continuous density which vanishes on (— oo, 0] and is
subject to regularity conditions to be described. Among these conditions is one
which requires that @ = lim f”(x) exists as x — 0 from the right, with 0 < @ < oo.
Let ® = (—oo, co) be the parameter space of the unknown parameter 6. Let
X, -+, X, be independent chance variables with the common density f(x — @),
at the point x of the real line. Let {f,} be a consistent sequence of roots of the
likelihood equation. It was proved by Woodroofe ([4]) under two different sets

of regularity conditions (either of which we henceforth adopt) that, for any 6,
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(1) lim, .. Py{a,(d, — 0) < y} =
for any y, where 2a,’> = anlog n.

It is obvious that we are here dealing with what is called a “non-regular” case
(see, for example, [1]) since the normalizing factor is not nt. Consequently the
question remains open whether the maximum likelihood (m.l.) estimator 4, is
asymptotically efficient. If a proof of this is not available then only faith in the
eventual appearance of such a proof would justify the statistician’s use of the
m.l. estimator. In this note we prove the asymptotic efficiency of the m.l. esti-
mator by proving that it is asymptotically equivalent to a maximum probability
(m.p.) estimator ([2], [3]). The precise statement of efficiency is given in the
theorem below. Our proof will be brief and will utilize some results of [4].

Let 6, now be any fixed point in ®. We shall say that a sequence of functions
{l,(+)} converges in H(k) (to a constant) if the following is true: Let {y,,n =
1,2, ...} be any sequence of real numbers such that |a,(y, — 6,)| < & for n =
1,2, .... Then the sequence of real numbers {/,(y,)} converges (to the constant).
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Let R = (—r, r) be any interval centered at the origin. We now state and
prove the following.

THEOREM. Let (T} be any competing sequence of estimators such that, for any
h > 0, we have, for 6 in H(h),

(2) lim, ., [Pya,(T, — 0) in R} — P,fa,(T, —0,) in R}]=0.
Then
3) lim sup, .., Py {e,(T, — 6,) in R} < (2 20 §7, e dy .

This is the statement of efficiency for 4,. If, as is usually required in the
literature (but not necessary for us), a,(T, — 0) is also asymptotically normally
distributed (in P,-probability for every #) with mean 0 and variance ¢,%T), from
(1) and the Theorem we immediately obtain that

4) o (T) =1, 6 in O.
This is the classical statement of asymptotic efficiency.

PrROOF OF THE THEOREM. An m.p. estimator Z, can be obtained as follows.
Let {4,} be a sequence of positive numbers which approach zero. Then Z, satisfies

(5) @, §5ntrn i X, — 0) dO = a,(1 — 4,) sup, §4+7/ TT%, f(X, — 6) d6 .

—r/ay,

Define t = a,(§ — 0,) and
(6) Va(t) = [T /(X — ON T fX, — 6,17

Since the second factor of V,(¢) does not depend on 6, we may rewrite (5) as

(7 Saro IZ”ifZ Vo) dt z (1 — 2,) sup, §73” Z o Va(p) dt

Let k(+) be any positive function defined on the positive integers such that, as
n— oo,
8) k(n) — oo, a, %k(n) — 0.

It is a consequence of a remark made in [2] (proved in greater detail in [3]) that,
in the present problem, Z, remains asymptotically efficient if the supremum oper-
ation in the right member of (5) is performed with respect to d in the #-interval

(9) [W”(IYI’ T X%) - @ an_l’ wn(Xla ) n) + k(n) j|

where ¥, is any estimator of 6, such that
(10) W, — 6] = 0,(,™) -

Of course, the length of the interval (9) approaches zero. As ¥, we choose 4,
which, it follows from (1), satisfies (10). For k(+) we have a choice among many
functions, and we choose

(11) k(n) = (logn)*, Vn.
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It will be shown in the Appendix that Lemmas 3.4 and 3.5 of [4] hold with
their constant k replaced by our k(n); we assume this for the moment. It then
follows from this version of these lemmas that
|log V(1) + 37

(12) sup, po

converges to 0 in P, -probability as n — oco; the supremum in (12) is with respect
to ¢ in the r-interval

(13) [0, — (log n)t, 0, + (log n)t] .

(When ¢ = 0 the expression being maximized in (12) becomes 0/0, and we define
it as 0.) The t-interval (13) contains the s-interval into which the @-interval (9)
with the present choice of ¥, and k(n) is transformed by the relation r = «, (60 —
9n). From the above we conclude that, if we set Z, = §,, there exists a sequence
{2.} sAuch that (7) is satisfied with P, -probability approaching one. This proves
that ¢, is asymptotically equivalent to the m.p. estimator Z,.

It remains only to prove that 4, satisfies the conditions (3.2) and (3.3) of [2]
(or the conditions (3.5) and (3.6) of [3]). This follows immediately from (1) and
the fact that 0 is a translation parameter. This proves the Theorem, so 6, is
asymptotically efficient.

As mentioned earlier, the {#,} of [4] is a consistent sequence of roots of the
likelihood equation. Since the statistician solves the likelihood equation for a
particular value of n, how is he to recognize which roots belong to a consistent
sequence and which do not? (As pointed out to one of us by the late Professor
Abraham Wald, the same question can be raised about Cramér’s proof of the
consistency of the maximum likelihood estimator[1, Section 33.3].) The following
procedure may be helpful; it is an application to the present case of the remark
made in [2] and used by us earlier in this paper. Let k,(+) be any function on the
positive integers such that k,(n) 1 co, n~tk,(n) — 0. Then any consistent sequence
will eventually lie in an interval of length n-tk,(n) centered at min (X, - .., X,).

APPENDIX
Define
M, = min (X, ---, X,) , N, =max (X, ---, X,) .

An examination of the proofs of Lemmas 3.4 and 3.5 of [4] shows that the proofs
would remain unchanged if our k(n) were substituted for their k, excepting only
that we must now show for Lemma 3.4 that

(14) P,,O[Mn_o(,}__in_:@]_,l

3 ea,,

and for Lemma 3.5 that, in addition,

15 P lb—N=_% |,1.
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For large n the left member of (14) is greater than

(1 _ i@i)" - (1 _2_(1033»_”)&)”_»1 )

& e’nlogn

This proves (14). As for (15), this statement is weaker than the conclusion of
Lemma 2.2 of [4], so it certainly holds.

The above argument shows that k(+) could have been any positive function
which satisfies (8), (14), and (15).
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