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ON THE NOTION OF VALUE FOR GAMES WITH
INFINITELY MANY STAGES!

By SHMUEL ZAMIR
University of California, Los Angeles

The value of a zero-sum two-person game with infinite number of stages
can be defined either directly or as the limit of the values v, of the truncated
games with n stages. It is shown that these two concepts are not equivalent.
There are games in which lim v, exists but which do not have values as
infinite stage games.

Introduction. We consider a relatively new class of multistage games called
repeated games of incomplete information: A chance move chooses, (according to
a known distribution of finite support) the payoffs of a zero-sum two-person game
T' given by a finite matrix. Each player is given partial information (possibly
no information) about I' which is then played repeatedly between the same two
players. After each stage, each player receives some information which may
depend only on the actual game chosen by chance and on both players’ moves
in that stage. We are interested in the average payoff per stage in such a mul-
tistage game. Denote by I, the game with n stages, and by I',, the game with
infinitely many stages. Clearly T', has a (minimax) value. As for the notion
of value for T',,, two alternative approaches seem quite natural:

(i) The asymptotic approach according to which the game with infinite number
of stages is a “limit” of the n-stage games I', as n — co. The suggested value
would then be lim, . v, where v, is the value of T',, provided that this limit
exists.

(ii) The direct approach according to which an infinite stage game I',, is defined
directly with infinite dimensional strategy spaces. In spite of some technical
difficulties T',, and its value v,, can be defined in this way. Clearly v, may or
may not exist.

Besides the mathematical difference, the two approaches reflect a difference
in the situation modeled by the infinite stage game: In the asymptotic approach
the infinite stage game is an approximation for a game with a very large—but
known—number of stages. In the second approach T, is a model for a game
with a very large number of stages in which the players do not know exactly
the number of stages that are going to be played.

The main mathematical question in this context is: Are the two notions of
value, lim v, and v,,, equivalent? In particular, does the existence of one of
them imply the existence of the other?

In most of the games treated in the literature, including stochastic games (see
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for example [3] and [5]), v.. and lim v, were equivalent and the computation of
lim v, was considered a “method” to find the value v.,.

It is shown in this paper that lim v, and v., are not equivalent. There are games
in which lim v, exists while v, does not exist:

In Section 1 we define I',, T',, and v,.. In Section 2 we discuss an auxiliary
game which will be used in Section 3 to construct a game in which v, does not
exist while lim v, exists.

1. The notion of value. We denote by L and M the finite sets of pure strategies
of player I and II respectively in I'. The sets of pure strategies in I, will be
I"=Lx ...xLand M*=Mx -.-- x M. InT_ the sets will be L* = L x
Lx...and M>=Mx M x -... Let 2,!and 2,'' denote the kth-stage infor-
mation state of player I and II respectively, i.e. 2,'(4,'") is all the relevant
information known to player I (player II) after the (k — 1)th stage as he comes
to play the kth stage. (4,! may contain among other things any available infor-
mation about previous moves of the players or chance.) Denote by A,'and
A, the set of all possible kth-stage information states for player I and player I
respectively. (In this paper A,'and A" will be finite for all k.)

Let Q be the measure space resulting from imposing the Lebesgue measure on
the unit interval [0, 1]. A mixed strategy of player I is a sequence ¢ = (g, 75, - - -)
(n-tuple in the case of T', and an infinite sequence in the case of I',,) of measur-
able functions ¢, : Q x A, —» L. A mixed strategy for player II is defined simi-
larly. (This is the definition suggested by Aumann in [1] (page 638).)

In comparing T', and T',, for n = m, the relevant notion of payoff is that of
“payoff per stage.” Therefore we define the payoffin I, to be n™* 317_, h; where
h; is the payoff in T' at stage j. With this convention I', is well defined and all
I, n=1,2,3,..., are comparable both in payoffs and in values.

In T, the natural definition of payoff would be lim, . n™" >}7_, #;, but as
pointed out by Aumann and Maschler in [2], this limit may fail to exist for a
given pair of strategies. Nevertheless, the value v,, can be defined without de-
fining the payoff: For any pair of mixed strategies ¢ and z in ', let p,(d, 7) =
E(n~* y3*_, h;(o, 7)) be the expected average payoff in the first n stages.

DeriniTION. The infinite stage game T',, is said to have a value v,, if for each
¢ > 0 there exist a pair of strategies; o, for player I and z, for player II such that:

)] limsup p,(0,7,) < v, + ¢, for all o,
2) lim inf p,(0,, 7) = Ve — ¢, for all =.
2. An auxiliary game. We describe our auxiliary example schematically by:

: 3
. 0 8 8 0
ff mat G, = < > G, = < >
payoff matrices ) 0 s ; g 0
information matrices H, = a a> H, = <a a>
b ¢ d c
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The game T', (or I',)) is played as follows: Chance chooses one of the two 0-
sum 2-person games G, and G, each with probability 4. Inaddition to the payoff
we are interested in the stage of information of the players after a play of the
game which is described by the “information matrices” H, and H, respectively.
This may be interpreted to mean that after each play of the game a referee an-
nounces one of four letters, a, b, ¢, or d according to which strategies were
chosen by the players and which game was chosen by chance. (Thus if a is an-
nounced, player II learns that player I played the top strategy; if ¢ is announced,
both players learn which strategy was chosen by the other player, and if b or d is
announced, both players find out which strategy was chosen by the other player
and which game was chosen by chance.)

After chance has chosen one of the games, neither player is informed of the
choice. The chosen game is then played repeatedly: n times in the case of T',,
infinitely many times in the case of I',. After each play of the chosen game,
the players are credited (or debited) with the appropriate payoff, and the referee
makes an announcement in accordance with the information matrix. The players
are not informed directly of the payoff. (It may be thought of as being held for
them until the end of the supergame.) They do remember, in addition to the
information announced for previous stages, the strategies they themselves chose
at the previous stages.

The main feature of the information matrices in our example is that no infor-
mation about the choice of chance is gained by either player unless I plays the
bottom strategy and II plays the left strategy, in which case the choice of chance
is completely revealed to both players, and the average payoff from that stage
on, is O (up to an error term of the order of 1/n).

LemMMA 2.1. Both v, and lim_ v, exist and

Nn—r00 n

v, =1lim _, v, =4.

n—0 n

Proor. We denote the (pure) strategies of player I by T (top) and B (bottom)
and those of player II by L (left) and R (right).

Let g, be the strategy of player I to play T in all stages. Clearly, for any
strategy 7 of player II and any n,

ouon ) = 4.

Let 7, be the strategy of player II to play L until (if ever) d is announced and
then to play R repeatedly. Then for any strategy ¢ of player I and any n we
have p,(o, 7)) < 4. Hence v, = 4 which yields lim,__ v, = 4. Evidently we
have also: lim inf p,(g,, 7) = lim sup p (s, 7,) = 4 for all ¢ and =, which means
Voo = 4,

3. The main example. The game in our main example is of the same type as
that of the auxiliary game. The only difference is that here chance chooses one
of three 0-sum 2-person games. The probabilities, the payoff matrices and the
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information matrices are:

i ; )
; 0 8 8 0 0 —4
ayoff matrices G :< > G :< > G :<
pay =0y g = (5 o =g O)
information matrices ~ H, = <a a> H, = <“ a> H, = <“ “> .
b ¢ d c e f

Again we denote the (pure) strategies of the players by 7, B and L, R. The
supergames I', and ', are played as described in the auxiliary game.

Let us consider first the situation resulting in the supergame when a certain
pair of (pure) strategies is played at some stage:

(T, L) No information about the choice of chance is gained (by
any player) and the expected payoff is 2 (for the stage under
consideration).

(T, R) No information about the choice of chance is gained and
the expected payoff is 0.

(B, L) The choice of chance is completely revealed to both players
and the (average) expected payoff in the supergame is de-
termined to be O (up to an error term) as the players will
play optimally in the chosen game.

(B, R) The choice of chance is partly revealed, namely: with proba-
bility %, f will be announced which implies that chance has
chosen G, and therefore the payoff in the supergame is de-
termined to be 0. With probability }, ¢ will be announced
which brings the players to the situation described in the
auxiliary game. If in that situation the players play opti-
mally, the payoff in the supergame is determined to be 4.
We conclude that when (B, R) is once played, the ex-
pected payoff to the supergame is actually determined to
be%~0+%-4=2.

THEOREM 3.1.
1

IA

v

IA

n

1+i’ n=1’29"
n

Proor. We will outline the proof. It is straightforward to fill up the formal
setup and details. It can be found in [7]. -

Let 7, be the following strategy of player II: Play (4, ) as long as a is being
announced and switch to the corresponding optimal strategy when b, ¢, d, e, or
fis once announced. It is easily seen that p, (o, 7,) < 1 + (1/n) for any strategy
o of player I.
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In constructing an optimal strategy for player I in I', we make use of the
minimax theorem and assume that player I knows player II’s strategy z, from
which he can calculate at each stage i the (conditional) probability #; of choosing
L. Now let g, be the following strategy: At stage i play the corresponding
optimal strategy if b, c, d, e or f has already been announced; otherwise play T
if 7, = 4 and B if 1, < }. Since clearly p,(g,, ) = 1 for any strategy ¢ of player
II, this concludes the proof.

COROLLARIES.

(i) lim, v, = 1.

(ii) Player 11 can guarantee 1 in T,,. In fact for the above described strategy t,
regarded as a strategy in T, we have: :

lim sup o,(0, 7)) < 1 forall o .

(iii) For any strategy t of player 11 in T, player 1 has a strategy—namely the
above described o,—such that:

liminf p,(0,, 7) = 1.

THEOREM 3.2. For any strategy o of player 1in T, and for any ¢ > 0, there is
a strategy t of player II such that lim sup p, (g, 7) < e.

Proor. Given g let:

s, = Prob {I plays T in stage n|only a is announced in
the first n — 1 stages} .

Let a = [[7.,5,. (a surely exists and satisfies 0 < a < 1) and consider the two
cases:

(i) @ = 0. Then the required “answer” z is: Play L until something other
than a is announced and then switch to the corresponding optimal strategy.
When ¢ and ¢ are played, the choice of chance will be completely revealed (i.e.
b, d, or e announced) with probability 1 — [z, s, = 1 — a = 1, which means
that with probability 1 the payoff will be 0 from some stage on. This implies
easily that lim sup p,(s, 7) = 0.

(i) @ > 0. Let M and N be positive integers such that (1 — J]5.:5,) < ¢/4
and N > 4MJe. The answer 7 to ¢ in this case is: Play L repeatedly. If atany
stage / < M an information other than a is announced play the corresponding
optimal strategy from that stage on; otherwise play R from stage M + 1 on.
Up to stage M, any information other than a reduces the payoff to 0 from that
stage on. The probability of first announcing anything other than a after the
Mth stage is T[¥ 5,(1 — [I5+15,) < ¢/4. Since in such an event the expected
payoff is 2 (and this is the only event that involves any expected payoff greater
than O after the Mth stage) we have that when ¢ and ¢ are played:

n>N=>p”(a,t)<2%/[+2--Z—<e,

which completes the proof of the theorem.
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ConcrusionN. Theorem 3.2 and Corollary (iii) of Theorem 3.1 imply that in
the game under consideration v, does not exist, while lim,, ., v, exists by Corollary
(i) of Theorem 3.1.

ReMARks. Examples of games with existing lim v, and nonexisting v,, can also
be found in [4] but there the proof of this fact requires three rather complicated
works, namely [2], [4], and [6]. The advantage of our example is its simplicity
and its self-containment. It shows clearly the essential difference between I',,
and limI',: In ', a player can afford to suffer losses during a finite number of
stages however big this number may be. These losses will “wash out” because
of the infinite horizon of the game. In the games with a finite horizon, I',, such
losses may be of great importance. To put it in different words: A truncation
of an optimal Bayesian strategy in I',, (e.g. the one described for player IT in the
proof of Theorem 3.2), may not be close to an optimal Bayesian strategy in T',,.

It may be also remarked that the example here preceded and motivated the

results in [4].

Acknowledgment. I am indebted to Professor R. J. Aumann for many im-
portant discussions on this subject.
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