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APPLICATION OF THE THEORY OF PRODUCTS OF PROBLEMS
TO CERTAIN PATTERNED COVARIANCE MATRICES!

By STEVEN F. ARNOLD
Lawrence University

This paper describes a general method for deriving optimal procedures
for problems where the covariance matrices are patterned under both null
and alternative hypotheses. The pattern considered in this paper was first
suggested by Olkin (1970) and is a generalization of the intraclass correla-
tion model of Wilks (1946) and arises in the study of interchangeable
random variables. We prove a theorem showing how we can transform
most such problems to products of problems where the covariance matrices
are unpatterned. This theorem is applied to two problems, the multivariate
analysis of variance problem and the multivariate classification problem
where in both cases the covariance matrix is assumed patterned. We use
theorems about products to derive optimal procedures for these problems.
We then look at Olkin’s pattern for the mean vector, and show that most
problems where both the mean vector and covariance matrix are patterned
can be transformed to a product of problems, one of which is trivial. The
same two examples are studied where now both mean vectors and
covariance matrices are assumed patterned. We also consider the problem
of testing that the mean vector is patterned when we know the covariance
matrix is.

1. Introduction.

1.1. This paper is concerned with normal testing problems involving inter-
changeable random variables. X, - - ., X, are said to be interchangeable if for any
permutation ¢ of 1, - . ., k, the distribution of X, . . ., X, is the same as the distri-
bution of X, - - -, X,,. Interchangeable random variables arise in many situa-
tions of dependent sampling such as the problem where the pollster sends cards
to all the people on one street. His observations would not be independent but
it might be reasonable to assume that they are interchangeable. Another rather
different example is the following. A biologist who is studying kidneys uses meas-
urements on both kidneys of each rat instead of only using one kidney. The two
kidneys would probably not be independent, but might well be interchangeable.

Let X' = (X/, ---, X}/) where X, is p x 1. If X has a kp-variate normal
distribution, then a necessary and sufficient condition that X, ..., X, be inter-
changeable is
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PATTERNED COVARIANCE MATRICES 683

for some p X 1 vector § and p X p symmetric materices Z, and Z,. If ¢ and Z
satisfy (1.1) for some Z,, ¥,, symmetric, and #, we say p has pattern B, and X
has pattern A,. Hence, X, ..., X, are interchangeable if and only if x has
pattern B,, ¥ has pattern A,.

These patterns are generalizations of the intraclass correlation model
introduced in Wilks (1946) and extended in Olkin (1970). However, in this
paper we consider somewhat different problems involving these patterns, in that
we assume that the covariance matrix (and sometimes the means too) are
patterned under both the null and alternative hypotheses. In the univariate
case (p = 1), problems of this type have been considered in Geisser (1963),
Srivastava (1965) and Krishnaiah and Pathak (1967).

Our approach to these problems is quite different from the approaches found in
those papers. In Section 3 we prove the basic theorems of the paper which allow
us to transform problems involving patterned covariance matrices to “products”
of problems where the covariances are not assumed patterned. In Section 2 we
state two theorems telling how to derive optimal procedures for a product from
optimal procedures for the components. Then in Sections 4-6 we give three
examples of problems that transform in this way: (i) testing that the mean has
pattern B, when the covariance matrix has pattern 4, (one of the problems first
considered in the univariate case in Wilks (1946) and later in the multivariate
case in Olkin (1970)); (ii) the multivariate analysis of variance problem when
the covariance matrix is patterned (a generalization of the Hotelling’s 7? problem
considered in the case p = 1 by Geisser (1963)); and, (iii) the multivariate classi-
fication problem when the covariance matrix is patterned. In Section 7 we prove
a general theorem showing that problems where both the means and covariance
matrices are patterned (i.e., involving interchangeable random variables) can be
transformed to a product of a “trivial” problem and a problem identical to the
original problem except that nothing is assumed patterned. In Section 2 we show
that if we have a product of a non-trivial problem and a trivial one, then any
optimal procedure for the non-trivial problem is optimal for the product.
Therefore, Section 7 shows that if we have a problem where both means and
covariance matrix are patterned then we can, in some sense, reduce it to an
identical problem, except that nothing is patterned. We give two examples of
this structure; reducing the multivariate analysis of variance and classification
problems where both the means and covariance matrices are patterned to similar
problems where they are not patterned. In Section 8, we indicate other problems
that can be analyzed using the methods of this paper.

1.2. The following distributions are used in this paper. If 4 is a p X r matrix
and X is a p X p matrix, we write X(p X r) ~ N(g, Z) to mean X isap X r
dimensional matrix whose columns are independently normally distributed with
common covariance matrix X and EX = u. Therefore

LX) = @r)77 B etr —H[EX — p)(X — p)],
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where etr A = exp (tr 4). If X(p X r) ~ N(0,Z), we say W = XX’ has a
Wishart distribution with » degrees of freedom and write W ~ W(r, Z). If
X(1 X n) ~ N(g, 1), we say S = XX’ has a noncentral y* distribution with n
degrees of freedom and noncentrality parameter 6 = pp’ and write S ~ x,%(9).
If $; ~ x,%(0), Sy ~ x,’(0) we say T = mS,/nS, has a noncentral F distribution
with n and m degrees of freedom and noncentrality parameter é and write
T ~ F(0; m,n). If T ~ F(d; m, n) we say U= mT(n + mT)~* has a noncentral
Beta distribution with r = m/2, s = n/2 degrees of freedom and noncentrality
parameter A = 9/2 and write U ~ Be (4; r, 5).

Zt Ur+t(1 — U)s

AU) = e™? g — —————————
(V)= Liny B(r + t, 5)

where B(a, b) is the beta function.

2. Products of problems.

2.1. Before stating theorems about products we give a shorthand method of
describing a general testing problem, and use it to define a product of problems.
A testing problem P consists of the following three elements: an observed random
variable X having density from a general class D() (for example N(¢, X)); a null
set Q; and an alternative set ®. We use the following shorthand for P

P: X ~ D(f),
H 6cQ,
A 0.

We make one convention for this notation. All random variables are independent
unless otherwise specified. For example, we write the Hotelling’s T* problem
(testing # = 0 when X is unknown) in the following manner:
P: X ~ N, ), W~ W(n,Z),
H: p=0, >0,
A —oco < p < o0, Z>0.

(Throughout this paper we write —co < ¢ < co to mean that p is unrestricted.)
So now we define a product of problems. Let P, and P, be the problems

P1: X1~D1(01)’ P2:X2~D2(02)’
H: 6,eQ,, H,: 0,eQ,,
A 60,e0,, A, 0,€0,.

Then the product P of P, and P, (written P = P, X P,) is the problem
P: X, ~ D4, X, ~ Dy(0)
HOZ 01691, 02692,
Ay 0,0, 0,e0,.
That is, the product P is just the problem of testing P, and P, simultaneously
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and independently. ~We make the following three definitions for testing
problems. A problem is inclusive if the null set, Q, is a subset of the alternative
set, ©, and symmetric if Q and © are mutually exclusive. For example the
Hotelling’s T* problem is inclusive, while the classification problem is symmetric.
A problem is simple if the null set consists of only one point. If P is invariant
under the group G, we write P/G for the problem P reduced by the group G.
The following theorem gives a collection of straightforward results about
products. Since much of it may be known and its proof is easy we omit it here.
For details see Arnold (1970).

THEOREM A. Let P, and P, be the problems given above and let P = P, X P,.

(i) If S, and S, are sufficient statistics for P, and P, respectively, then (S, S,) is
a sufficient statistic for P.

(ii) If A, and A, are the likelihood ratio test (LRT) functions for P, and P,
respectively, then A, A, is the LRT function for P.

(iii) If f, and f, are the Bayes test functions for P, and P,, with respect to the
priors Q\(0,) aud Q,(0,), then f = f.f, is the Bayes test function with respect to the
prior Q(0,, 8,) = 0,(6,) X Qx(0,).

(iv) Let P, and P, be simple or symmetric problems and let f,(X,) and f,(X,) be
unbiased test functions for P, and P,. If g(z,, z,) is an increasing function of z, and
2y, the g(fi(X)), fo(X3)) is an unbiased test function for P.

(v) Let ©, U Q, and ©, U Q, be partially ordered sets and let f(X,) and [y(X,)
have monotone power for these orderings for P, and P,. If g(z,, z,) is an increasing
function of z, and z,, then g(fy(X,),f«(X;)) has monotone power for the induced
ordering (0, 0,,) < (04, 0y,) if and only if 6, < 6,, and 6,, < 6,,.

(viy If P, is invariant under G, and P, is invariant under G,, then P is invariant
under G = G, X G, operating by g9(X,, X,) = (9.(X)), 9.(X,)) where g = (9,, 9,)-

(vii) P/G = P,/G, X P,/G,. Thatis, P reduced by invariance is product of P,
and P, reduced by invariance.

One comment about A(ii) and A(iii). For this paper, the LRT function A and
the Bayes test function f(X) with respect to the prior Q(6), are defined to be

@.1) AQX) = S9PeeaPXi0) v iy Sa p(X; 0)0(0) d6
Supy. e P(X; 0) §o P(X; 0)Q(0) d6

Often, statisticians work with functions that are statistically equivalent to the
LRT function or Bayes test functions (by statistically equivalent functions, we
mean that one function is an increasing function of the other). For Theorems
A(ii) and A(iii) we must use the functions defined in (2.1). If f; is statistically
equivalent to f;, and g, is statistically equivalent to g,, there is no reason why
f1 9, would be statistically equivalent to f,g,.

Three of the problems that we consider transform into a product where one
problem is trivial, that is, the null set and the alternative set are the same. In
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this case we get more powerful results. (The proof of this theorem is again
straightforward. Details can be found in Arnold (1970).)

THEOREM B. Let P = P, X P, where P, is trivial.

(i) If P, is simple then X, is a sufficient statistic for P.
(ii) If o(X,) has any of the following ten properties for P., it has that property for
P.

P1. LRT,

P2. Bayes,

P3. admissible,

P4. unbiased,

P5. UMP,

P6. UMP invariant,

P7. UMP unbiased,

P8. most stringent,

P9. locally minimax,

P10. asymptotically minimax.

3. Basic theorems. In this section we prove the basic theorems that permit us
to transform problems involving patterned covariance matrices into products of
unpatterned problems. First we prove two linear algebra results. The first one
tells how to transform the patterned covariance matrix to one that we can handle
more easily. Before we state that theorem we introduce some notation. If 4
isa k x m matrix and B = (b;;) is an n X p matrix, then the Kronecker prod-
uct of 4 and B, A4 « B, is the kn X mp matrix

Ab,, - .- Ab

1p
AxB =
. Ab

nl "’ np

Ab
The only two properties of Kronecker products we need are
3.1 (A * B)(C+ D) = AC x BD and hence (A4 xB)™ = A"'+B".
3.2) (AxB) = A x B .
Both these properties follow easily from the definition.
Let I, be the j X j identity, £ be the k X k matrix of 1’s and F be the k X k
matrix with F;, = k, F;; = O for i + j > 2. Let f be k~* times the k X 1 vector

of 1’s. Thatis f = (k=% ..., k~?). Let C be an orthogonal matrix whose first
column is f. Then C'EC = F.

LeEMMA. Let X have pattern A, and T' = I, x C. Then T’ is an orthogonal matrix
and

(3.3) ST — (21 + (k= 12, 0 ).
0 = Zy) =1,
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Proor. I" = (I, C)Y = (I, C'") = (I, C-') =T, so I is orthogonal. If
Z has pattern 4, then
=2, —Z)*xI, +Z,+E.
Therefore
I'ET = (I, * O)((Z: — Z)) L) + (5, * E)|(J, * ©)
=2, —Z)*xCC)+ (Z,« C'EC) = [(Z, — Z,) » I,] + [Z, » F]

- (Zl ’ (ko_ Vs T, — Ozz ] 1,,_) ' .

Let
g, =2 4+ (k — 1Z,, 8,=Z -3,.
The transformation from X, and X, to E, and E, is invertible so we can consider
E, and E, a reparametrization of X, and Z,.
The second lemma tells us what happens to the means when we use I' to trans-

form the covariances. If X is a kp X r matrix X’ = (X/, --., X,/), where X; is
p X r, then we define #(X) to be the p X rk matrix

(X)=(X,--- X,).

1(X) just rearranges the variables and serves as a bookkeeping device. Together
with the following lemma, it prevents repetition of the same argument.

LEMMA. If A is a k X k matrix, then
(I, x A)X) = yX)I, » A') .

ProoFr. A direct computation yields

(1, * AX] = (Zio1 @ X5 -+ 5 Dia @ X;) = (X)I, * A) . {
Now we are ready for the basic theorems. Suppose
3.4) X, (pk X r;) ~ N(p;, a,%) , i=1,...,k, S~ W(hn,ZI)

where the X,’s and S are all mutually independent (this framework is just general
enough to include canonical forms of the classification and multivariate analysis
of variance problems). Let

(3.5) ST =T =(T;;), I'X,=U,,

where T;; is a p X p matrix fori,j =1, ..., k, where I' = I, « C and C is an
orthogonal matrix whose first column is f. Let

(3.6) W=Ty, V=3Ty, (Z,Y)=1U)=1X)IxC)

where Z;isp X r;, Y, is p X ryk — 1).

THEOREM 1. Let X, - .-, X,,, and S be mutually independent and have the distribu-
tions given in (3.4). If V,W,Y,, ..., Y,, and Z,, ..., Z, are defined by (3.5)
and (3.6), then they are sufficient, mutually independent and have the following
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distributions:
(3.7 Z(p X r;)) ~ N(@,,a,E), W~ W(n,BE),
Y(p X r(k — 1)) ~ N(v;, a;8y) , Vo~ Wnk —1),8,),
where B, = X, + (k — 1))Z,, B, = Z, — Z,, (0, v;) = H(p)(!,, * C).
Proor. Since X and S are sufficient, so are T (defined in (3.5)), Y; and Z,,

i=1,... k.
' :<El 0 >
0 E,+1,_,

(3.8) AT) = Ef(1) etr (—4E7'T)
E_sz(l‘) etr (_%El_lTu - %32—1 ’;=2 T“)
= f(T) etr (— 38, W — 4B, V) .

[x1

T~ W(n,E),

So by the factorization theorem, W, V, Y, and Z; are sufficient. By (3.8) the
T, are all independent, so that W ~ W(n, &,), V ~ W(n(k — 1), E,) and W and
V are independent. Let Y, = (Y,,--- Y, , ), then

Zi
Yil —
. = Ui ~ N(F"u,;, ﬂ:) .

Yi,k—l

Therefore Z; and Y, are independent and Z; ~ N(9;,a,E,), Y, ~ N(v;, a,E,)
where 0; and v, are given by

(83 vi) = E((X))(I,, * C) = (I, * C) . 0

Theorem 1 shows that we can transform random variables whose distributions
have patterned covariance matrices into two independent random variables
Zy, -, Z,, Wyand (Y,, ---, Y,, V). The following theorem shows that for
all the problems we consider there is no relation between (4,, - - -, d,,, &;) and
(v1» ** 5 Um» By). Therefore Theorems 1 and 2 show that we can transform
problems involving patterned covariance matrices to products of unpatterned
problems.

THEOREM 2. (a) Z > Oifand only if E, > 0, E, > 0.

(b) g, =0ifand only if 5, =0,v, = 0.

(€) —oo < p; < coifand only if —oco < d; < 00, —c0 < y; < 0.

(d) If r,=r; then p, = p; if and only if 6, = 6;,v; = v;.

(e) The columns of p; have pattern B, if and only if —oco < 0, < oo, v, = 0.

Proor. (a) X > 0 if and only if

[x]

1 0

o ¥ Iy

r'zr=< >>o

o
[x]

if and only if &, > 0, &, > 0.
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(b), (c), (d) follow from the non-singularity of C and T'.
(¢) Suppose the columns of x, have pattern B,. Then #(x;) = 6, x 7 for some
0;, p X r,. Therefore

(%) = (B )1y % ©) = By x (fC) = (6, 0, ---,0) .

That finishes the only if part.
Now suppose v, = 0. Then

(1) = @0 O, = €)= 6, 0) (77 1) 0
1 Iri * ‘BI
4. Testing that p is patterned when X is. In this section we consider the
problem of testing that the mean of a multivariate normal distribution is
patterned when we know that the covariance is. We have X(pk X 1) ~ N(u, X),
S ~ W(n,Z) and we are testing that p has pattern B, when we know X has
pattern A,. That is, we are testing the problem P,.

P: X(pk x 1) ~ N(p, Z), S ~ W(n, 2),
(4.1) H: p has pattern B, 2  has pattern A4, >0,
A —oco < p < o0, 2  has pattern A4, 2>0.

When p = 1, this problem is the intraclass correlation model of Wilks (1946)
and for p > 1 is considered in Olkin (1970).

THEOREM 3. The problem P, defined in (4.1) can be transformed to the product
of the trivial problem P, and the multivariate analysis of variance (MANOVA)
problem P,

P/: Z(p X 1) ~ N(3,B),  P':Y(px (k—1)) ~ N E),
W ~ W(n, &), V~ Whnk —1),E,)
H: —c0<d< 0,8 >0, H. v=0,8,>0,
A —0 <0< 00,8 >0, A —oco < v << o0,E,>0.

Proor. By Theorem 1, Z, Y, W and V defined in (3.5) and (3.6) are sufficient
and have the given distributions. By Theorem 2a and 2e, if X has pattern A4,,
then x has pattern B,, Z > 0 if and only if —co < d < o0,v =0, E, > 0, and
E, > 0, and by Theorem 2(a) and 2(c), —oo < ¢ < oo, L > 0 if and only if
—0 L0 <L o0, —c0o<Lyv<Loo0,8 >0andZ,>0.[]

So P, is the product of a trivial problem and a MANOVA problem. By
Theorem B any optimal procedure for the MANOVA problem is an optimal
procedure for P,. Invariance presents the only possible difficulty. It is possible
that the maximal invariant for P, reduced by the largest group leaving P,
invariant may include elements from P,’. The following lemma shows that does
not happen. P/ is invariant under G,: Z— AZ + C, W — AW A’ where 4 is
non-singular. P,” is invariant under Y — BYT', V— BV B’ where B is nonsingular
and I' is orthogonal.
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LEMMA. P, = P/ X P,” isinvariant under G, = G, X G,". A maximal invariant
for this group is the set of roots of Y'V7'Y.

Proor. By Theorem A(vi), P, is invariant under G,. By Theorem A(vii),
P,/G, is the product of P’/G, and P,"/G,”. The roots of Y'V~'Y are a maximal
invariant for P,”” (Lehmann (1959) pages 296-298). The whole (Z, W) space is
on one orbit for P,/ so the roots of Y’V-'Y are a maximal invariant for P,. []

We have now reduced P, to a MANOVA problem and we can use theorems
about that problem to get theorems about P,. To give an idea of the power of
Theorem 3 and Theorem B, we give a summary of some known results about
the MANOVA problem that transfer to P,. If 2, > 4, --- 4, are the nonzero
roots of Y’V-1Y, let

fi=11(d + ) = |4+ YVY|?,

(4.2) f2 = _Z‘il=1 Zi = —trYY'V !,
fi= =Tty ik — —tr YY(YY' + V)1,
fi= —2

In the following summary, references for the results of the MANOVA problem
are given in parenthesis. They all carry over to P, by Theorem B.

(i) The LRT function is cf,»*»®*-2/ for some ¢ > 0 (Anderson (1958) pages
187-190).

(i) Cf,*~V7* and exp (f,/2) are Bayes for some C > 0 (Kiefer and Schwartz
(1965)).

(iii) f;, fu, f5 and f, are admissible (Schwartz (1967a)).

(iv) fi, f,and f, are unbiased and have monotone power in the roots of v’ B,
(Das Gupta, Anderson and Mudholkar (1964)).

(V) f; is locally minimax as r = trv'E,™'v — 0 (Schwartz (1967b)).

(vi) If p =1 (the intraclass correlation model of Wilks), then P/ is a
univariate analysis of variance problem and we can conclude f; is UMP invariant,
UMP unbiased and most stringent (Lehmann (1959) pages 266-269).

(vii) If k = 2 then P,” is the Hotelling’s T* problem and f; is UMP invariant,
locally and asymptotically minimax as »'E,”» — 0 and oo (Giri and Kiefer
(1964)), and in some simple cases most stringent (Giri, Kiefer and Stein (1963)).

5. Multivariate analysis of variance. In thissection we consider the multivariate
analysis of variance (MANOVA) problem when, in addition to the usual assump-
tions, we assume that the covariance matrix has pattern 4,. A canonical form
for the MANOVA problem is the following (see Lehmann (1959) pages 293~
296.). We have a p x r random matrix X, and a p X s random matrix X, such
that the columns of X, and X, are all independent, normally distributed, have
common covariance matrix £ and EX = p,, EY = p,, and a p X p matrix § that
has a Wishart distribution with n degrees of freedom and ES = nX. We are
testing p, = 0 versus —oo < g, < oco. That is, the MANOVA problem is the
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problem
Q: X(p X 1)~ N B),  Xfp X 8)~N2), S~ WnI),
H: p, =0, —oo < py < o0, >0,
A: —OO<‘UI<OO, —OO</12<OO, Z>0'

So in this section we consider the problem P,
P,: Xy(pk X r) ~ N(py, ), Xy(pk X 5) ~ N(pps Z), S~ W(n, ),

H: p,=0, —0 <K py <L 00, X has pattern 4,
(5.1 >0,
A: —oo < g, < 0, —oo < py < 00,

X has pattern 4, >0,

THEOREM 4. P, defined in (5.1) can be transformed into the product of the two
MANOVA problems P,/ and P,

P/ Z(p X 1) ~N@y,B), ZfpX$)~N@yE), W~ WnE),

H: 0,=0, —00 < 0, < o0, 5 >0,

A —o00 <0, < o0, —o00 £ 0y, < o0, 2, >0,

P Y(p X r(k — 1)) ~ N(v,, ) , Yy(p X s(k — 1)) ~ N(v,, E;) ,
V~ Wk —1),8),
H v =0, —o0 <y, <L o0, g, >0,
A —oo <y, L o0, —o0 Ly, <L o0, 2,>0.

Proor. By Theorem 1, Z,, Z,, Y,, Y,, W and V (defined in (3.5) and (3.6))
are independent, sufficient and have the distributions shown. By Theorem 2
(@), (b) and (¢) g, = 0, —oo < pt, < o0, L > 0 if and only if 6, =0, », =0,
—00 < 0, < 00, —co Ly, < o0, B >0, B, >0. By Theorem 2 (a) and (c)
—00 < py < 00, —00 < py < 00, Z > 0ifandonly if —oco < 9, < 00, —00 <
vy, < 00, —00 < 0, < 00, —o0 L v, < 00, & >0, E,>0.[]

P, is a product of problems where neither problem is trivial, so we cannot
use Theorem B. Theorem A is not quite so easy to use and it does not give quite
such powerful results. However, we can derive some interesting results.

First, we reduce P, by invariance. P, is invariant under G, : Z, — AZT,
Z,— AZ, + B, W — AW A’ where A is non-singular and I" is orthogonal. P,”
is invariant under G,”: Y, — CY,B, Y, — CY, + D, V — CVC’ where C is non-
singular and 8 is orthogonal.

LEMMA. P, = P, X P, isinvariant under G, = G,’ X G,"’. A maximal invariant
for P, is the set of roots of Z'W~'Z, and Y, V7'Y,.

PROOF. P, is invariant G, by Theorem A(vi). A maximal invariant for P, is
the set of roots of Z/'W-'Z, and a maximal invariant for P,” is the set of roots
of Y/V-'Y, (Lehmann (1959) pages 296-298). By Theorem A(vii), the two sets
together are a maximal invariant for P,. []
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Therefore, let @, = min (p, r), b, = max (p, r), a, = min (p, r(k — 1)), b, =
max (p, r(k — 1)). Let (4, - -, 4, ) be the roots of Z,/W,7'Z, and (,, - - -, Asg,)
be the roots of Y, W,~'Y,. We consider only two invariant test functions for P,.

H=T1 1 + 47, fo=T120 + 2)7,

(5-2) 0= — 2 Agl(1 + A), 9 = — 22 A/(1 + 4y)
f=LA 9=0+9..
THEOREM 5. (@) (Ay, ---, Z,al, Ags * o vy 22a2) is a maximal invariant.

(b) A = cf"*Vr% is the LRT function for some ¢ > 0.
(¢) Under the null hypothesis
f ~ 152, B H?2=l ;C]_I s
where
ﬂli ~ Be (0; (n —p+ i)/Z, b1/2) .
By ~ Be (05 (n(k — 1) — p + 0)/2, b,)2),
(d) Cf"'* and exp (4 g) are Bayes for some C > 0.
(e) fand g are admissible.
(f) fis unbiased and has monotone power in the roots of 6,'E,~%6, and v,'E, 'v,.

Proor. (a) This is the lemma above.

(b) Anderson (1958) pages 187-190 shows that ¢, f,*V"/? and c,f,»+Vk-1r/2
are the LRT functions for P, and P,” respectively. Therefore, by Theorem
A(ii), cf™tVr2 = ¢ ¢, f(mVT f(ntDG=DrI2 jg the LRT for P,.

(c) Anderson (1958) pages 193-195 shows that under the null hypothesis

fi~ 115 Bu s fo~ 1132, Bos -
Therefore f = f, f,*~* has the distribution shown.

(d) Kiefer and Schwartz (1965) show that C,f"/* and exp (g,/2) are Bayes for
P/ and that C,f,"*~V/* and exp (g,/2) are Bayes for P,”. Therefore, by Theorem
A-3, Cfr* = C,C,f"2f;*~V1* and exp (9/2) = exp (9,/2) X exp (9,/2) are Bayes
for P,.

(e) This follows from (d).

(f) Das Gupta, Anderson and Mudholkar (1964) show that f, has monotone
power in the roots of 4,'E,7'9, and f, has monotone power in the roots of v,'Z, y,.
By Theorem A(v), therefore, f = f; fzk‘l has monotone power in the roots of
4,/8,70, and v,E, ', and is therefore unbiased. []

For a Box-Anderson approximation to the null distribution of f see Arnold
(1970).

Geisser (1963) considers the Hotelling’s 7% problem when the covariance
matrix is patterned. Since the Hotelling’s T* problem is just a special case of
the MANOVA problem (when r = 1, s = 0), Theorems 4 and 5 apply to that
problem also. It is interesting that unless k = 2 the Hotelling’s T2 problem does
not transform into a product of Hotelling’s T* problems as we might expect
(since for this problem Y has dimentions p x k — 1).
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6. Multivariate classification. In this section we consider the multivariate
classification problem when the covariance matrix is patterned. We only
consider the problem of classifying the observation into one of two populations,
but the extension to k populations is obvious. In the two population classifica-
tion problem we have X, normally distributed with mean g, and covariance
matrix X, X, --~,X1N1, normally distributed with mean g, and covariance
matrix 2, and X, - .-, X, v, Normally distributed with mean g, and covariance
matrix X and we are testing g, = g, versus g, = p,. We can put this into a
canonical form as follows. Let X, and X, denote the sample means and S the
pooled cross product matrix, i.e.,

Xy = 20 Xy/Ny, Xy, = 272 Xy/N,
S = Zi\;ll (Xli - Xl)(Xu‘ - 1), + vazzl (Xzi - Xz)(Xzi - 2), ’
”1:N1—1, H2:N2—1.
Then the classification problem becomes
Q: Xy(p X 1) ~ N(tto, Z), S~ W(n, + ny, X)),
Xp X 1) ~ Ny, Z/N,) Xo(p X 1) ~ N(13, Z[N,)
H: py = p, —oo <y < 00, >0,
A py = py, —oco < ;< oo, 2>0.
In this paper we make the additional assumption that X is patterned. So, we
consider the problem P,
Py Xo(pk X 1) ~ N(po, 2) S~ W(n, + ny, 2),
(6.1 Xi(pk X 1) ~ N(py, ZIN)) , Xy(pk X 1) ~ N(p,, Z/N,) ,
H: py=p,, —o0 L t; <L oo, Z has pattern A, , 2>0,
A opy = py, —oo L p, < o0, X has pattern 4, , 2>0.

As in Sections 4 and 5 we can use Theorems 1 and 2 to transform this problem
into a product of unpatterned problem.

THEOREM 6. P, given in (6.1) is equivalent to the product of the classification
problem P, and the generalized classification problem P,":
Pl Z(p X 1) ~ N(dy, E)) , W ~ W((n, + n,), &),
Z(p X 1) ~ N(d,, &/N,), Zy(p X 1) ~ N(@0,, E/N,),
H: ¢, =9,, —o00 < 0, < oo, 2, >0,
A: 9, = 0,, —o00 < 0, < oo, 2, >0,

P Y(p X (k — 1)) ~ N(v,, By) , Vo~ W((n + n)k — 1), &),
Yi(p X (k — 1)) ~ N(v,, By/N)) , Y(p X (k — 1)) ~ N(vy, &/N,) ,
H: vy=v,, —co <y, < v, g,>0,
Al vy = v,, —oco <Ly, <L o, g, > 0.
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Proor. Let Z;, Y;,, Wand V be defined in (3.5) and (3.6). Then by Theorem
1, Z,, Y,, W and V are sufficient and have the given distributions. By Theorem
2 the hypotheses transform as shown. []

- Unfortunately, there has not been too much work done in the multivariate
classification problem. We look at only one test function. Let

_ L+ (NN, + D)(Z — Z) W, (2, — Z,)

S T NN+ ) = 2y WE - 2)
6.2) £ = W (NN + D)(Yy = Yo Wy (Y, = V)
7+ (NN, + D)Y, — YWY, = 7o)
f=h1E

THEOREM 7. Let P, be the problem defined in (6.1), f be defined by (6.2). Then
cf MitNati2 s the LRT function for some ¢ > 0 and f* is Bayes (and hence f is
admissible) for P,.

Proor. Anderson (1958) pages 141-142 shows that ¢, f,¥1#"2*D/? js the LRT
function for P/. By an easy generalization of his argument, ¢, f,V1*¥a#D*=Di2 g
the LRT function for P,”. Therefore, by Theorem A(ii), cfVrt¥*vi2 =
o fi Vit Natbize, £ N+ Ny#0E-D/2 s the LRT function for P,. Kiefer and Schwartz
(1965) show that f;* and f,**~"/* are Bayes for P,/ and P,” respectively. There-
fore, by Theorem A(iii), f* = fi¥f,*"V/* is Bayes for P,. []

When a problem P is the product of two non-trivial problems P, and P,, it is
often unclear how to use a “good” procedure for P, and a “good” procedure for
P, to find a “good” procedure for P. Theorems A(ii) and A(iii), however, tell us
how to use LRT and Bayes test functions for P, and P,. It is interesting that
for both the MANOVA and classification problem, these two approaches lead
to functions that are equivalent.

7. Problems where the means and covariance matrices are both patterned. In this
section, we shift our attention to problems where the means and covariance
matrices are both patterned, i.e., problems involving interchangeable random
variables (see Section 1). We prove a theorem showing that a general problem
involving patterned means and patterned covariance matrices can be transformed
to a product of a trivial problem and a problem identical to the original problem
except nothing is patterned. Then we apply this theorem to the MANOVA and
classification problems.

THEOREM 8. The problem P

P: X(pk x r) ~ N(u, Z) , S ~ W(n, X)
H: p'2'ueC, the columns of p have pattern B,, L has pattern A,
A pE'ueD, the columns of . have pattern B,, ¥ has pattern A,
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can be transformed to a product of P'.
P': Z(p x r) ~ N(0y, &), W~ W(n,E),
H': §'E%eC,
A': 0'E"oeD,
and the trivial problem P"

P Y(p X (k— 1)~ N, B, ¥V~ Wnk—1),8),
H”: V=0, Ez>0’
A’ v=0, g, >0.

Proor. Let W, V, Y and Z be given by (3.5) and (3.6). Then by Theorem
Z,Y, W and V are sufficient and have the distributions shown. When p is
patterned, by Theorem 2(e),

wE-1p = (I (D) T
@57 0 ) ()= 0

B« I,/ \O
P” is invariant under the group G”: Y — AYD, W, — AW, A’, where 4 is
non-singular and I is orthogonal.

COROLLARY. If P'isinvariant under G', then P is invariant under G = G’ X G"”
and a maximal invariant for P’ under G’ is a maximal invariant for P under G.

Proor. By Theorem A(vi), P is invariant under G. By Theorem A(vii), P|G
is the product of P’/G’ and P”/G”. A parameter maximal invariant for P" is the
set of roots of v'E,~'y, which are 0 under both hypotheses. Therefore P"’/G" is
a trivial simple problem, and by Theorem B, any sufficient statistic for P'/G’ is
a sufficient statistic for P'/G’ X P"/G". []

Theorem 8, its corollary and Theorem B imply that if we have an optimal
procedure for a problem where nothing is patterned, we have an optimal
procedure for the same problem when the means and covariances are patterned.
As examples, we look at the MANOVA and multivariate classification problems.

A canonical form for the MANOVA problem (see Section 5) is the following.

Q: X(px 1)~ N, B),  Xf(pX$)~NuZ), S~ WnI)

H p,=0, —oo < py <L o0, >0,
A: —OO<[11<OO, _OO<V2<OO5 Z>0
Let X = (X;, X;), ¢t = (t4, f1,). Then g, = 0 if and only if
x-t 7 0 0
7.1) pE = (/11 P th 2) — ( ) .
( 720 Y T TR Yy T 0 T,

So let 4 be the set of (r 4+ s) X (r + s) positive semi-definite matrices having
the pattern given in (7.1). Let B be the set of positive semi-definite matrices.
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Then Q is problem

Q: X(p X (r+5) ~ N@w, T), S~ W(n5),
H: p/'X7'ued,
A: p'E'pueB.
This is in the form of Theorem 8. Therefore, the MANOVA problem when the
means and covariance matrices are patterned is the product of a trivial problem
and an unpatterned MANOVA problem. When r = 1, s = 0, the MANOVA
problem is the Hotelling’s 7% problem, and so the Hotelling’s 7? problem when
the means and covariance matrix are both patterned is the product of a trivial
problem and an unpatterned Hotelling’s 7? problem. In Section 4 we indicate
that when we transform a problem to a product where one problem is trivial
and the other is a problem that has been studied, then we have solved the
product problem. So the Hotelling’s T* problem and the MANOVA problem,
when both means and covariance matrices are patterned, are both solved.
A canonical form for the classification problem (see Section 6) is the following.

R: X(p X 1) ~ N(pty, 2) , S~ W(n, + n, 2),
Xi(p X 1) ~ N(,, T[Ny, Xo(p X 1) ~ N(p5, Z[N,)
H: py=p, —oo < py < o0, >0,
At py = p,, —oo <y <L o0, 2>0.

To put this in the form of Theorem 8, let X = (X, N*X,, N,}X,) ¢ = (10 Nitpts,
N;tp;). Then p, = g, if and only if

a Nta b
(7.2) wEZ % =Nta Na c
b c d

for some a, b, ¢, d. So let A4 be the set of 3 x 3 positive semi-definite matrices
having the form of (7.2).
Similarly p, = g, if and only if

a b N}a
(7.3) pEy=1 b ¢ d
Nita d Nga

for some a, b, c,d. Let B be the set of 3 x 3 positive semi-definite matrices
having the form of (7.3). Then R becomes
R: X(p X 3) ~ Ny, 2), S ~ W(n, + n, X)
H: p¥7'peAd
A: X 'ueB.
This is in the form for- Theorem 8 and therefore the patterned classification

problem is “solved” in the sense that every result about the unpatterned problem
carries over to the patterned problem.
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8. Other problems. In this section we give a short discussion of some other
testing problems where we assume X has pattern A4,. Sections 4-7 give some
idea of the results that are possible using Theorems A and B of Section 2 on
products of problems. Most of the results of these sections follow easily from
these results and Theorems 1 and 2.

Most other problems involving covariance matrices having pattern 4, can also
be factored into products of standard problems. An example is the problem of
testing that the means and covariance matrices of two normal distributions are
the same. This is the problem P,,

P Xy(pk X 1) ~ N(p,, Zy) Xy(pk X 1) ~ N(ptss Z,) 5

(81) S1~ W(nl’ Z1)’ Sz~ W(nz, Zz),
H: p,=yp,, 2, =2,>0, %, and X, have pattern 4,,
A: —oo < 4y < o0, —o00 K ey < 00, z"1>05 Z2>0’

%, and X, have pattern A4, .
We can generalize Theorem 1 to show that P, is the product of P, and P,”.

P': Z(p X 1) ~ N(9,, 20, Z(p X 1) ~ N(0,, CHY
W, ~ W(ny, Zy), W, ~ W(n, E,) ,
H: 61:52’ E11:Eu>0,

A: —o0 < 6, < o0, —o0 < 0, < oo, B, >0, 2,>0,
P Yi(p X (k — 1)) ~ N(v;, By), Yip X (k — 1)) ~ N(v,, &) ,

Vi~ W(n(k — 1), Z,), V, ~ W(ny(k — 1), Ey),

H v =y,, B, =8,>0,

A —oco <y < 0, —oo < 00, B, >0, By >0.

The problem of testing the equality of two covariance matrices and the multi-
variate Behrens-Fisher problem, when X has pattern 4,, factor in the same way.
In P,, if we also assume that g, and g, have pattern B,, then P, is the product
of P’ (a problem identical to P except nothing is patterned) and the non-trivial
problem of testing the equality of two covariance matrices (since when the
means are patterned, v, = v, = 0). So, not all problems where the means and
covariances are both patterned transform to a product where one problem is
trivial.

An example of a problem which does not factor is the following. We have
X =X/, .-+, X)), where X, is p x 1. We want to test whether the X; are
independent when we know that ¥ has pattern A4, (or perhaps when we know
that the X are interchangeable, i.e., # has pattern B, aud Z has pattern 4,). If
X is a kp-variate normal distribution, then the X; are independent if and only if
2 has pattern A4, (with submatrices X, and Z%,) and X, = 0. This leads to the
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problem
Q: X(pk X 1) ~ N(u, 2), S~ W(n,Z),
H —co<p< o, Z has pattern A4, , 2, =0, 2, >0,
A —co < p< o0, Z has pattern 4, 2>0.
Let E, =%, 4 (k — 1)Z,, B, = %, — Z,. Then X, = 0 if and only if & = E,.

So Q transforms to

Q: Z(p x 1) ~N@©,8), X(px (k—1)~ Ny, E,),

W ~ W(n,BE), V~ W(nk — 1), E),
H —c0o<d<L oo, —co < v oo, 2 =E,>0,
A —c0 <6 < oo, —0 < v <L oo, g, >0, E,>0.

Q’ is the problem of testing the equality of two covariance matrices, a problem
that has been studied. Any results for Q’ then yield results for Q.

Problems like Q that do not factor when we apply Theorems 1 and 2 are rare.
Usually a problem P in which we assume X has pattern A, factors into the
product of a problem P, similar to P (except the covariance is no longer assumed
patterned) and a generalized form of P, (where the p-variate normal random
variable is replaced by a (p X (k — 1))-variate normal random variable).
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