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ADMISSIBLE CONFIDENCE INTERVAL AND POINT
ESTIMATION FOR TRANSLATION OR
SCALE PARAMETERS
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Sufficient conditions for admissibility of the best invariant confidence
interval for a translation or scale parameter are given, for a very wide class
of loss functions. These conditions result by adapting a theorem of L. D.
Brown [2]. Simpler sufficient conditions are found for a subclass of loss
functions of special interest. The subclass of losses involves three com-
ponents. One concerned with coverage of the true value, another con-
cerned with the distance from the interval end pointsto the true parameter,
and a third concerned with length of the interval. Such a loss function
unifies confidence interval and point estimation in the sense that if an op-
timality property holds for all loss functions in the subclass, then the op-
timality property holds for typical confidence interval problems and typical
point estimation problems.

0. Introduction and summary. Sufficient conditions for admissibility of the best
invariant confidence interval for a translation or scale parameter are given, for
a very wide class of loss functions. These conditions result by adapting a
theorem of L. D. Brown [2]. Simpler sufficient conditions are found for a sub-
class of loss functions of special interest. The subclass of losses involves three
components; one concerned with coverage of the true value, another concerned
with the distance from the interval end points to the true parameter, and a third
concerned with length of the interval. Such a loss function unifies confidence
interval and point estimation in the sense that if an optimality property holds
for all loss functions in the subclass, then the optimality property holds for
typical confidence interval problems and typical point estimation problems.

We start with preliminaries and the sufficient conditions for admissibility.
In Section 2 we discuss the subclass of loss functions of special interest and give
sufficient conditions for admissibility relevant to this subclass of losses. We
conclude with examples.

1. Sufficient conditions for admissibility of the best invariant confidence interval
or point estimate. Let X, Y be (jointly measurable) random variables with values
in RxZ/(R = (— o0, o)) and

(1.1) Pof(X, Y) e S} = § § p(x — 0, y) dxv(dy) ,
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where § p(x, y)dx = 1 for almost all y(v), 6 is a real parameter in Q, v is a
probability measure on the measurable sets in 2. The problem is to obtain an
interval estimator of # and so an estimation procedure ¢ consists of two measur-

able functions (¢,(x, y), e)(x, y)).

The loss functions considered may depend on three things: the difference
between ¢, and the true value of 6, ¢, and the true value of ¢ and on y. The
loss function will therefore be denoted by W(t, t,, y), wheret;, = ¢, — 0,i = 1,2,
and we will assume 0 < W < oo. The risk is
(1.2)  R(0,0) = §§ W(ex(x,y) — 0, ex(x, y) — 0, y)p(x — 0, y) dxv(dy) .

We usually will write yy(x, y) = &,(x, y) — X, 74X, y) = &(x, y) — x and so (1.2)
often appears in the form
(1.3)  RO,0)=§ W(z+ 12+ 0,y), 2+ 1z + 0, ), )P(2, y) dzo(dy) -

An interval procedure is (translation) invariant if

(1.4) a(6y) =x+1(),  alny)=x+74y)-

Note from (1.3) that if ¢ is invariant R(6, ) = R(d) (say) is independent of 4.
Let _# be the class of invariant interval procedures. Unless otherwise stated

it is assumed throughout that there exists at least one procedure d, € . such that

(1.5) R, = R(9,) = inf,, , R(9).

The procedure g, is called a best invariant interval estimator. Note that J, is
not necessarily uniquely determined. The symbols R, and d,(=(¢, €5)), Will
sometimes be written (7,9, 75). It is assumed that R, < oo.

Now consider the following three assumptions:

(1.6) R(0;) —> R, 6,e S i=1,2,...
implies (e(x, y), &i(%, ¥)) = (X + 716(¥)s X + 10(¥)) (OF (71:(¥)s 72:(¥)) = (120(2)
7:0(y)) in measure with respect to v.
(L.7) T =7 dAsups_ gy, e s § (D) S22 (WX 4 120()s X + T7l(D)s )

= Wlx 4+ 1), X + 7:0), DIP(x, y) dx} < oo
(1.8) W(x + t, x + t,, y) is lower semi-continuous at

(ts ) = (120())s 72())) » a.e. (dx)Xv.
We now state the

THEOREM. Suppose assumption (1.6), (1.7), and (1.8) are satisfied and

(1.9) §2(dy) § XWX + 720(9)s X + 7(3)s )P, y) dx < 0o
Then the best invariant interval estimation procedure 0, is admissible.

ProoF. The proof requires an adaptation of the proof given by Brown [2].
We omit the details.
Note: After the author’s proof of the theorem, Brown and Fox [3] developed
a more general version of the above theorem.
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Regarding condition (1.6), the reader is referred to conditions (a) and (b) of
Brown and Fox [3], and Brown and Purves [4], for the analogue of Brown [2],
Lemma 2.2.1. The analogue of Brown’s Lemma 2.2.2 is

LEMMA 1. Suppose there is a d € .7 such that R(0) < oo. Suppose W satisfies
(1.8) and
(1.10) lim, . inf, ,,.o W(t 1 ) = R())» a.e. v.

Then a best invariant procedure, 0,, say, exists. Assumption (1.6) is satisfied if and
only if this interval is uniquely determined a.e. v.
Here U, = {(v,, %,): v, < v, |[v]| < 7}, and
R(y) = infwl,w R(vy, v,, ) and
R0y, 03]) = § Wz + 0,0 2 + 03, y)p(z, ) dz .

REMARK. Minimaxity of d, in Lemma 1 follows from Kiefer [8] page 263.
Kiefer’s proof requires closure of the class of decision procedures which follows
from LeCam [11].

REMARK. For a counter example to the theorem, when (1.9) does not hold,
see Perng [12].

2. Discussion of loss functions and some lemmas concerning assaumption (1.7).
We now choose to rewrite the loss function in a form appropriate for confidence
interval estimation. That is, we write
(2.1) W(ty, 1y, y) = h(ty, 1, ) + (1 — I ,0,1(0)) » h=0.
We would also like to distinguish a subclass of loss functions denoted as follows:

(2.2) W(ty, 13, y) = c(1 — I[tl,tzl(o)) + ¢ hy(t;, L, ) + ¢hy(t, 1Y),
where k, > 0, h, > 0, and A, is an “estimation type” loss and £, is a “length
type” loss. Consideration of (2.2) enables one to unify results in confidence
estimation and point estimation. For example, suppose h, = (¢, + 1,)/2 and
h, = (t, — t,). Then if ¢, is “very large” relative to ¢, and ¢, we may be com-
pelled to use a degenerate confidence interval i.e. #, = #,. In the case of sampling
from a continuous distribution then, the risk of such procedures reduces to a
constant plus the mean squared error of a point estimate; which is equivalent
to dealing with a point estimation problem with squared error loss. On the
other hand if ¢, = 0, then the loss is a typical loss used in confidence interval
estimation. Some specific losses will be treated in the next section on examples.

Now we offer some lemmas which give conditions that imply the validity of
assumption (1.7) (i.e. / < oo). The analogues of Brown [2], Lemma 2.3.1 and
the first part of Lemma 2.3.2 are obvious. The following lemmas were designed
to treat loss functions of the type (2.2).

Before we state the next lemma let us define the following sets:

Q) = {(v5 v): v > 0,9, > 0, v, < v}
Q; = {(v, v)): v, = 0,v, = 0}
Qa' = {(1)1, ’Uz): v, < 0, Vy, < 0, v = ?)2} .
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We say that W satisfies condition (2.3), if there exists a bounded square B whose
sides are of length 23 (0 < 8 < oo) and whose center is at the origin, such that

for each y,
(2.3) (i) W(w,, v, y) is non-decreasing along (x + #, x + ;) as x increases,
for (v,, v,) € @/ N B°. (B°is the complement of B.)

(ii) W(v,, v, y) is non-increasing along (x + #,, x + #,) as x increases, for
(v, v,) € Q' N Be.

(iii) W(v,, v,y) is non-decreasing in (v;, v,) for (v;, v;) € Q, N B, as v, varies
from 0 to — oo and v, varies from 0 to co.

(iv) W(v,, v, y) is non-decreasing in v, for fixed v, for (v,, v,) € Q) N B*.

(V) W(v,, v,, y) is non-increasing in v, for fixed v, for (v;, v;) € @ n B°.

Now we give .

LeMMA 2. Let W satisfy condition (2.3) and suppose
(2.4) § v(dy) § |x SUP|,  caizi 4,612 Wt B »px, y)dx < oo
Then (1.7) is satisfied.

Proor. The proof is accomplished by essentially the same method used by
Brown [2] in the proof of his Lemma 2.3.2. The analogue to Brown’s #'(y) is

7' ), 7/ ()

=B+4B+14) if 1'()>B8+14

= (/') /() if [r/MI<B+24, [I’WMI<BA+7r
(2.5) =), B+ 4) it /O <B+24, () >B+2

=(=B—4B+4) if W"O)<—=8—4, 1WO)>B+2

=(=B—247'(») if )< -=B—42, [’ <B+2

—(—f—h B2 i H)<—B—1.

REeMARK. The conditions (2.3) are easier to interpret if we replace A(t,, t,, y)
in (2.1) by A(t, — t,) or replace Ay(t,, t,y) in (2.2) by hy(t, — 1,).

Next we give a lemma that will be used for a scale parameter problem. (See
Example 2 of Section 3.) First we let H = {(v;, v;): v, < B}, (0 = 8 < o0).
We say that W satisfies condition (2.6) if, for each y,

(2.6) (i) W(v,, v,, y) is non-decreasing along (x + #, x 4 #,) as x increases
for (v, v,) € Q) n He.
(ii) W(w,, v, y) is non-decreasing in v, for fixed v, for (v,, v,) € (@)’ U Q;) N H".
(iii) W(v,, v,, y) is bounded in v, for fixed v, for (v,, v,) € (\Q2 U Q) n He.

Now we give

LEmMMA 3. Let W satisfy condition (2.6) and suppose
(2.7) §v(dy)§ |x SUPy, <0145 W(ty, 1, )| p(X, y) dx < oo .
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Then (1.7) is satisfied.

Proor. Proceed as in proof of Lemma 2, only this time instead of (2.5) define
the truncated versions of (7,, 7,) as follows:

(7'()s 7))
(2.8) = (r'() 1)) if /() <p+2
= (') 8+ 4) if 7/O)<B+4, 1/()>B+2
=B+4+2 U K>+ 2.
3. Examples.
ExaMPLE 1. Let X be a single observation (without loss of generality) from a
normal distribution with mean ¢ and variance 1. Let the loss function be
3.1) Wty t,y) = (1 = Iy 1,3(0)) + a(t + 67)/2 + o(t; — 1) .

Then the best invariant confidence interval is of the form (x 4 7,, x ++ 7,) Where
(71, 72) are chosen to minimize

(3'2) V(11 12) = EgW(ts 15, )
=14 (&/2)[2 + 7 + 1] + cra — 1) — [P(r2) — D(7,)] -
It is easily verified that the unique values minimizing (3.2) are as follows:
If ¢, = 1/(27) then 7, = 7, = 0.
If ¢, < 1/(27) then y, = —7,, and 7, is the unique positive solution of
(3.3) ary + ¢ — (e779(21)t) = 0.
Note if ¢, = 1/(27)t we have a point estimate, whereas if ¢, = 0 we have the
confidence interval obtained by Joshi [7].
It is easily verified that the conditions of Lemma 2 are true, and also the other
sufficient conditions of the theorem. Thus the best invariant procedure given
above is admissible and minimax.

ExXAMPLE 2. Let S be an observation from a population whose distribution
is a scaled chi-square with n degrees of freedom. That is S/s has a y,? distribu-
tion. We seek a confidence interval for ¢ when the loss function is
(3.4)  W(t — 9)fo, (t — 9)]0)

= &l — L1y, )(9) + (61/d))(t, — 9)* + (1 — 0)']

+ (¢fo)[t; — 1] -

We transform the above problem to the following translation parameter problem
in the manner previously done by Farrell [6] and others. Observe X = log §
so that the density of X is
(3.5) fx = 0) = expl(/2)(x — 0) — =],
where 0 = log ¢. Take the loss to be
(3.6) Wit ty) = el — Iy 1,)(0)) + cil(e — 1) + (e — 1)] + cy(e’2 — ).
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Once again it is easy to verify the conditions of Lemma 3 and the other suf-
ficient conditions to conclude that the best invariant confidence interval is ad-
missible and minimax. This example then gives the analogous result of Cohen
[5] for confidence interval procedures. It is clear however that this result holds
for more general loss functions and for many other scale parameter problems.

REMARK. Wolfowitz [14], Konijn [9], [10], Aitchison and Dunsmore [1],
Winkler [13] evaluate confidence intervals for specific loss functions that com-
bine length of the interval and, or some measure of the distance of the interval
endpoints from the true parameter. The results of this paper are applicable to
the loss functions they consider.
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rections and very helpful comments. )
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