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A FAMILY OF ADMISSIBLE MINIMAX ESTIMATORS
OF THE MEAN OF A MULTIVARIATE
NORMAL DISTRIBUTION!

By KHURSHEED ALAM
Clemson University

Let the p-component vector X be normally distributed with mean ¢
and covariance ¢2I where I denotes the identity matrix and ¢ is known. For
estimating & with quadratic loss, it is known that X is minimax but inad-
missible for p > 3. We obtain a family of estimators which dominate X
and are admissible. These estimators are, therefore, both minimax and
admissible.

0. Summary. Let the p-component vector X be normally distributed with
mean & and covariance ¢/ where I denotes the identity matrix and ¢ is known.
For estimating £ with quadratic loss, it is known that X is minimax but inad-
missible for p > 3. We obtain a family of estimators which dominate X and
are admissible. These estimators are, therefore, both minimax and admissible.

1. Introduction. Let the p-component vector X be normally distributed with
mean & and covariance ¢?/, and let the loss be quadratic, given by

(1.1) L(E, &) = |IE — &lp/e’

where £ represents an estimate of & and ||x|| denotes the length of a vector x.
For estimating &, Stein [8] showed that X is inadmissible when p = 3. An esti-
mator which dominates X, was given by James and Stein [6] for the case when
¢ is unknown and an independent estimate of ¢? is available, which is distributed
as ¢’} (chi-square with n degrees of freedom). The estimator was improved
upon by Baranchik [3]. Alam and Thompson [2] have considered a family of
estimators that dominate X. Baranchik [4] has shown that X is dominated by a
general class of estimators, including the estimators given in [2], [3], and [6].
We extend this class for the case when o is known. The estimators in a sub-
class of the extended class are shown to be admissible. As X is minimax, these
estimators are both minimax and admissible. In an unpublished paper Baranchik
has also obtained admissible minimax estimators.

On the problem of estimating the mean of a multivariate normal distri-
bution, two other papers have appeared recently, which should be mentioned.
Strawderman [9] gives a family of minimax and proper Bayes estimators of &
for p > 6. This family is different from the family of estimators given in this
paper. Strawderman and Cohen [10] give a necessary and sufficient condition
for an estimator of the form d&(x) = h(]|x|*)x to be generalized Bayes. The
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generalized Bayes estimators are shown to be admissible under additional as-
sumptions.
Suppose that ¢ is known and that p = 3. Let

(1.2) o(X) = X¢(||X]P/o”)

represent an estimator of £ where ¢(y) is a real-valued function of y. Let
(1.3) ) =y (1 =60 yz0
and

2y

1.4 —2Mmy1, 2 1,l/M WAPAR <v<1
(4 #) =2 rrfrrPu(f.3). wsv<
where
(1.5) v =12 +5— (4" + 8 — 7))

and

1.6 M, b,y) =14 @y L @ (@

(1.6) (@b,y)=1+ o, Ton T T T

denotes the confluent hypergeometric function, (a), = 1 and

(@,=aa@a+1).---(a+n-—1).
Let »(X) = (X) for ¢ = ¢,. The main results of this paper are contained in
Theorem 1.1 and Theorem 1.2, given below.

THEOREM 1.1. (X)) dominates X if (i) f(y) is a monotone non-decreasing func-
tion of y and (ii) 0 < y=*f(y) < 2p — 4t — 4 for some value of t = 0.

The class of estimators d(X) for which (i) and (ii) hold for the particular
value ¢ = 0, is the class of estimators given by Baranchik [4] for the case when
o is known.

THEOREM 1.2. 7(X) dominates X and is admissible.

2. Main results. First we prove Theorem 1.1. Let 6 = ||§||*/2¢%, and let R ()
denote the risk of 6(X). Directly, as also from the computation leading to (1.10)
in [4], we have

Ry(0) = oE(|| X¢(|| X][*/0”) — €[I")
(2'1) = 2L%=0

P BYg(Y) — 4K4(Y)) + 20

P B((YB(Y) — 20 — 4T

= Z;=o

where E denotes expectation, and Y is distributed as 33 ,,,. It is clear from (2.1)
that we may assume that ¢(y) = 0, for R,(6) is not increased by substituting

|$(y)| for ¢(y).
Suppose that 0 < y~¥f,(y) < C for some positive number C and a fixed value
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of t (0 <t < p/2 —1). Substituting 1 — y=t='f,(y) for #(y) in the second line
on the right-hand side of (2.1) we have after simplification

6%e"9

S E{[(N)Y(Y) + 4KY = 27 )

(2:2) R,(0) =p + X~

K,—0
<P+ Ti Lo ELANICY ™ 4 4KY= — 2Y7].
Let 4(Y) denote the quantity inside the braces in the second line on the right-hand
side of (2.2). Thenh(y) = (< )O0fory < ( =)y, = 2K + C/2. Asf/(y)is non-
decreasing in y by the condition (i), we have

G%e—?
i [i(P)E(CY*1 4 4KY 41 — 2Y7F)

R&(a) g P + ZOI;=0
§Ke—? )
=p+ Lk=o —%“ft(yo) {2—1- cr (% + K —t— 1>

(2.3) 4 2-tHKT (_P; tK—t— 1)

L
=+ i TS LONC = 2p 4 41+ 4)
r(gxmr (g

=P
for C = 2p — 4t — 4. Clearly, strict inequality holds in (2.2) and therefore in
(2.3), unless f(y) = 0 and thus d(x) = x, almost everywhere. Theorem 1.1

follows from (2.3).
Next we prove Theorem 1.2. First we obtain a Bayes solution of the func-

tional ¢. Consider a prior distribution g; on 6 with density

(2.4) M@:T%ﬁwvw, 1>0,0,<v<

where v, is given by (1.5). From (2.1) we have that the average risk of J(X)
with respect to g, is given by

ro = ¢ Ry(0)9,(0) 40

e 'K + v)2* _ 3 _ 2\ y-1
C5) = Sk Gt (790 267 — k)Y

'k A 2 -
= 57 Tk (3 gy (090) = 2K) — 4Ky
2—ip—Kyép+K-le—éu dy 2u

I'(3p + K) A
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From (2.5) we see that the functional ¢ minimizing r, is given by

(2.6) y¢’(}’) = Yoo KF(I§+ v)y* /Z;=o _ F(K}j‘ v)y*
25(1 + )*T(3p + K)K! 2%(1 4+ 2)*T'($p + K)K!

= e S )M B )

Let

@7 $0) = (12“)M(”“’%“’?(ry;g—))/M(”%’y(fng)-

Setting 2 = 0 in (2.7) we return to (1.4).

We show that ¢ = ¢, satisfies the conditions (i) and (ii) of Theorem 1.1. Let
y = 0. From the formulas (13.4.3), (13.4.4), (13.4.8) and (13.5.1) given by
Abramowitz and Stegun [1] we have the following relations which will be used
in the sequel. (2.11) below, is obtained from (13.5.1) of [1], letting z be real
and positive. For large z > 0 the first part on the right-hand side of (13.5.1)can
be disregarded, as it is equal to O(z~%) while the second part is equal to O(e*z°7%).
We have

(2.8) yM(a, b + 1,y) = bM(a, b, y) — bM(a — 1,b,y),
(2.9) aM(a + 1,b,y) = (1 4+ a — b)M(a, b,y) + (b — 1)M(a, b — 1,y),
(2.10) M'(a, b, y) = dM(a, b, y)/dy

:%M(a-}- 1L,b+1,y),
and for large y

(2.11) M(a, b, y) = EE ;e”y“ b {1 4 (1 — a)b — ay?

+ (1= ay — a2+ 09}
Applying (2.8), (2.9) and (2.11), we get from (1.4)

$y) =1 — ﬂzpi M(x, 2, %)/M@, P )
P
2

(2.12) :I—P;zy{l—M(u—l,%,%)/M(p, %)}
1 (3“7&) {1 + -z(ly;”) + O(y‘z)} :
Let U,(y) = M(v, p, %)), V.(y) = M(v, 3p + 1, 3),
(2.13) 9(y) = U,.(»n)/U(y)

= —2(1 —=y)ly + 0(y™)
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and

h(y) = U,V (y)
(2.14) = —(1 =»)V.(PV,a(y) by (2.11)

= =21 =)y + 007)

where prime denotes derivative with respect to y. By Lemma 2.1, given at the
end of this section, V,(y)/V,,(y) is non-increasing in y. Then from (2.14) we
have that A(y) is non-decreasing in y. Therefore, as U,(y) > 0 and U,/(y) > 0,
g(y) has at most two extrema in the domain y > 0, for the extreme value of g(y)
is given by g(y) = A(y). As g(0) =1 and g(c0) = —O0, it has exactly one
extremum (minimum) at y,, say. That is, as y varies from 0 to oo, g(y) first
decreases then increases to zero. The minimum value of g(y) is given by

9(»o) = h(y.)
(2.15) = h(0)
= —(1 —v)/v by (2.14).

From (2.12) and (2.15) we have that

(2.16) Y= ¢(y) = (p — 20)(1 — 9(»))
<(p— ).
Thus, ¢ = ¢, satisfies the condition (ii) of Theorem 1.1 for 0 <t < 4(p—1)—p/4v.
Now we show that g,(y) = y**{(1 — ¢¢(y)) = (p — 2v)y***V,(»)/pU,(y) is non-
decreasinginy fory < Oand r > (1 —v)(p —2v+4)/v. Let Z(y) = (3y)'"* V().
Applying (2.8) and (2.10) we have

@17 zZm) =40+ 0(5) o+ () g M 2 )

= % (%)t A+ 1=V +vVu0)},
ACI N N AY —y Y
(2.18) = Z(Z) 0+ + =) o)V}
and
Z0) P (YN —
(2.19) T0) 7<7) {1 = U,V

From (2.12) and (2.19) we have that g,(y) = 2"*(p — 2v)Z(y)/pU,(y). From
(2.18) and (2.19) we have that g,(y) is non-decreasing in y when

(2.20) I+ 1 =)V )Vu(y) + U(n)/Uy) 2 0
or
(2.21) aV,(NUy) + Uei0)Voia(y) 2 0

where a = (1 + t — v)/v.
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Using the series expansion for the confluent hypergeometric function, given
by (1.6), and writing ¢ for p/2 and x for y/2, we have

e X" @, (R (¥)/(*)n—y
uvov.(y) = Zn=og r=o ()(c},(ch):

(2.22) = e, Xy, (") (), ()u—r €

n! 7 (C)r(c)n—y(c + h— T)
— oo " n - 2c + n)q
— an ,x_ Z[‘L](") (y)r(y)n rc( r
TN @@uyle + 1) + 1 =)
where [x] denotes the largest integer less than or equal to x, ¢, = 1 for y < §n
and ¢, = 4 for y = 4n. Similarly,

Uv—l(y) Vv+l(y)

_ oy X g (1) ()0 v — D,
(2.23) = Z"=°ﬁ i (r) () ()n—r¥
{ vbn—7 n v+ 71 } .
CHr—Detn—p  CFn—r—De+n

From (2.22) and (2.23) we have that the left-hand side of (2.21) is nonnegative
when for eachn =0,1, --.

(2.24) a(2¢ 4 n) I v-—1
(c+r)ec+n—7) v
{ v+n—y + v+ 7 };0
C+r—Ie+n—7) (+n—7—1D+7)
fory =0,1, ..., [4n].
Let L denote the quantity on the left-hand side of (2.24). We have
(2.25) _ t(2¢ + n) +u—1{ v+n—y
e+ rie+n—r) v Wwtr—I)c+n—7)
v+ 7 . 2c +n }
vtrn—r—Nc+7) (c+r)c+nrn—7)
The quantity inside the braces on the right-hand side can be written as
( yv4+n—y . 1 )
vt+r—IWNe+n—7p) c+n—y
v+ 7 1
+ —
<(u+n—r—1)(c+r) c+r>
_ n—2r+1 2r—n+1
C+r—e+n—7) C+n—r=1C+7)
1 1
=((n-2 —
( r)<(v+r—1)(0+n—r) (V+n—r—1)(6+r))
1 1

TeFr=Detn-n  Gra-r-Dhetn
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_ (n—27(c — v + 1)
vH+r—=—Iec+n—7)v+n—7—1)c+7)

1 1
Tt —Detn—n  GHn—r—Detn
_ 1 { (n — 27)c — v + 1)
Cinetn-nlorr—Detn—7r-1

s )
v+7r—1 v4+n—7—1
< 1 {(2c+n)(c—u+1)+2c+n}
(c+7r)Ne+n—7) v v
= (2¢c + n)c — v + 2)v(c + r)Nc +n —7).
Thus L > 0, and therefore (2.21) holds for
(2.26) t=> (1 —v)e—v+2).
From (2.26) and the conclusion following (2.16), we have that the conditions
(i) and (ii) of Theorem 1.1 are satisfied for ¢ = ¢, when
1 —v

2v

(p-wt+Hsi<li_2,

(2.27) f

A nonnegative value of ¢ satisfying (2.27) exists when », < v < 1. Therefore,
0(X) dominates X, by Theorem 1.1. The admissibility of d(X) is shown in the
following section, thus completing the proof of Theorem 1.2. The lemma cited
above, is given below.

LemMa 2.1. Let h(y) = (350 d; y)/(X5, a; yt) where a;, b, are nonnegtive, and
Sia,ytand 3 b, y* converge for all y > 0. If the sequence {b,/a;} is monotone non-
decreasing (non-increasing) then h(y) is monotone non-decreasing (non-increasing) in y.

The lemma can be shown by differentiating 4(y) (see Lehmann [6], Problem
4 (i) page 312).

3. Admissibility of »(X). Stein [7] has shown that for the loss given by (1.1),
an estimator which is admissible in the class of estimators §(X) given by (1.2), is
admissible in the class of all estimators. Therefore, to prove the admissibility of
n(X) we need only to show that »(X) is admissible in the class of estimators d(X).

Let 7,(X) denote the estimator 6(X) for ¢ = ¢,, given by (2.7). Then 5,(X) =
7(X). To show that 5(X) is admissible in the class of estimators d(X), and hence
admissible in the class of all estimators, it is sufficient to show that

(3.1 lim,_,, P(2) =0
where P(2) = 27 §¢ (R,(6) — R, (0))9,(6) df. For, suppose that an estimator
0(X) dominates n(x). We have
(3.2) 7 AM(R,(0) — Ry(0))9:(0) db
= P(2) + §5 27(R,,(6) — Ry(0))9:(0) 40 .
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Let 2 — 0. The quantity on the left-hand side of (3.2) is positive as R, (f) —
R,(6) = 0 with inequality for at least one value of 6 and hence for a neighbor-
hood of 6, by continuity. On the other hand, the integral on the right-hand
side of (3.2) is non-positive for 7,(X) minimizes the average risk given by (2.5).
Then (3.1) contradicts (3.2).

From (2.1) we have

(33) RO - Rnw)

= 220 LT BV(gA(Y) — $2(Y)) — 4K(SW(Y) — $.(Y))} -

Multiplying both sides of (3.3) by 1-*g,(¢) and integrating with respect to 6 we get

IR < P F(K + v) 2 2
P(2) = Xi%-o T+ HFHTRIK! E{Y(¢(Y) — ¢1 (Y))

(34) — 4K($(¥) — (Y )}
e yhv—le-éy . y v P y
=5 7 l)yzé,,r(l ){y<¢o<y> BM (5, AT X))
v L2t M.
gy G0) = S+ L L+ o )

From (2.7) applying (2.11), we have

(3.5) 6.0) = 2 — P2 (14 900
+ A y

corresponding to the asymptotic expression for ¢(y), given by (2.12). Let O(y)

denote the integrand on the right-hand side of (3.4). It is seen that Q(y) — 0 as

42— 0. From the asymptotic expressions for ¢,(y) and ¢,(y) and the confluent

hypergeometric function, we have for large y

_ yue—zu/2<1+x)2 { pi _ 2P L }
L (T T z) o
From (3.6) we obtain that (3.1) holds for 0 < » < 1. Therefore, 7(X) is admissible.
The admissibility of 7(X) through the use of (3.1) can be proved also from a
result of Brown ([5], Theorem 5.6.1). Another proof of the admissibility can be
obtained from Corollary 6.3.2 of Brown [5] which shows that 5(X) is admissible
if 5(X) is a generalized Bayes estimator, and for some positive number L

(3.7 X(n(x) — x) = (2 —pp*  for |Ix|| > L

where x'z denote the inner product of the vectors x and z. That (3.7) holds is
verified easily from the asymptotic expression for @o(y), given by (2.12), and
noting that 0 < v < 1.

For the computation of 5(X) in application, tables of the confluent hyper-
geometric function should be used (see Abramowitz and Stegun [1] for reference

to the tables).
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