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MARKOV DECISION PROCESSES WITH A NEW
OPTIMALITY CRITERION: DISCRETE TIME!

By STRATTON C. JAQUETTE
Cornell University

Standard finite state and action discrete time Markov decision pro-
cesses with discounting are studied using a new optimality criterion called
moment optimality. A policy is moment optimal if it lexicographically
maximizes the sequence of signed moments of total discounted return with
a positive (negative) sign if the moment is odd (even). This criterion is
equivalent to being a little risk adverse. It is shown that a stationary
policy is moment optimal by examining the negative of the Laplace trans-
form of the total return random variable. An algorithm to construct all
stationary moment optimal policies is developed. The algorithm is shown
to be finite.

1. Introduction. This paper is concerned with finite state and action discrete
time Markov decision processes where future returns are discounted. We define
and study a new optimality criterion which we call moment optimality.

The Markov decision process as well as most of the notation needed to de-
velop the results in this paper are defined in Section 2. We also define and dis-
cuss moment optimality. Section 3 contains the result that there is a stationary
policy that is optimal under the criterion of moment optimality. As the methods
of Section 3 do not yield a workable algorithm to construct optimal policies, a
slightly different approach is given in Section 4 to obtain an algorithm to con-
struct all stationary moment optimal policies. Section 5 is devoted to showing
that the algorithm is finite.

2. Preliminaries. We consider a standard Markov decision process. We as-
sume that the stochastic process has a finite state space denoted by S, and without
loss of generality assume that § = {1,2, .-+, s}. We assume that the process
starts at time # = 0 and that the process can jump from state to state at discrete
points in time t = 0, 1,2, ---. At each point in time an action is selected and
applied to the Markov process. We assume that there is a single finite set of
actions, which we denote by 4. Any element a in A4 is an action which may be
applied to the process in any state and at any point in time. We can just as
easily assume that there are perhaps distinct finite action sets A; available when
the process is in state i and obtain the same results, but we make the more re-
strictive assumption to simplify the exposition.

If the process is in state i at some point in time, applying action a determines
the return and transition probabilities for that period. The return obtained is
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denoted by r(i, a). The returns are bounded since both state space and action
sets are finite. We denote the transition probabilities by p;;(a) (j = 1,2, -- -, 5).
The transition probability p;.(a) is the probability that the process will be in
state j at time ¢ 4 1 given that the process is in state / and action a is applied at
time #. We assume that p,;(a) = 0 for all i, j, and a, and that }}%_, p;;(a) = 1
for all i and a.

We define the set F by F = X$_, A. The elements of F, denoted f, are called
action vectors. The ith component of f, denoted f{(i), is the action taken if the
process is in state i.

We denote a policy by = and can write this policy as a sequence of action
vectors, e.g. = = {f, f, ---,f, ...}. Here f, is the action vector applied at
time ¢ using policy =, and we can write n(f) = f,. If = is stationary we have
7(0) = =(t) (t = 1,2, ---), and if 7(0) = f, we usually write /= to denote this
stationary policy.

The state of the process is a random variable which depends on the starting
state of the process, the policy used, and the time in question. We denote by
X,(?) the random state of the system at time r when policy = is used and suppress
the dependence of X () on the starting state.

A return is obtained in each period. This return is a function of the random
variable X (f) and is itself therefore a random variable. In explicit notation
the return at time ¢ when policy = is used is r(X.(t), f(X,(f))) where f = =(r).
We shall simplify this to r(X,(f), 7). Future returns are discounted by a con-
stant discount factor g (0 < 8 < 1) per period.

We denote by r(f) the column vector of returns associated with the action
vector f. We denote by P(f) the one period transition probability matrix as-
sociated with f. The vector R(w) will denote the total discounted return using
policy =. The total discounted return random variable given that X (0) = i is:

(2.1) [R(@)]; = (i, @) + pr(X(1), @) + Br(Xu(2), ) + - -

= 212, B X (1), ™) (XL(0) = i).
Let X (f) be the vector whose ith component is 1 if X, () = i and is 0 otherwise
and let o denote componentwise multiplication i.e., [u o v]; = [u];[v]; if u and v
have the same dimension. Then we can rewrite (2.1) as

(2:2) R(m) = 2% Br(n(1)) o X (1) -

We can characterize the total discounted return random vector R(r) by its
moments. We denote by M, (x) the nth moment of R(x). Noting that R(rx)" =
R(7) o R(w) o - -- o R(x), we define M, (x) as follows:

(2.3) M, (z) = E[R(r)"] (n=1,2,...)
M, () =1.

We also consider M, (7) multiplied by +1 or — 1 depending on whether n is odd
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or even. For this reason we define the vectors N, (x) as follows:
(2.4) N, (7) = (— 1)*M,(x) (n=0,1,2,-..).

We also use vectors N™(x) whose m + 1 components are themselves vectors.
We define N™(x) as follows:

(2.5) N*(x) = (Ny(m), Ny(m), -+, Np(@)  (m=0,1,2,---).

By N(7) we mean N~(7). We use the negative of the Laplace transform of the
total discounted return random vector extensively and denote this by U,(2):

(2.6) U,(2) = — E[exp(—R(n))] .

By expression (2.6) we mean that [U_(4)]; = — E[exp(—A[R(7)];)]-

Suppose u and v are two vectors of the same dimension with components u(i)
and (i) respectively. We write u > v, that u is lexicographically greater than
v, if there is an integer n such that u(i) = v(i) for i < n and u(n) > v(n). If N
and M are vectors whose components are themselves vectors, then we write
N > M to signify that there is an integer n such that N(i) = M(i) for i < n and
N(n) > M(n). The relationship <, <, and > are defined analogously. In this
paper we shall write u < v for vectors if u < vand u = v.

The optimality criterion which has been used almost exclusively is maximiza-
tion of the expected value of total return. Exceptions to this are Derman [1]
and Whitt [4], both for the case of infinite horizon and no discounting: Derman
considers the sample path average return and Whitt considers weak convergence
of the total return suitably normalized. We choose instead to retain the fact
that the total return obtained from using a given policy is a random variable
and pose the question of what sort of random return would be desirable. Using
the notation above we say that a policy n* is moment optimal if N(z*) > N(x)
for all policies =.

Moment optimality measures the desirability of a policy by examining the
moments of the associated return random variable. A policy is good if its odd
moments are large and even moments small, where we consider the moments
lexicographically. Thus if two policies have unequal means, the one with the
greater mean is better, as in the usual expected value case. If they have equal
means, the one with the smaller variance is better. If they have equal means
and variances, the one with the greater third moment is better, and so forth. In
some sense a return distribution is good if it has large expected value with small
risk of falling far below the expected value.

Moment optimality will not differ from the usual expected value case if there
is a unique stationary policy which maximizes the expected return. In general
there may be several stationary policies which attain the maximum expected
return and many more nonstationary policies which do as well. Examples are
easy to construct; a simple two state example can be found in Jaquette ([3],
page 15).

Moment optimality can also be viewed as being a “little bit risk adverse”



MARKOV DECISION PROCESSES 499

when an exponential utility function is used. If the utility function —e=%* is
assumed for the utility of having wealth x, then 2 is the constant aversion to
risk implicit in the utility function. The problem of finding a policy which
yields maximum expected utility of total discounted return for this utility func-
tion when the aversion to risk is small enough is equivalent to the problem of
finding a moment optimal policy. This will be clear in the treatment which
follows, although it will not be stated explicitly. For a discussion of this and
other implications for utility theory and Markov decision processes, the reader
should see Jaquette ([3] Chapter 5), and Howard and Matheson ([2]). The ap-
proach here and in Jaquette ([3]) is different from that used by Howard and
Matheson; however the results are quite similar.

3. A stationary policy is moment optimal. The main'result of this section is:

THEOREM 1. For the finite state and action discrete time Markov decision process
defined above, there exists a stationary policy which is moment optimal.

We dispense with some preliminaries before proving this theorem. We know
that r(., «) is bounded; assume that r(i, a) < B < oo for all ie S and ac 4.
From (2.1) we conclude that |[[R(7)];] < (1 — 8)™'B < o. Thus we can con-
clude that R(x) is bounded everywhere and that its moments grow at most geo-
metrically since |M,(7)| < B*1. This is sufficient to ensure that the Laplace
transform of R(r), and hence U,(4), exists and is finite on the whole real line
for any policy #. We are thus justified in using the Taylor series expansion for
- U(d).

From the definition of the function U we have

[Us(D): = —E[exp(—A[R(f7)]))] ,

where by the policy fr we mean that f is used at time zero and then the ele-
ments of 7 are used in sequence. The Markov property of the process allows
us to conclude that

(3.1) [Un(D]: = exp(=Ax(N)]:) 251 Pis(S(DU(BA]; -

This result follows directly by using the Markov property and taking suitable
conditional expectations. Equation (3.1) can be written in vector and matrix
form as follows:

(3-2) Use(2) = {exp(—Ar(f))} o {P(/)U(BA)} .

We can simplify the calculations by defining the operator L, and restating
(3.2) in terms of this operator. Let .~ be the space of functions of a real vari-
able which are the negative of Laplace transforms of bounded random variables.
Let £ be the s-fold direct product of &1 &* = X3, . We define the
operator L, as follows:

(3.3) (Lyu)(4) = {exp(—2r(f))} o {P(fHu(BA)} , ud)e L.
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It is easy to verify that L uis in & if u is in ~* and thus that L,: & — &,
We can then restate (3.2) as:

3.4 U, (A) = L,U,(2) .
The following lemma establishes a sense in which L, is monotone.
LeMMA 3.1. Let f be any action vector, 2, > 0, and w in . If
(3.5) Ly(u)(2) = u(2)
for all 2in [0, 4], then for all 2 in [0, 4,]
Uj(4) = u(2) .
Proor. Equations (3.3) and (3.5) suffice to establish inductively that for 2
in [0, 4,]
(Lp)"(w)(2) = u(4).
It suffices to show that (L;)*(u)(d) — Us(2). To show this define a policy = z*
to be the policy that uses the action vectors from = until time » and then uses

the action vectors from =* in their proper order. If = = {f,, f,, - - -}, define L "
as follows: '

L. *u) = Ll"“l(Lfn(u)) s and L'(w) = Lfo(u) .

It is elementary to show that R(z"z*) — R(z) a.e. (n — o), that U n.(1) —
U.(2) (n — o0), and that

(3.6) L."(u) - U, (n — o0) on the real line.

We note that Lemma 3.1 and its proof hold with all inequalities reversed. It
also holds with a strict inequality. We shall use these generalizations in what
follows.

LEMMA 3.2. Let f and g be any action vectors in F. Define the function h(+) as
follows:

(3.7) h(2) = [Up)) — [U=(2)): -

There exists a positive number A, such that h(+) does not change sign on the interval
[0, ,].

Proor. Laplace transforms are analytic on the interior of their region of
convergence. Thus #(+) is analytic on the real line. If the lemma were false,
then 4 would cross zero infinitely often as 2 approaches zero, and there would
exist a sequence {4,} — 0+ such that 4(4,) = 0 for all n. This would imply that
h is identically zero, since 4 is analytic. Thus the lemma must hold.

For convenience in notation for the following lemma, we write 27 > 0 (4 — 0%)
if a function as defined in Lemma 3.2 does not change sign on some interval
[0, 4,] and if A(2) > 0 on (O, 4,).
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LEMMA 3.3. Let f and g be any action vectors in F and let h be as in Lemma 3.2.
Define the action vector e as follows:

(3.8) ey=f) if h>0 (A—0%),

= g(i) otherwise.
There exists a scalar 2, > 0 such that
Ugo(4) = max {U;=(R), U(4)} forall 2¢]0, 4] .

ProOF. Associated with each index i there is a positive 4, guaranteed by
Lemma 3.2 such that the appropriate 4(.) does not change sign. Take the 2,
for Lemma 3.3 to be the minimum of these 4,, which must be positive since §
is finite. The definition for e, (3.8), leads directly to the statements that for
2€[0, 4] )

LUSAW) 2 U2, and LU Z Upeld) -
We can now apply Lemma 3.1 to obtain the conclusion of the lemma.

We now define an alternative optimality criterion. A policy =* is called U-
optimal if there exists a positive scalar 2, such that U_.(2) = U,(2) for every =
and all 42 in [0, 4,]. We remark that U-optimality is optimality being a “little
bit risk adverse.”

LEmMMA 3.4. There exists a stationary policy that is U-optimal.

ProoF. Restrict consideration first to stationary policies. Starting with any
stationary policy and applying Lemma 3.3 repeatedly, we are assured of the
existence of a positive 4, and an action vector f such that U,(4) = U,(4) for
all 2¢[0, 2] and for every ge F. This follows since there are only a finite
number of distinct elements in F. We can then conclude immediately that
every action vector g satisfies

3.9) L,(Uss)(4) < Upee(4) forall 2€]O0, 4,].
If this conclusion did not follow, then Lemma 3.3 would ensure an improve-
ment on f, which cannot obtain. By suitable choices of g in (3.9) and applying
these L, repeatedly, we can construct L, for any choice of policies 7. This
application ensures that for all 1¢ [0, 4,]
LAUAR) < Up()

Equation (3.6) allows us to conclude that U () < U,=(4) on [0, 4], which com-
pletes the proof.

LEMMA 3.6. A policy is moment optimal if and only if it is U-optimal.

Proor. This follows directly from the definitions of moment optimality and
U-optimality, Lemma 3.5, and the Taylor series expansion for U,(4), which
converges for all 4,

(3.10) U,(2) = Y=, N,(z)2"/n! .
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It is clear the N(zx*) > N(x) if and only if U.(4) = U, (1) for all 2 is some
suitable interval [0, 4,] (4, > 0).

Theorem 1 can now be verified very easily. Lemma 3.5 establishes the ex-
istence of a stationary policy that is U-optimal. Lemma 3.6 establishes that the
moment optimal policies are exactly the U-optimal policies.

It should also be clear from the proof that the assumption of a single action
set A is merely for convenience and that the more general action sets A4; with
F = X3., A; admits the identical proofs.

It should also be clear that the particular selection of alternating signs in the
definition of moment optimality is not critical in the proofs. In fact the same
results obtain if we choose any of the following sequence of signs for the mo-
ments of return in the definition of N(x) in (2.4): +1, —1, +1, ... or
-1, +1, -1, ... or +1, 41, +1, ... or —1, —1, =1, ....

4. An algorithm to construct a moment optimal policy. To facilitate construc-
tion of all stationary policies which are moment optimal, we define additional
optimality criteria which are related to moment optimality. We define the cri-
terion of (m) moment optimality to be moment optimality ignoring all moments
higher than the mth moment. Recalling the definition of N™(z) in (2.5), we call
a policy 7* (m) moment optimal if N™(z*) > N™(z) for all policies =.

It should be evident that a policy is moment optimal if and only if it is (m)
moment optimal for all m. We base an algorithm on this observation. From
Theorem 1 we know that there is a stationary policy which is moment optimal.
A stationary moment optimal policy is (m) moment optimal for all m. We can,
therefore, restrict our attention to stationary policies.

Define the sets of action vectors, F™, as follows:

4.1) Fm = {f:feF and f> is (m) moment optimal} .
From our previous observations F™ 2 F™+!' and F* = lim,,_, F™ + @. The
set F= is the set of action vectors, f, such that /= is moment optimal.

In this section we shall use some additional notation. If Nand M are vectors
with vector components N; and M, respectively, we write N =, M if N, = M,
for i < n. Similarly we write N>, M if N> M and N =, M. The relation
>. <. and <, are similarly defined.

Suppose that U is in .~7*; then we can write the Taylor expansion as U(Z) =
Y= ,u,A"/n!. By the notation U we mean the vector whose vector components
are given by this Taylor expansion, e.g., U = {u, u;, ---}. If UQQ) in &£ is
viewed as the negative of the Laplace transform of some bounded random vector
R, then E[R"] = (—1)**'u,.

LEMMA 4.1. Suppose U(R) is in £ and let f be any action vector. Then
(4.2) U=, U
if and only if
4.3) L,U)=,U.
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Suppose that L,(U) >, U. Then
U >, U.

ProOOF. Suppose that (4.3) holds. Then a simple induction argument leads to
(L)™(U) =,, U. The result in (3.6) concerning convergence of the transform im-
plies (L;)"(U) — U, which yields (4.2).

Suppose that (4.2) holds. Using (3.4) establishes that L/ (U;~) = Uy, there-
fore if we can show that L,(U) =, L, (U,.) follows from (4.2) we could es-
tablish that

L(U) = L(Uj=) = Upe =, U,
which is just (4.3). To fill the gap expand the components of (3.3) as a power
series in 4 and equate coefficients of 1™ )

(4.4) [LAU)], = Zizo BCEN—T())"" o P(); -

Since [L/(U)], is a linear combination of u; for i < n only and since Uy =, U
by (4.2), we can conclude that [L,(U)], = [Ly(Us)], for n < m. This completes
this portion of the proof.

If L(U) >, U, then using (3.10) it is clear that the hypotheses of Lemma 3.1
are satisfied and hence that U, > U. Applying L, to both sides of this relation-
ship yields

U = Ly(Up) = Ly(U) >, U.

LEMMA 4.2. The set F™ is a direct product. If fe F™ and F™ = X}, A", then
(4.5) Ar={aed;: L(Up) =, Usp for g(i)=a and 9(j) = f(j) ( #j)}

Proor. Let Uin Lemma 4.1 be Uy.. Since fe F™, Lemma 4.1 implies that
ge F™ if and only if L (U;=) =, Us. Clearly F™~* 2 F™, so that to define F™
we need only consider g € F™-*. This eliminates consideration of all components
of L(U,«) except the mth. From (4.4) it is evident that the ith component of
[L,(U)],. depends only on g(i) and not on g(j) for j # i. It thus follows directly
that F™ is a direct product and that 4,™ can be given by (4.5).

We remark that 4, 2 A4,™ follows directly from F™-' 2 F™. Since F> is
nonempty by Theorem 1 so are the A;”. This indicates that F™ can easily be
constructed from F™-! if an element f in F™ can be found. This construction
can be accomplished by using (4.5) and (4.4) and noting that [Us~],, = N, (f*).

LemMA 4.3. Pick any fin F™~*. Either

(a) feF™or
(b) there exists a g € F™* such that
(4.6) L(Uspe) >, Upeo. - .

If (4.6) holds, then U . >, U (.

Proor. First assume that (4.6) holds. Lemma 4.1 can be applied to show
directly that U >, Uge.
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Suppose then that (4.6) holds for no g in F™~'. For every g in F™~! we then
have L (Us) <, Use. A direct analog of Lemma 4.1 for the inequality < and
that lemma as stated combine to show that then U,~ <, U, for all g in F™1
This is simply the statement that f is in F™, which is part (a) of the lemma.

Lemma 4.3 indicates a policy improvement algorithm. An action vector g is
sought which improves upon all others in F™! in the sense that it is in F™.
Lemma 4.1, especially (4.4) indicates how to find a g in F™' satisfying (4.6).
Since L, (Us) =,,_, Us, we seek an improvement g satisfying [L (Uy)], >

[Uf-], or
(4.7) 2o BE(—E(@)™ o PON(S™) > Np(f=) .

The ith component of the left side of (4.7) depends only on g(i) and not on g(j)
(j # ). Thus an improvement on f can be obtained by g defined by

g(i) = {a € A™": a maximizes the ith component of the left side of (4.7)} .

If g obtained equals f, then f is in F™ and no further improvement is possible.
This f then allows direct construction of the 4, and F™ as indicated by Lemma
4.2 and the following remarks.

THEOREM 2. The set F™ can be constructed in a finite number of steps.

Proor. The theorem follows by an inductive argument using Lemmas 4.2
and 4.3 and the following remarks. The finiteness of each step, generating F™
from F™-*, follows since the policy improvement can be performed only a finite
number of times. This is a result of the finiteness of F.

5. The algorithm to construct moment optimal policies is finite. Theorem 2 as-
sures that (m) moment optimal policies can be constructed a finite algorithm.
Moment optimality requires consideration of all moments, and construction of
(c0) moment optimal policies would require a countable algorithm. In fact only
a finite algorithm is needed, as indicated in the following theorem.

THEOREM 3. Moment optimality is equivalent to (n*) moment optimality for some
finite n*. All stationary moment optimal policies can be constructed by a finite

algorithm.

Proor. Since there are only a finite number of stationary policies, there must
be a finite number n* such that for all pairs of action vectors f and g, U > U -
if and only if Uy > . U,e.

Under certain circumstances n* can be determined beforehand to be no greater
than s; however in general this is not the case. If the algorithm is performed
iteratively, a stopping rule can be given: if R(f*) =_ R(g>) for all fand g in
F™ for some m, then n* < m. This is true if F™ has a single element; however
there may be several elements in F= with the same return distributions, in
which case verifying that R(f~) = _ R(g~)is equivalent to calculating a countable
number of moments.
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